

provided by Universiti Putra Malaysia Institutional Repository

UNIVERSITI PUTRA MALAYSIA

CRYSTALLIZATION BEHAVIOR OF PALM OIL BLENDS AND PALM OIL-BASED FLUID SHORTENINGS

MISKANDAR MAT SAHRI

FSTM 2006 22

CRYSTALLIZATION BEHAVIOR OF PALM OIL BLENDS AND PALM OIL-BASED FLUID SHORTENINGS

By

MISKANDAR MAT SAHRI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia In Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2006

DEDICATION

Especially dedicated to my beloved wife Hajjah Hanirah Hassan and children Hajar Marhamah, Muhammad Hanif, Hayati Munirah, Hanis Muslimah, Muhammad Halim and Muhammad Azim

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the Degree of Doctor of Philosophy

CRYSTALLIZATION BEHAVIOR OF PALM OIL BLENDS AND PALM OIL-BASED FLUID SHORTENINGS

By

MISKANDAR MAT SAHRI

December 2006

Chairman: Professor Yaakob Bin Che Man, PhD

Faculty: Food Science and Technology

This thesis covers the establishment of palm oil-based fluid shortening production by investigating the static and dynamic crystallization behaviors of palm oil blends with and without emulsifier at various temperature treatments. Solid fat content (SFC), crystal size and distribution, fatty acid content (FAC) and triacylglycerol (TAG) composition of the palm oil blends were determined and analyzed using ANOVA at 95% confidence level. Palm oil-based fluid shortening formulation, emulsifier and stirring speed were optimized using response surface methodology (RSM) based on the storage study that included SFC, viscosity, pourability and crystal size and distribution.

Crystal development of the blends as a function of time had developed crystallization curves that demonstrated distinct steps corresponding to crystallization stages due to the occurrence of mixed crystallization. Slow crystallization without emulsifier was influenced by the total saturated FAC, with significant (P<0.05) changes in SFC, crystal distribution and viscosity. Lecithin at 0.03% was generally a crystal promoter; however, at 0.06 and 0.09% it acted as a crystal inhibitor. STS was generally a crystal inhibitor at 0.03, 0.06 and 0.09%. Temperature cycling processes at Cycle 3 had caused the blends with slip melting points (SMP) of 26.5 - 33.5°C to crystallize forming uniform crystal aggregates. Crystal size of blends with emulsifier was significantly increased as the temperature cycling was reduced and the emulsifier content was increased. However, blends with 0.03 and 0.06% lecithin and 0.09% STS had low viscosities. Blends of SMP 21.6 - 26.5°C with 0.09% STS and 0.03% lecithin formed crystal aggregates ranging from $10 - 40 \ \mu m$ and produced low SFCs. The model developed by RSM comprising of 20 - 23% palm oil, 77 - 80% palm olein, 0.02-0.06% lecithin and crystallized at stirring speed of 150 - 300 RPM had established palm oil-based fluid shortenings stable at storage of $25 - 30^{\circ}$ C for three weeks. It is concluded that the size of the crystal aggregates and their distribution in the bulk, were important factors contributing to palm oil-based fluid shortening to flow.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falasafah

SIFAT PENGHABLURAN ADUNAN MINYAK SAWIT DAN LELEMAK CECAIR BERASASKAN MINYAK SAWIT

Oleh

MISKANDAR MAT SAHRI

Disember 2006

Pengerusi: Profesor Yaakob Bin Che Man, PhD

Fakulti: Sains dan Teknologi Makanan

Tesis ini melaporkan kajian yang dijalankan untuk menghasilkan lelemak cecair berasaskan sawit yang merangkumi hasil kajian penghabluran dinamik dan statik adunan minyak sawit dengan bahan tambah pengemulsi atau tanpa pengemulsi dengan perlakuan pada pelbagai suhu. Kandungan lemak pepejal (SFC), saiz dan penyerakan hablur, kandungan asid lemak (FAC) dan komposisi triasilgliserol (TAG) adunan minyak sawit telah dianalisis menggunakan ANOVA pada tahap keyakinan 95%. Formulasi lelemak cecair berasaskan minyak sawit, bahan pengemulsi dan kelajuan adukan telah dioptimakan menggunakan 'response surface methodology (RSM)' berasaskan kajian penstoran yang melibatkan SFC, kelikatan, kebolehtuangan dan saiz dan penyerakan hablur.

