

UNIVERSITI PUTRA MALAYSIA

RECOVERY OF ANTHRAQUINONES FROM *MORINDA ELLIPTICA* CELL CULTURE VIA *IN SITU* ADSORPTION USING POLYMERIC ADSORBENTS

CHIANG LIM

FSTM 2007 6

RECOVERY OF ANTHRAQUINONES FROM *MORINDA ELLIPTICA* CELL CULTURE VIA *IN SITU* ADSORPTION USING POLYMERIC ADSORBENTS

By

CHIANG LIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

January 2007

This dissertation is especially dedicated to

my loving family and

my dearest friends who believe in me.....

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

RECOVERY OF ANTHRAQUINONES FROM *MORINDA ELLIPTICA* CELL CULTURE VIA *IN SITU* ADSORPTION USING POLYMERIC ADSORBENTS

By

CHIANG LIM

January 2007

Chairman: Associate Professor Badlishah Sham Baharin

Faculty: Food Science and Technology

Morinda elliptica (Rubiaceae) cell suspension culture was used as a model system to understand the effects of *in situ* adsorption by polymeric adsorbents. The adsorption capacities of the adsorbents were determined and their equilibrium adsorption were fitted to Langmuir, Freundlich and Redlich-Petersen isotherms using linear and nonlinear methods of analyses. The kinetic profiles of cell growth and anthraquinone (AQ) production were determined for cultures grown in intermediary (G) and production (P) medium strategies. Selection of the most suitable solvent was also carried out for effective recovery of AQ from the adsorbents. Co-cultivation of both untreated and pretreated adsorbents with G and P medium cultures were carried out to select a more biocompatible adsorbent that could enhance AQ production without affecting cell growth. The selected adsorbents were then further investigated for effective *in situ* adsorption factors in P medium strategies. High performance liquid chromatography (HPLC) was used for qualitative analyses of AQ constituents for extracts obtained from cells, culture medium and adsorbents.

XAD-16 showed the highest capacity at 0.0424mg alizarin/mg adsorbents whereas XAD-4 and XAD-7 showed a capacity of 0.0113 and 0.0109mg alizarin/mg adsorbents at initial alizarin solution concentration of 200mg/L, respectively. Freundlich isotherm fitted well to both XAD-4 and XAD-7 whereas Langmuir isotherm gave the best correlation to XAD-16 over the concentration ranges studied.

Ethanol was chosen as the eluting solvent with highest AQ recovery at 11.13mg/g, 5.20mg/g and 4.92mg/g eluted from XAD-4, XAD-7 and XAD-16, respectively. M. elliptica cell cultures achieved the highest biomass concentration at 36.79g/L on day 18 with 13.49mg/g DW intracellular AQ obtained in G medium strategy. In P medium strategy, the biomass concentration peaked on day 21 at 48.37g/L with intracellular AQ production recovered at 117.81mg/g DW. As 0.15g of both pretreated and untreated resins were added into cell cultures on day 15 and harvested on day 21, sodium acetatepretreated XAD-4 stimulated AQ production to the highest extent in both G and P medium cultures. In G medium cultures, 25.67mg/g intracellular AQ was obtained, which was 1.4-fold to control. 1.04mg/L AQ recovered from the culture medium was 1.6-fold to control whereas 0.97mg/g AQ was obtained from the resins. Cell growth was comparable to control. In P medium cultures, cell growth was retarded where 15.43g/L biomass concentration were obtained, which was 23% lower than control. However, as high as 76.21mg/g intracellular AQ was obtained, which marked 1.4-fold increase to control. While 12.21mg/L extracellular AQ recovered was 6.6-fold higher than control, 1.08mg/g AQ was recovered from the resins.

