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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 

 
FLUTTER ANALYSIS OF A SCALED MODEL OF AN EAGLE 150B/AC 

WING 
 

By 
 

AZMIN SHAKRINE BIN MOHD RAFIE 
 

September 2007 
 
Chairman: Professor Ir. ShahNor Basri, PhD 
 
Faculty: Engineering 
 

An investigation of the problem of the flutter condition of an Eagle 150B aircraft 

wing is undertaken. The research is largely devoted to investigating the adequacy of 

the ideal flutter theory that has been employed to predict flutter boundary for such 

wing. A series of panel flutter experiment carried out in UPM 1m × 1m wind tunnel 

at Mach number up to 0.132 are described in detail. Furthermore, an extensive 

parametric computational analysis has been conducted to improve flutter condition 

by reconfiguring the wing design specification. For experimental analysis, the 

ground test which includes static and dynamic tests of the wind model has been 

performed followed by the wind tunnel testing. The data gathered from the wind 

tunnel testing is analyzed using the logarithmic decrement method so that the flutter 

speed can be predicted. The wing model mounting system test rig has been designed 

and developed together with the data acquisition system which is used for data 

collection. In order to validate the experimental technique, wind tunnel testing using 

three different types of materials for rectangular flat plate has been conducted. The 

types of materials used are aluminum 6061, mild steel and stainless steel. The 
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agreement between experimental technique and computational analysis is acceptable 

since the error of difference is less than 6 percent. 

 

MSC. Patran and Nastran software have been used to predict the flutter condition 

since it has the capability to carry out the aeroelasticity analysis of the actual wing 

and wing model. The PK-method and aerodynamic doublet lattice methods were 

selected for this analysis as it provides the eigenvalue solutions in the form of the V-

g and V-f graphs. Validation of the computational analysis with two existing 

published results is performed to ensure the results are reliable. The parametric study 

produced the results on the effects of the mass, altitude, span length, stiffness and 

center of gravity position against the flutter speed condition. This research work may 

conclude that both techniques are reliable to investigate flutter speed since the 

validation results showed a good agreement. It was also found that through extensive 

parametric study, several suggestions have been made to reconfigure the wing in 

order to improve the flutter condition.  
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Penyiasatan bagi masalah keadaan fluter untuk sayap pesawat Eagle 150B telah 

dilaksanakan. Penyelidikan ini menumpukan sepenuhnya untuk menyiasat 

kecekapan teori unggul fluter yang telah digunakan untuk meramal sempadan fluter 

sayap tersebut. Beberapa siri eksperimen  panel fluter yang dijalankan di terowong 

angin 1m × 1m UPM pada nombor Mach sehingga 0.132 telah dinyatakan dengan 

teperinci. Selanjutnya, kajian parameter yang mendalam menggunakan kaedah 

analisis berkomputer telah dilakukan untuk memperbaiki lagi keadaan fluter dengan 

mengubah spesifikasi rekabentuk sayap. Untuk analisis eksperimen, ujian di dataran 

yang mengandungi ujian statik dan dinamik untuk model sayap telah dilaksanakan 

diikuti oleh ujian terowong angin. Data yang diperolehi daripada ujian terowong 

angin akan dianalisa mengunakan kaedah pengurangan logaritma di mana kelajuan 

fluter akan dapat diramal. Sistem rig ujian pencagak model sayap telah direkabentuk 

dan dibangunkan bersama dengan sistem perolehan data yang digunakan untuk 

mengumpul data. Untuk tujuan pengesahan analisis eksperimen, ujian terowong 

angin dengan menggunakan tiga jenis bahan yang berbeza untuk plat rata segi empat 

tepat telah dilakukan. Jenis bahan yang digunakan adalah aluminium 6061, besi 
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lembut dan keluli tahan karat. Kesesuaian antara teknik eksperimen dan analisis 

berkomputer adalah diterima memandangkan perbezaan ralat adalah kurang daripada 

6 peratus. 

 

Perisian MSC. Patran dan Nastran telah digunakan untuk meramal keadaan fluter di 

mana ia mempunyai kebolehan untuk menjalankan analisis keanjalan udara untuk  

analisis sayap sebenar dan sayap model. Kaedah PK dan kaedah aerodinamik 

gandaan kekisi telah dipilih untuk analisis ini di mana ia memberikan penyelesaian 

nilai eigen di dalam bentuk graf V-g dan V-f. Pengesahan analisis berkomputer 

dengan dua keputusan penerbitan yang sedia ada telah dilakukan untuk memastikan 

keputusan yang boleh dipercayai. Kajian parameter memberikan hasil kesan jisim, 

ketinggian, panjang sayap, keanjalan dan kedudukan pusat gravity terhadap keadaan 

kelajuan fluter. Kerja penyelidikan ini dapat menyimpulkan bahawa kedua teknik 

berkebolehan untuk menyiasat keadaan fluter disebabkan keputusan pengesahan 

menunjukan kesesuaian yang baik. Melalui kajian parameter yang mendalam, 

beberapa cadangan juga dapat dirumuskan untuk mengubah sayap pesawat dengan 

tujuan untuk memperbaiki lagi keadaan fluter. 
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