Keluk pembinaan hablur adunan minyak sawit melawan fungsi masa jelas menghasilkan keluk bertangga yang berkaitan dengan tahap-tahap penghabluran yang terhasil daripada penghabluran berbaur. Penghabluran secara perlahan-lahan tanpa bahan pengemulsi dipengaruhi oleh jumlah asid lemak tepu dengan perubahan ketara (P<0.05%) dalam SFC, penyerakan hablur dan kelikatannya. Lesitin pada 0.03% telah merangsang pembinaan hablur, walau bagaimanapun pada 0.06 dan 0.09% ia menghalang penghabluran. STS pula pada umumnya adalah penghalang penghabluran pada 0.03, 0.06 dan 0.09%. Proses kitaran suhu pada Kitaran 3 telah menyebabkan adunan yang mempunyai julat takat lebur 26.5 -33.5°C menghablur dan membentuk agregat-agregat hablur yang seragam. Peningkatan saiz hablur pada adunan-adunan yang ditambah bahan pengemulsi adalah ketara apabila suhu kitaran direndahkan manakala kandungan bahan pengemulsi ditingkatkan. Walaupun demikian, adunan-adunan yang mengandungi 0.03 dan 0.06% lesitin dan 0.09% STS mempunyai kelikatan yang rendah. Adunan dengan SMP 21.6 - 26.5°C ditambah 0.09% STS atau 0.03% lesitin membentuk agregat-agregat hablur bersaiz dalam julat $10 - 40 \,\mu\text{m}$ dan menghasilkan SFC yang rendah. Model yang terhasil melalui RSM yang mengandungi 20 - 23% minyak sawit, 80 - 77% minyak olein sawit, 0.02 - 0.06% lesitin dan kelajuan putaran adukan dalam julat 150 - 300 pus/min telah menghasilkan lelemak cecair berasaskan minyak sawit yang stabil pada julat suhu penyimpanan 25 - 30°C selama tiga minggu. Sebagai kesimpulan, saiz agregat hablur dan penyerakannya di dalam pukalan, merupakan faktor terpenting yang mempengaruhi kebolehtuangan lelemak cecair.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Dr. Yaakob Bin Che Man, the chairman of my Supervisory Committee for his kind assistance, advice and encouragement during the preparation of this thesis. I am so grateful to the other members of the Supervisory Committee, Professor Dr. Russly Bin Abd. Rahman, Dr Nor Aini Idris of the Malaysian Palm Oil Board (MPOB) and Dr. Mohd Suria Affandi Bin Yusoff of Golden Hope Research Centre, Banting, Selangor, for their guidance, support and comments.

I would like to acknowledge the Ministry of Science Technology and Innovation for financing this research program, MPOB for granting my study leave and for the support on research materials and equipments. I would like to acknowledge the staff in the Oil and Fat Technology Centre, MPOB namely En Radzuan Hussein, En Suid Aziz, En Ahmad Hisham for their assistance during my work in the margarine laboratory, Cik Ramlah Ahmad who had assisted me during my work on Nuclear Magnetic Resonance, Che Maimun for Differential Scanning Calorimetry and Che Zulkarinah Kamaruddin for assisting me during my work on x-ray diffractometer.

Last but not least, I would like to express my heartiest appreciation to my beloved wife Hanirah Hassan and children for their moral support, encouragement, patience and understanding throughout my studies.

I certify that an Examination Committee met on 18th December 2006 to conduct the final examination of Miskandar Mat Sahri on his Doctor of Philosophy thesis entitled "Crystallization Behavior of Palm Oil Blends and Palm Oil-Based Fluid Shortenings" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Hasanah Mohd Ghazali, PhD

Professor School of Graduate Studies Universiti Putra Malaysia (Chairman)

Tan Chin Ping, PhD

Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Azis Ariffin, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Fereidoon Shahidi, PhD

Professor Faculty of Science Memorial University of Newfoundland, Canada (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor /Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 20th February 2007

This thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Yaakob Che Man, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Russly Abd Rahman, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Nor Aini Idris, PhD

Principal Research Officer Malaysian Palm Oil Board (MPOB) (Member)

Mohd. Suria Affandi Yusoff, PhD

Chief Research Officer Golden Hope, Malaysia (Member)

AINI IDERIS, PhD

Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or currently submitted for any other degree at UPM or other institutions.