When treated with 0.15g sodium acetate-pretreated XAD-4 on day 18, cell growth was comparable to control after 6 days of co-cultivation. 123.83mg/g DW intracellular AQ was obtained, which was 1.7-fold to control. 14.34mg/L extracellular AQ was recovered, which was 11-fold to control, whereas 2.7mg/g AQ was desorbed from the resins. When the factors were further studied, as high as 68.99mg/g DW intracellular AQ was obtained when cultures were treated with 0.25g XAD-4 on day 18 and harvested on day 24. This was 1.2-fold higher than control. 6.32mg/L extracellular AQ was recovered, which was comparable to control, while 0.52mg/g AQ was desorbed from the resins. However, cell growth was reduced 9.5% to 34.77g/L compared to control. A few types of AQ constituents were detected from the cells, culture medium and XAD-4 resins through qualitative HPLC analyses. Four different types of AQ compound were identified. While only rubiadin-1-methyl ether was detected in the cells, both damnacanthal and nordamnacanthal were detected from the culture medium whereas lucidin-ω-methyl ether was detected from XAD-4 resins. Numerous unidentified peaks were also detected frequently from the AQ extracts.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGUMPULAN ANTHRAKUINON DARI AMPAIAN SEL *MORINDA* ELLIPTICA SECARA PENJERAPAN "IN SITU" DENGAN MENGGUNAKAN PENJERAP

Oleh

CHIANG LIM

Januari 2007

Pengerusi: Profesor Madya Badlishah Sham Baharin

Fakulti: Sains dan Teknologi Makanan

Ampaian sel Morinda elliptica (Rubiaceae) telah digunakan sebagai sistem model untuk memahami kesan penjerapan secara "in situ" oleh penjerap. Kapasiti penjerapan penjerap ditentukan dan penjerapan penjerap pada keseimbangan telah ditentukan dengan isoterma Langmuir, Freundlich dan Redlich-Petersen melalui kaedah analisis linear dan bukan-linear. Profil kinetik pertumbuhan sel dan penghasilan anthrakuinon (AQ) ditentukan daripada sel kultur yang tumbuh di dalam strategi media perantaraan (G) dan penghasilan (P). Pemilihan pelarut yang paling sesuai untuk pengumpulan anthrakuinon yang dijerap pada permukaan penjerap juga dijalankan. Penjerap yang dirawat dan yang tidak dirawat dikultivasi bersama dengan sel kultur untuk memilih penjerap yang dapat meningkatkan penghasilan anthrakuinon tanpa merencatkan pertumbuhan sel di dalam strategi media G dan P. Penjerap yang terpilih kemudian digunakan untuk mengkaji factor penjerapan secara "in situ" yang berkesan di dalam strategi media P. Teknik kromatografi cecair bertekanan tinggi (HPLC) digunakan untuk analisis komponen-komponen anthrakuinon yang diperolehi dari sel, media kultur dan penjerap secara kualitatif.

Dengan permulaan kepekatan larutan alizarin pada 200mg/L, XAD-16 menunjukkan kapasiti penjerapan yang tertinggi pada 0.0424mg alizarin/mg penjerap manakala XAD-4 dan XAD-7 menunjukkan kapasiti penjerapan pada 0.0113 dan 0.0109mg alizarin/mg penjerap. Isoterma Freundlich dapat disesuaikan kepada XAD-4 dan XAD-7 manakala isoterma Langmuir memberikan korelasi yang paling sesuai kepada XAD-16 dalam lingkungan kepekatan yang dikaji.

Etanol dipilih sebagai pelarut AQ daripada penjerap memandangkan 11.13mg/g, 5.20mg/g dan 4.92mg/g AQ diperolehi daripada XAD-4, XAD-7 dan XAD-16. Pada hari ke-18, kultur sel M. elliptica mencapai pertumbuhan sel yang tertinggi pada 36.79g/L dan 13.49mg/g (berat kering) DW kandungan AQ intrasel di dalam strategi media G. Di dalam strategi media P, pertumbuhan sel mencapai tahap tertinggi pada 48.37g/L dan 117.81mg/g DW kandungan AQ intrasel diperolehi pada hari ke-21. Apabila 0.15g penjerap yang dirawat dan yang tidak dirawat dimasukkan ke dalam kultur sel pada hari ke-15 dan dianalisis pada hari ke-21, XAD-4 yang dirawat dengan larutan natrium asetat meningkatkan penghasilan AQ yang tertinggi di dalam strategi media G dan P. Di dalam strategi media G, 25.67mg/g AQ intrasel diperolehi, iaitu 1.4 kali ganda lebih tinggi dari kawalan. 1.04mg/L AQ diperolehi dari media kultur, iaitu 1.6 kali ganda lebih tinggi dari kawalan, manakala 0.97mg/g AQ diperolehi dari penjerap. Pertumbuhan sel adalah setara dengan kawalan. Di dalam strategi media P, pertumbuhan sel terencat di mana 15.43g/L biomas sel diperolehi, iaitu 23% peratus lebih rendah dari kawalan. Walau bagaimanapun, 76.21mg/g AQ intrasel masih diperolehi, iaitu 1.4 kali ganda lebih tinggi dari control. 12.21mg/L AQ luar sel

