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Optical amplifiers have a great impact on optical communications due to their 

ability to amplify light along the optical path. Thus optical amplifiers have 

become indispensable components in high-performance optical communication 

links. However, while optical amplifiers are effective in mitigating link power 

loss problems, they are conventionally unusable and irrelevant for another 

major fiber optic transmission which is dispersion. Compensation of dispersion 

is a necessity in high speed and/or long distance links. This is separately 

achieved by use of a dispersion compensator which is either of fiber optics 

based or fiber Bragg grating based.  Thus there is clear need for an integrated 

system which can achieve both important functions at the same time. 
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New designs have been envisaged and achieved in this thesis. It has shown a 

great enhancement in performing simultaneous function in amplifying the 

power as well as compensating the dispersion of the signal (Hybrid). The 

double-pass erbium-doped fiber amplifier (EDFA) with embedded chirped fiber 

Brag grating and as well as other filtering technique (optical Bragg grating) have 

been demonstrated and investigated. It is shown through simulations and by 

the hardware implementation that the new design is significantly better than 

that of existing double pass amplifier and double pass amplifier with tunable 

filter.   

 

There are two levels of tests carried out in this study; device level and system 

(transmission) level. At the device level, the performance parameters of the new 

configurations are thoroughly characterized showing improvement in gain, 

noise figure, and the output power, considering the effects of pump power, 

input signal level, and input signal wavelength. The device configuration is 

based on double-pass amplification with a Bragg grating employed as the 

reflector. The grating also serves as a filter suppressing the Amplified 

Spontaneous Noise from the signal.  At the system level, the performance 

parameters investigated are power sensitivity, power penalty, signal-to-noise 

ratio (SNR), eye amplitude, eye opening and jitter which all see a level of 

improvements, based on Wavelength Division Multiplexing (WDM) system.  
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A gain as high as 53.4dB, a noise figure of as low as 5.36dB, and sensitivity of -

40dBm have been achieved at the BER of 10-12 for the transmission speed of 

2.5Gbps.  The new hybrid amplifier provides power gain improvement of 12.5 

dB and 8.4 dB for single and multi channel system. The power penalty incurred 

by the new hybrid amplifier for single and multi channel system are 3.5 dB and 

3.2 dB respectively. Comparisons are made against the conventional double pass 

amplifiers and back-to-back connection.  
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Pembesar optik mempunyai satu kesan besar di dalam komunikasi optik 

disebabkan oleh keupayaannya untuk membesarkan cahaya sepanjang lintasan 

optic.  Oleh itu pembesar optik  telah menjadi sebahagian daripada komponen-

komponen penting di dalam talian komunikasi optik berprestasi tinggi. 

Walaupun optik amplifier dapat memberi kesan yang efektif dalam menangani 

kehilangan kuasa dalam gentian optik, tetapi secara konvensional tidak 

berkesan untuk memgatasi masalah utama dalam fibre transmisi optik iaitu 

kesan sebaran. Pampasan sebaran adalah satu keperluan dalam talian yang 

berkelajuan tinggi dan/atau rangkaian jarak jauh. Ini selalu nya diperolehi 

secara berasingan dengan menggunakan penyebaran pemampas yang 

berdasarkan optik fibre atau berdasarkan fibre Bragg parutan. Oleh itu terdapat 
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satu keperluan yang jelas dan penting untuk mengujudkan satu sistem 

bersepadu yang boleh menghasilkan kedua-dua fungsi pada masa yang sama. 

 

Rekaan terbaru telah berjaya menepati jangkaan dan pencapaian dalam tesis ini. 

Ia telah berjaya membuktikan satu peningkatan dalam menjalankan secara  

serentak fungsi memperbaiki serakan (compensation) dan juga mengandakan 

isyarat secara kacukan (hybrid). Pembesar kacukan terdopan Erbium laluan 

berganda (DP-EDFA) bersama-sama dengan tertaman parutan chirped Bragg 

berserta dengan  teknik penapisan yang lain (pemboleh ubah parutan optik 

Bragg) telah didemonstrasikan dan disiasat.  Siasat telah di jalankan secara 

simulasi dan juga secara ujilari komponen di dalam makmal.  

 

Terdapat dua jenis ujian yang telah dijalankan dalam kajian ini; tahap alatan 

dan tahap sistem (transmisi). Di tahap ujian alat, parameter prestasi tatarajah 

baru adalah dengan sempurna menggambarkan sifat menunjukkan pembaikan 

dalam keuntungan, angka hingar, dan kuasa keluaran, dengan mengambil kira 

kesan-kesan kuasa pam , aras isyarat masukan, dan isyarat jarak gelombang 

masukan. Konfigurasi alat berdasarkan kepada pembesar dua kali-laluan 

dengan satu Bragg parutan yang bertindak sebagai pemantul isyarat. Parutan 

juga berkhidmat sebagai satu penuras mengurangkan ataupun menghalang 

kesan Dikuatkan Bunyi Spontan (ASE) daripada isyarat. Di peringkat sistem, 

parameter prestasi disiasat adalah kuasa kepekaan, mendayai penalti, nisbah 
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isyarat dengan hingar (SNR), amplitud mata, keterbukaan mata dan ketaran 

dimana terdapat suatu peningkatan yang ketara, ujian berdasarkan sistem 

Bahagian Jarak Gelombang Multipleksan (WDM). Satu keuntungan  setinggi 

53.4dB telah didapati, satu bunyi bising angka serendah 5.36dB, dan kepekaan -

40dBm telah tercapai di BER 10-12 untuk kelajuan penghantaran 2.5Gbps. 

Rekaan terbaru kacukan (hybrid) pembesar ini telah bejaya menambahbaikan 

gandaan kuasa se banyak 12.5 dB dan 8.4 dB masing-maing bagi system satu 

saluran dan pelbagai saluran. Ia juga dikenakan kuasa penalti sebanyak 3.5 dB 

and 3.2 dB masing-masing bagi system satu dan pelbagai saluran.  

Perbandingan-perbandingan ini dibuat terhadap gandan pembesar 

konvensional dan sambungan tanpa gentian fiber. 
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DPC-
EDFAI
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Double-pass VOBG- Erbium-doped fiber amplifier 
internal 
 

DPF-
EDFAE
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