MISKANDAR MAT SAHRI

Date:

TABLE OF CONTENTS

Page

ii

Page

ABSTRACT	111
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	Х
DECLARATION	xiv
LIST OF TABLES	xvi
LIST OF FIGURES	XX
LIST OF ABBREVIATIONS	xxvi

DEDICATION

CHAPTER

1 **GENERAL INTRODUCTION** 1 2 LITERATURE REVIEW 6 2.1 History of Shortening 7 2.2 Types of Shortenings 8 9 2.2.1 Plasticized Semi-solid Shortening 2.2.2 Fluid and Liquid Shortenings 9 2.2.3 Powdered, Flakes, or Beads Shortening 11 2.3 Oils and Fats 12 2.3.1 Physical and Chemical Characteristics of Oils and Fats 12 2.3.2 Formulation of Oils and Fats 21 2.4 Physical Characteristics of Solid and Fluid Shortenings 29 Consistency and Theology 30 2.4.1 Fluidity / Pour ability 2.4.2 31 2.4.3 Liquid Oil Separation 34 2.4.4 **Dynamic Viscosity** 34 Crystallization Theory 2.5 35 Crystallization of Oils and Fats 2.5.1 36 2.5.2 Solidification 37 2.5.3 Isothermal Crystallization 39 2.5.4 Dynamic Crystallization 40 2.5.5 Polymorphism 41 2.5.6 Polymorphic Form and Crystal Size 43 2.6 Emulsifiers 48 Characteristics of Emulsifiers 2.6.1 49 2.6.2 Lecithin 52 Sorbitan Tristearate 2.6.3 55

	2.6.4	Functions of Emulsifiers	56
	2.6.5	Mechanism of Crystal Inhibition	58
2.7	Appli	cation of Fluid Shortening	60
	2.7.1	Frying	60
	2.7.2	Bread and Cake	61
	2.7.3	Non-dairy	62
2.8	Vario	us Methods in Fluid Shortening	
	Produ	ction	62
	2.8.1	Batch Process in Crystallization Vessel	63
	2.8.3	Product Monitoring	65
2.9	Releva	ant Patents on Shortening	67
ISOT	THERM	AL CRYSTALLIZATION OF PALM OI	L
BLE	NDS: El	FFECTS OF TEMPERATURE, COOLIN	G
TIM	E AND	OIL CONTENT	69
3.1	Introd	uction	69
3.2	Mater	als and Methods	71
	3.2.1	Materials	71
	3.2.2	Physical and chemical analyses	71
	3.2.3	Statistical Analysis	73
3.3	Result	ts and Discussion	74
	3.3.1	SFC Profile of Palm Oil Blends	74
	3.3.2	SFC of Palm Oil Blends at Isothermal	
		Temperatures	77
	3.3.3	Distribution of Crystals at Isothermal	
		Temperatures	85
3.4	Concl	usions	89
EFFI	ECTS O	F EMULSIFIERS ON CRYSTAL	
BEH	AVIOR	OF PALM OIL BLENDS ON SLOW	
CRY	STALL	IZATION	91
4.1	Introd	uction	91
4.2	Mater	ials and Methods	93
	4.2.1	Materials	93
	4.2.2	Physical Analyses	93
	4.2.3	Statistical Analysis	95
4.3	Result	ts and Discussions	95
	4.3.1	Slow Crystallization of Palm Oil	
		Blends without Emulsifiers	95
	4.3.2	Crystal Distribution at Slow	
		Crystallization without Emulsifiers	97
	4.3.3	SFC, Viscosity and Crystal	
		Behavior without Emulsifiers	100
	4.3.4	SFC of Palm Oil Blends with Emulsifiers	103
	4.3.5	Crystal Behavior of Palm Oil Blends	
		with Lecithin	105