diperolehi, iaitu 6.6 kali ganda lebih tinggi dari kawalan manakala 1.08mg/g AQ diperolehi dari resin.

Apabila dirawat dengan 0.15g XAD-4 yang dirawat dengan larutan natrium asetat pada hari ke-18, pertumbuhan sel adalah setara dengan kawalan selepas kultivasi bersama selama 6 hari. 123.83mg/g DW AQ intrasel diperolehi, iaitu 1.7 kali ganda lebih tinggi dari kawalan. 14.34mg/L AQ luar sel dikumpul, iaitu 11 kali ganda lebih tinggi dari kawalan, manakala 2.7mg/g AQ diperolehi dari penjerap. Apabila faktor-faktor dikaji dengan lebih mendalam, 68.99mg/g DW AQ intrasel diperolehi di dalam kultur sel yang dirawat dengan 0.25g XAD-4 pada hari ke-18 dan dianalisis pada hari ke-24. Ini adalah 1.2 kali ganda lebih tinggi dari kawalan. 6.32mg/L AQ luar sel dikumpul, iaitu setara dengan kawalan, manakala 0.52mg/g AQ diperolehi dari penjerap. Walau bagaimanapun, pertumbuhan sel dikurangkan sebanyak 9.5% kepada 34.77g/L jika dibandingkan dengan kawalan. Beberapa jenis komponen AQ dikesan dari sel, media kultur dan XAD-4 melalui analisis HPLC secara kualitatif. Empat jenis komponen AQ dapat dikesan. Rubiadin-1-metil eter hanya dikesan dalam sel, damnakantal dan nordamnakantal dikesan di dalam media kultur, manakala lusidin- ω-metil eter dikesan dari resin XAD-4. Beberapa komponen yang tidak dikenali juga kerap dikesan dari ekstrak AQ.

ACKNOWLEDGEMENTS

First and foremost, I would like to convey my utmost gratitude to Assoc. Prof. Badlishah Sham Baharin and Dr. Mohd. Azmuddin Abdullah for their endless dedication, insight and enthusiasms, unfailing patience, encouragement, invaluable guidance, constructive comments and ideas, and critical reading of this thesis which contributed to its successful completion. My sincere appreciation to Assoc. Prof. Dr. Lai Oi Ming and Assoc. Prof. Dr. Thomas Choong Shean Yaw for their endless support, suggestions and advices throughout my project and thesis writing. To Mr. Ong, En. Rosli and Kak Ima thanks for all the assistance. My special appreciation extended to the Malaysian Government for the PASCA scholarship that has enabled me to complete my study without any financial worries. To my labmates – Kak Rozita, Tzer Miin, Lin, Su, Ziha, Susan and Bobby. Thanks for making this project an enjoyable one. Not forgetting the members of Plant Tissue Culture Lab at MKT, UPM - Kak Nor, Kak Ummi, Mei Kying, Thuc and Mai Anh – we had been through our toughest challenge during our studies, yet we had come this far, hand in hand. I was truly grateful to have you all by my side. To KC and Cam, thanks for the help that I needed in my HPLC analyses. And of course to Gan, Wai Cheng, Tuck Keong, Hwee Nee, Helen, Grace and others whom I may have not listed here. Thanks for giving me a place to lean on and pouring your continuous support, encouragement, strength and patience in every twist and turn that I had endured all these whiles. Words could not describe how much it meant to me. Those moments will always be a walk to remember in my life. You all will always have a place in my heart. Last but not least, my heartfelt gratitude to my family for lifting me up whenever I needed those extra boosts, needless to say, your love, support and encouragement.