	4.3.6	Relationship of Viscosity and SFC	
		in Palm Oil Blends with Lecithin	107
	4.3.7	Crystal Behavior of Palm Oil Blends	
		with STS	108
	4.3.8	Relationship of Viscosity and SFC	
		in Palm Oil Blends with STS	109
4.4	Concl	usions	114
EFFE	CTS O	F EMULSIFIERS ON CRYSTALLIZAT	ION
PROF	PERTI	ES OF LOW MELTING	
PALN	A OIL	BLENDS	116
5.1	Introd	uction	116
5.2	Mater	ials and Methods	118
	5.2.1	Materials	118
	5.2.2	Physical Analyses	118
	5.2.3	Statistical Analysis	119
5.3	Result	ts and Discussions	120
	5.3.1	SFC and Crystallization without an	
		Emulsifier	120
	5.3.2	Relationship between SFC and Viscosity	125
	5.3.3	Effect of Lecithin on SFC	126
	5.3.4	Effect of Lecithin on Viscosity	127
	5.3.5	Effect of Lecithin on Crystal Distribution	129
	5.3.6	Effect of STS on SFC	132
	5.3.7	Effect of STS on Viscosity	133
	5.3.8	Effect of STS on Crystal Distribution	134
5.4	Concl	usions	135
EFFE	CTS O	F CYCLIC TEMPERATURE ON STATI	[C
CRYS	STALL	IZATION OF FLUIDIZED PALM	
OIL F	BLEND	S	136
6.1	Introd	uction	136
6.2	Mater	ials and Methods	138
	6.2.1	Materials	138
	6.2.2	Methods	138
	6.2.3	Statistical Analysis	140
6.3	Result	ts and Discussions	140
	6.3.1	Chemical Composition	140
	6.3.2	Effects of Cyclic Crystallization on	
		Crystal Size and Distribution	141
	6.3.3	Effects of Cyclic Crystallizations on SFC	148
	6.3.4	Effects of Cyclic Crystallization on	
		Viscosity	151
6.4	Concl	usions	154

7	EFFE CRYS	CTS OF CYCLIC TEMPERATURE ON STATI TALLIZATION OF PALM OIL BLENDS WIT	C H
	ADDI '	TION OF EMULSIFIERS	155
	7.1	Introduction	155
	7.2	Materials and Methods	157
		7.2.1 Materials	157
		7.2.2 Physical Analyses	158
		7.2.3 Statistical Analysis	159
	7.3	Results and Discussion	159
		7.3.1 Effects of Crystallization Cycles on SFC	159
		7.3.2 Effects of Lecithin and STS on SFC	164
		7.3.3 Effect of Emulsifier on Viscosity	168
		7.3.4 Crystal Distribution	172
	7.4	Conclusions	180
8	DYNA	MIC CRYSTALLIZATION OF PALM OIL	
	BLEN	D FOR FLUID SHORTENING	
	FORM	IULATION	182
	8.1	Introduction	182
	8.2	Materials and Methods	184
		8.2.1 Materials	184
		8.2.2 Production of Fluid Shortening	184
		8.2.3 Sampling and Analyses	186
		8.2.4 Statistical Analysis	187
	8.3	Results and Discussions	188
		8.3.1 Physical Properties of Product during	
		Production	188
		8.3.2 Effect of Stirring on Crystal Distribution	189
		8.3.3 Effect of Lecithin on Crystal Distribution	194
		8.3.4 Factors Affecting the Physical Properties	195
		8.3.5 Interaction Effects of Processing Factors	
		on Physical Properties	200
	8.4	Formulation and Production Constraints	201
	8.5	Conclusions	203
9	MON	TORING CRYSTAL DEVELOPMENT IN	
	PALM	I -BASED FLUID SHORTENING PRODUCTS	
	BY F1	T-IR SPECTROSCOPY	204
	9.1	Introduction	204
	9.2	Materials and Methods	206
		9.2.1 Materials	206
		9.2.2 Production of Fluid Shortening	206
		9.2.3 Sampling and Analyses	206
		9.2.4 Calibration / validation of FT-IR Spectra	207

	9.3	Results and Discussions 9. 3.1 Spectra	210 210
		9.3.2 Calibration and Validation	213
	9.4	Conclusions	221
10	OPT	IMIZATION OF PALM-BASED FLUID	
	SHO	RTENING FORMULATION AND STIRRING	
	SPEE	ED BY RESPONSE SURFACE	
	MET	HODOLOGY	223
	10.1	Introduction	223
	10.2	Materials and Methods	225
		10.2.1 Materials	225
		10.2.2 Experimental Design and Statistical	
		Analysis	225
		10.2.3 Preparation of Fluid Shortening	226
		10.2.4 Physical and Chemical Analyses	227
	10.3	Results and Discussion	228
		10.3.1 Physical Properties of Fluid	
		Shortening at 25°C	228
		10.3.2 Effects of Lecithin on Storage at 25°C	232
		10.3.3 Effect of Palm Oil on Storage at 25°C	234
		10.3.4 Effects of Stirring on Fluid	
		Shortening at 25°C	235
		10.3.5 Response Contour for Storage at 25°C	237
		10.3.6 Physical Properties of Fluid	
		Shortening at 30°C	240
		10.3.7 Effect of Lecithin during Storage	
		at 30°C	242
		10.3.8 Effect of Palm Oil during Storage	
		at 30°C	245
		10.3.9 Effect of Stirring on Storage at 30°C	247
		10.3.10 Response Contour for Storage at 30°C	248
		10.3.11 Crystal Polymorphs on Storage	252
	10.4	Conclusions	255
11	GEN	ERAL CONCLUSIONS AND	
	REC	OMMENDATIONS	258
REF	ERENC	CES	261
APP	ENDIC	ES	278
BIO	DATA (OF THE AUTHOR	309

LIST OF TABLES

Table		Page
2.1	Common name for fatty acids available in vegetable oils and their SMPs	16
2.2	Physical appearance of selected oils and fats at room temperature	25
2.3	Polymorphic forms of selected hydrogenated oils	43
2.4	Polymorphic forms of oils and fats contributed by the TAG numbers	46
2.5	Crystal polymorphic forms as contributed by the TAG types	47
3.1	Blend ratios of palm oil and palm olein and fatty acid composition of the blends	75
3.2	Distribution of trisaturated, disaturated-monoun saturated, monounsaturated-diunsaturated and triunsaturated TAG in the Blends	86
4.1	The effects of emulsifiers on the SFC of palm oil and olein blends at Cycle 1	98
4.2	The effects of lecithin on the viscosity (cP) of palm oil and olein blends at Cycle1	103
4.3	The effects of STS on the viscosity (cP) of palm oil and olein blends at Cycle 1	113
5.1	Distribution of trisaturated, disaturated – monounsaturated, mono unsaturated – diunsaturated and triunsaturated TAGS of selected blends	120
5.2	The effects of emulsifiers on the SFC of palm oil and olein blends	122
5.3	The effects of lecithin on the viscosity (cP) of palm oil and olein blends	128
5.4	The effects of STS on the viscosity (cP) of palm oil and olein blends	133

6.1	Fatty acid composition and SMP of blends of palm and palm olein	142
6.2	Distribution of trisaturated, disaturated-monoun saturated, monounsaturated-diunsaturated and triunsaturated TAG in the Blends	143
6.3	Polymorphic form of the product after one day storage at 20 and 30°C	148
8.1	Experimental design and product evaluation within 30 min after production.	185
8.2	Crystal size of fluidized palm oil during processing	192
8.3	Coefficient estimate and R^2 for physical properties of fluidized palm oil	198
9.1	Actual SFC value by NMR at 20 and 30°C measured every 6 min	209
9.2	Statistical comparison of SFC of palm oil-based fluid shortening obtained by NMR and FT-IR method during crystallization for calibration at 20°C	214
9.3	Statistical comparison of SFC of palm oil-based fluid shortening obtained by NMR and FT-IR method during crystallization for validation at 20°C	214
9.4	Statistical comparison of SFC of palm oil-based fluid shortening obtained by NMR and FT-IR method during crystallization for calibration at 30°C	215
9.5	Statistical comparison of SFC of palm oil-based fluid shortening obtained by NMR and FT-IR method during crystallization for validation at 30°C	215
10.1	Experimental design of effects of lecithin, palm oil content and stirring speed	226
10.2	Physical properties and crystal size of fluid shortening during storage at 25°C for week one and three.	230

10.3	Optimum points of response factors during storage at 25°C for week one and three.	231
10.4	Coefficient estimate and R ² values of product trend at 25°C for week one and three	233
10.5	Physical properties and microstructure of fluid shortening during storage at 30°C for week one and three	241
10.6	The optimum points of response factors during storage at 30°C for week one and three.	243
10.7	Coefficient estimate and R ² values of product trend at 30°C for week one and three	244
10.8	Crystal distribution (%) of samples P1 - P15 at storage temperature 25°C for one week	252
10.9	Crystal distribution (%) of samples P1 - P15 at storage temperature 30°C for one week	253
10.10	Crystal distribution (%) of samples P1 - P15 at storage temperature 25°C for three weeks	254
10.11	Crystal distribution (%) of samples P1 - P15 at storage temperature 30°C for three weeks	255
A-1	Triacylglycerol composition of palm oil and palm kerne oil fractions	l 278
A-2	SFC of palm oil and palm kernel oil fractions	279
A-3	Regulatory status of emulsifiers	279
A-4	Solid fat content profile of experimental fluid shortening	280
A-5	Size of crystal (µm) during processing	281