I certify that an Examination Committee has met on 8th January 2007 to conduct the final examination of Chiang Lim on her Master of Science thesis entitled "Recovery of Anthraquinones via *in situ* Adsorption by Polymeric Adsorbents in *Morinda elliptica* Cell Suspension Cultures" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Suraini Abd. Aziz, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Arbakariya Ariff, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Rosfarizan Mohamad, PhD

Lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Abdul Wahab Mohamad, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Badlishah Sham Baharin

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Lai Oi Ming, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Thomas Choong Shean Yaw, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Mohd. Azmuddin Abdullah, PhD

Senior Lecturer Department of Chemical Engineering Universiti Teknologi Petronas (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 MAY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHIANG LIM

Date: before 27 APRIL 2007

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF PLATES	xxi
LIST OF ABBREVIATIONS	xxii

CHAPTER

1	INT	RODUCTION	1
2	LITI	ERATURE REVIEW	8
	2.1	Herbaceous Plants in Malaysia	8
	2.2	Morinda elliptica and Biological Activities of	10
		Anthraquinones	
	2.3	Plant Primary and Secondary Metabolites	15
	2.4	Plant Cell Culture as a Source of Secondary Metabolite	16
		Production	
	2.5	Challenges Facing Plant Cell Culture Technology	28
	2.6	Transport Mechanisms in Cultivated Plant Cells	31
		2.6.1 Active Transport	35
		2.6.2 Passive (diffusion) Transport	39
		2.6.3 Transport Mechanism in Two-phase Systems	40
	2.7	Methods for Product Recovery from Plant Cell Cultures	42
		2.7.1 Product Recovery <i>via</i> Liquid Phase Extraction	42
		2.7.2 Product Recovery <i>via</i> in situ Adsorption	49
	2.8	Microporous Adsorbents	53
	2.9	Polymeric Adsorbents	55
	2.10	Adsorption Mechanisms and Isotherms	58
		2.10.1 The Langmuir Isotherm	60
		2.10.2 The Freundlich Isotherm	61
		2.10.3 The Redlich-Petersen Isotherm	62
	2.11	Integrated Bioprocess Engineering	63
3	ADS	ORPTION CAPACITY AND ADSORPTION	68
	ISO	THERMS OF ALIZARIN ONTO AMBERLITE	
	POL	YMERIC ADSORBENTS	
	3.1	Introduction	68
	3.2	Materials and Methods	69
		3.2.1 Adsorbents	69

		3.2.2 Adsorption Equilibrium and Efficiency	70
		3.2.3 Adsorption Isotherm Models	70
		3.2.4 Statistical Analysis	71
	3.3	Results and Discussion	72
		3.3.1 Adsorption Capacity	72
		3.3.2 Equilibrium Adsorption Isotherm Using Linea	ır 75
		and Non-linear method	
	3.4	Conclusion	82
4	CO-	CULTIVATION OF AMBERLITE POLYMERIC	C 83
		SORBENTS WITH <i>MORINDA ELLIPTICA</i> CELI	L
	SUS	PENSION CULTURE	
	4.1	Introduction	83
	4.2	Materials and Methods	85
		4.2.1 Cell Suspension Culture	85
		4.2.2 Analytical Procedures	86
		4.2.2 Profiles of Morinda elliptica Cell Suspension	87
		Cultures	
		4.2.4 Co-cultivation of <i>Morinda elliptica</i> Cell Culture	s 88
		and Adsorbents	
		4.2.4.1 Desorption Analysis	88
		4.2.4.2 Effects of Adsorbent Pretreatment	88
		4.2.5 Determination of Rate of Product Formation	89
		4.2.6 Statistical Analysis	89
	4.3	Results and Discussion	91
		4.3.1 Time Course of Cell Growth and Total	90
		Anthraquinone (AQ) Production of Morinda	
		elliptica Cell Cultures in Intermediary (G) and	
		Production (P) Medium	
		4.3.2 Co-cultivation of <i>Morinda elliptica</i> Cell	97
		Suspension Cultures with Different Polymeric	
		Adsorbents	07
		4.3.2.1 Desorption Analysis	97
	4 4	4.3.2.2 Effects of Adsorbent Pretreatment	102
	4.4	Conclusion	113
5	EFF	ECTS OF DAY OF TREATMENT, AMOUNT O	F 114
	ADS	SORBENTS AND CONTACT PERIODS FO	R
		THRAQUINONE ADSORPTION IN MORINDA	4
		IPTICA CELL CULTURES	
	5.1		114
	5.2		115
		5.2.1 Cell Suspension Cultures	115
		5.2.2 Analytical Procedures	116
		5.2.3 HPLC System	116
		5.2.4 Preparation of Sample Extracts for HPLC	117
		Analyses	

		5.2.5	Statistical Analysi	S		117
	5.3	Results a	nd Discussion			118
		5.3.1	Effect of Day of T	reatment		118
		5.3.2	Effects of The Am Contact Periods	ount of XAD-4 Adsorb	ents and	125
		5.3.3	Qualitative HPLC Constituents	Analyses of Anthra	quinone	132
	5.4	Conclusi	on			144
6	GEN	NERAL	DISCUSSION,	CONCLUSIONS	AND	145
	SUG	GESTIO	NS FOR FUTURE	WORK		
	6.1	-	1 2	orption Isotherms of A olymeric Adsorbents	lizarin	145
	6.2		vation of Polymeri Cell Suspension Cul	c Adsorbents with a tures	Morinda	146
	6.3	1	ons for Future Work			148
REFERE	NCE	S				150
APPEND	ICES	5				166
BIODAT	'A OF	F THE AU	THOR			180

LIST OF TABLES

Table		Page
2.1	Commonly known herbaceous plants in Malaysia	9
2.2	Plant-derived products of pharmaceutical importance	17
2.3	Groups of natural products that have been isolated from tissue and cell suspension cultures of higher plants	19
2.4	Food additives from plant cell cultures	20
2.5	Product yields from cell cultures and whole plant	22
2.6	High yields of secondary products from cell suspension, callus and immobilized cultures	23
2.7	Strategies to enhance production of secondary metabolites in plant cell cultures	26
2.8	Large-scale reactors for plant cell suspension cultures	27
2.9	Bioreactor types used for plant cell cultures	27
2.10	Log <i>P</i> values of the organic solvents	48
2.11	Desired characteristics of a second phase for effective product accumulation	52
2.12	Selection criteria for solid adsorbents for <i>in situ</i> product-removal applications	59
2.13	General features of physical adsorption and chemisorption	59
3.1	Typical properties of Amberlite polymeric adsorbents and alizarin adsorption efficiency	74
3.2	Isotherm constants for alizarin sorption onto XAD-4, XAD-7 and XAD-16 resins using linear method	78
3.3	Isotherm constants for alizarin sorption onto XAD-4, XAD-7 and XAD-16 resins using non-linear method	81
3.4	Qe and Ce values for XAD-4, XAD-7 and XAD-16 resins	169

4.1	Medium formulation for maintenance (M), intermediary (G) and production (P) medium with increased strength (g/L)	168
4.2	Amount of AQ (mg/g) desorbed from varying adsorbents using different types of solvents	170
4.3	Effects of 0.15g untreated and pretreated adsorbents on G medium <i>M. elliptica</i> cell suspension cultures treated on day 15 and cultures harvested on day 21	172
4.4	Effects of 0.15g untreated and pretreated adsorbents on P medium <i>M. elliptica</i> cell suspension cultures treated on day 15 and cultures harvested on day 21	173
4.5	Effects of nylon sachets on G and P medium <i>M. elliptica</i> cell suspension cultures added on day 15 and cultures harvested on day 21	174
5.1	Effects of day of adsorbent treatment on <i>M. elliptica</i> cell suspension cultures harvested after 6 days of treatment	175
5.2	Effects of contact period and varying amount of pretreated XAD-4 on <i>M. elliptica</i> cell suspension cultures	176
5.3	Effects of XAD-4 resins on intracellular AQ constituents and unknown compounds of <i>M. elliptica</i> cell suspension cultures treated on day 18	177
5.4	Effects of XAD-4 resins on extracellular AQ constituents and unknown compounds of <i>M. elliptica</i> cell suspension cultures treated on day 18	178
5.5	AQ constituents and unknown compounds adsorbed onto XAD-4 resins in <i>M. elliptica</i> cell suspension cultures treated on day 18	179

LIST OF FIGURES

Figure		Page
2.1	Basic structure of anthraquinones isolated from the roots and cell suspension cultures of <i>Morinda elliptica</i>	14
2.2	Storage compartments for hydrophilic and lipophilic compounds	33
2.3	Transportation of secondary metabolites in (a) storage (b) secretion (c) uptake	34
2.4	(a) Active transport and (b) passive transport mechanisms in plant cells, <i>in vitro</i>	37
2.5	Primary and secondary transports across the plasma membrane	38
2.6	The presence of second artificial accumulation phase and the interaction of many different factors that control the transport of secondary metabolites as well as other compounds	41
2.7	Chemical structure of AMBERLITE XAD-4 and XAD-16 (Rohm & Haas Co.) polymeric adsorbents	57
2.8	Chemical structure of AMBERLITE XAD-7 (Rohm & Haas Co.) polymeric adsorbents	57
3.1	Equilibrium adsorption isotherms for alizarin on XAD polymeric adsorbents at $24\pm2^{\circ}C$	74
3.2	(A) Langmuir, (B) Freundlich, and (C) Redlich-Petersen isotherm linear plots for the sorption of alizarin onto XAD-4, XAD-7 and XAD-16 resins	77
3.3	Equilibrium curves for sorption of alizarin onto XAD-4, XAD-7 and XAD-16 resins using linear method	78
3.4	Equilibrium curves for sorption of alizarin onto XAD-4, XAD-7 and XAD-16 resins using non-linear method	81
4.1a	The profile of cell growth, pH, intracellular AQ content, extracellular AQ and total AQ in G medium strategy of <i>M</i> . <i>elliptica</i> cell suspension cultures	95

4.1b	The profile of cell growth, pH, intracellular AQ content, extracellular AQ and total AQ in P medium strategy of <i>M. elliptica</i> cell suspension cultures	96
4.2	Amount of AQ recovered from the polymeric adsorbents using organic solvents of different polarities	101
4.3	The effects of pretreated polymeric adsorbents (Control, XAD-4, XAD-7, XAD-16) on pH, cell growth, and intracellular AQ content in <i>M. elliptica</i> cell suspension cultures in both G and P medium	107
4.4	The effects of pretreated polymeric adsorbents (Control, XAD-4, XAD-7, XAD-16) on extracellular AQ, amount of AQ adsorbed and total AQ in <i>M. elliptica</i> cell suspension cultures in both G and P medium	112
4.5	Standard curve for intracellular AQ dissolved in dichloromethane (Abs 420 nm) and extracellular AQ dissolved in 80% methanol (Abs 435 nm)	167
4.6	Plot dP/dt vs dX/dt and X	171
5.1	The effects of pre-treated XAD-4 and XAD-16 on pH, cell growth, intracellular AQ content, extracellular AQ titre, AQ adsorbed, and total AQ in <i>M. elliptica</i> cell suspension cultures, treated on different stages of cell growth cycle in P medium compared to control	124
5.2	The effects of sodium acetate-pre-treated XAD-4 and day of culture harvesting on pH, cell growth, intracellular AQ, extracellular AQ, amount of AQ adsorbed, and total AQ in <i>M. elliptica</i> cell suspension cultures in P medium	131
5.3	HPLC chromatographs of external standards, reference and cell culture extracts of <i>M. elliptica</i> treated with varying amount of XAD-4 resins on day 18, and cultures harvested after 4 days	134
5.4	Effects of varying amount of XAD-4 and day of culture harvesting on the AQ and unknown compounds of intracellular AQ extracts of <i>M. elliptica</i> cell cultures in P medium for treatment on day 18	135
5.5	HPLC chromatographs of external standards and AQ extracts recovered from culture medium of <i>M. elliptica</i> treated with varying amount of XAD-4 resins on day 18	138

- 5.6 Effects of varying amount of XAD-4 and day of culture 139 harvesting on the AQ and unknown compounds of extracellular AQ extracts of *M. elliptica* cell cultures in P medium for treatment on day 18
- 5.7 HPLC chromatographs of external standards and AQ extracts 142 recovered from XAD-4 co-cultivated in *M. elliptica* cell cultures treated on day 18
- 5.8 Effects of varying amount of XAD-4 and day of culture 143 harvesting on more frequently appearing AQ and unknown compounds of AQ extracts desorbed from XAD-4 cocultivated in *M. elliptica* cell cultures in P medium for treatment on day 18

LIST OF PLATES

Plate		Page
1	<i>M. elliptica</i> tree at the Institute of Bioscience, Universiti Putra Malaysia	11
2	Leaves of M. elliptica	11
3	Harvested cells of <i>M. elliptica</i> after 7 days of cultivation in (a) Maintenance (M), (b) Intermediary (G), and (c) Production (P) medium	91
4	The colour of XAD-4, XAD-7 and XAD-16 resins (after drying) before co-culturing in <i>M. elliptica</i> suspension cultures	100
5	The colour of XAD-4, XAD-7 and XAD-16 resins after harvesting from <i>M. elliptica</i> suspension cultures	100
6	Control and treated <i>M. elliptica</i> cell suspension cultures in G and P medium after 7 days of cultivation	103

LIST OF ABBREVIATIONS

2,4-D	2,4-Dichlorophenoxyacetid acid
A	Final absorbance (nm)
A_o	Initial absorbance (nm)
Abs	Absorbance (nm)
ADP	Adenosine diphosphate
ATP	Adenosine triphosphate
AQ	Anthraquinone
С	Carbon
C_e	Concentration of solute in the solution at equilibrium (mg/L)
C_i	Initial concentration of solute in the solution (mg/L)
CH ₃ COONa	Sodium acetate
CME	Controlled medium exchange
D	Number of variables in the isotherm
DCW	dry cell weight
FTC	Ferric thyocyanate method
FCW	Fresh cell weight
x <i>g</i>	Times gravity
G	Intermediary medium
GCMS	Gas chromatography-mass spectrometry
Н	Hydrogen
H^{+}	Hydrogen ion
II ⁺ ATDaga	H ⁺ -translocating adenosine triphosphatase

H ⁺ -PPiase	H ⁺ -translocating pyrophosphatase
HIV	Human immunodeficiency virus
HPLC	High performance liquid chromatography
H_2SO_4	Sulfuric acid
K^+	Potassium ion
K_F	Equilibrium constants of Freundlich equation (L/mg)
K_L	Equilibrium constants of Langmuir equation (L/mg)
K_R	Equilibrium constants for Redlich-Petersen equation (L/mg)
LCMS	Liquid chromatography-mass spectrometry
log	Logarithm
М	Molarity (in solution)
М	Maintenance medium (in cell culture)
MeOH	Methanol
MS	Murashige and Skoog
n	Constants of Freundlich equation (dimensionless)
Ν	Normality
N	Number of reading
n/a	Not available
Na	Sodium
NAA	α-Napthaleneacetic acid
NaOH	Sodium hydroxide
ND	Not detectable
$\mathrm{NH_4}^+$	Ammonium ion

NH4OH	Ammonium hydroxide
NO ₃ -	Nitrate ion
NPAAs	Nonprotein amino acids
O ₂	Oxygen
OH	Hydroxide ion
Р	Production medium
P _i	Phosphate
PCTC	Plant cell and tissue culture
pН	Potential of the hydrogen ion
pK _a	Negative logarithm of the acid dissociation constant
PS-DVB	Polystyrene-divinylbenzene
q_e	Amount of solute adsorbed per unit weight of adsorbent at equilibrium (mg/mg)
Q_o	Theoretical monolayer saturation capacity (L/mg)
R^2	Regression correlation coefficient
SAS	Statistical analysis system
SE	Standard error
SP	Secondary products
\mathbf{SP}^+	Protonated secondary products
SSE	Sum of the errors square
t _R	Retention time
UV	Ultraviolet
UV-VIS	Ultraviolet-visible
V _e	Final liquid volume at equilibrium (L)