LIST OF FIGURES

Figure		page
2.1	Typical SFI profiles of different shortenings	19
2.2	Unsaturated fatty acid chains	38
2.3	Chemical structure of lecithin.	53
2.4	Phosphatidylcholine (lecithin) showing the active ends.	53
2.5	Emulsion of water-in-oil (Source: Stauffer, 1996b)	54
2.6	Sorbitan tristearate	55
2.7	Model of inhibition and promoting activities of emulsifier	60
2.8	Perspective view of a crystallizer vessel.	64
3.1	The SFC profile of Blends P90, P50 and P20 as a function of temperature.	76
3.2	Isothermal SFC of Blends 0P90, 0P50 and 0P20 as a function of time at 0°C.	78
3.3	Isothermal SFC of Blends 5P90, 5P50 and 5P20 as a function of time at 5°C.	79
3.4	Isothermal SFC of Blends 10P90, 10P50, 10P20 and 10P0 as a function of time at 10°C.	81
3.5	The isothermal SFC of Blends 15P90, 15P50, 15P20, and 15P0 as a function of time at 15°C.	83
3.6	Isothermal SFC of Blends 20P90, 20P50, 20P20 and 20P0 as a function of time at 20°C.	83
3.7	Photomicrographs Showing the Crystal Distribution of Various Blends at Magnification of 10X10.	88
4.1	Photomicrograph of effect of lecithin on crystal dispersion of palm oil and olein blend on slow crystallization ($10x10$ magnifications).	99

4.2	The effect of lecithin (%) on the viscosity (cP) and SFC (%) of palm oil blend by slow crystallization	102
4.3	The effect of sorbitan tristearate (%) on the viscosity (cP) and SFC (%) of palm oil blends by slow crystallization	110
4.4	Photomicrograph of effect of STS on crystal dispersion of palm oil and olein blend on slow crystallization (10x10 magnification).	112
5.1	The SFC Profile of Blends P40 (\bullet), P30(\circ), P20(— \bullet —), P10(\diamond) as a function of temperature.	123
5.2	Microstructure of crystal development of sample P40 with Lecithin and STS.	124
5.3	Microstructure of crystal development of sample P30 with lecithin and STS.	130
5.4	Crystal development of sample P10 with Lecithin and STS	131
6.1	Crystal microstructure of Blend P90 and P60 at different cyclic crystallization by magnification of 10x10.	145
6.2	SFC (%) as a function of cyclic crystallization with no emulsifier.	149
6.3	Viscosity (cP) as a function of cyclic crystallization with no emulsifier.	152
7.1	SFC as a function of temperature cycling with 0.03% lecithin (A) and STS (B).	160
7.2	SFC as a function of temperature cycling with 0.06% lecithin (A) and STS (B).	162
7.3	SFC as a function of temperature cycling with 0.09% lecithin (A) and STS (B).	163
7.4	SFC as a function of palm oil blends with 0.03% lecithin and STS	165

7.5	SFC as a function of palm oil blends with 0.06% lecithin and STS.	166
7.6	SFC as a function of palm oil blends with 0.09% lecithin and STS	167
7.7	Viscosity as a function of temperature cycling with 0.03% lecithin (A) and STS (B).	169
7.8	Viscosity as a function of temperature cycling with 0.06% lecithin (A) and STS (B).	170
7.9	Viscosity as a function of temperature cycling with 0.09% lecithin (A) and STS (B).	171
7.10	Crystal Microstructure of Blend P90 at different crystallization cycles by magnification 10x10	174
7.11	Crystal Microstructure of Blend P60 with lecithin at different crystallization cycles by magnification 10x10.	177
7.12	Crystal Microstructure of Blend P60 with STS at different crystallization cycles by magnification 10x10.	180
8.1	Blends of PO 23% and lecithin 0.06% processed by stirring speeds of 450 and 150RPM by temperature cycles. Magnification of 10x10.	190
8.2	Blends of PO 23%. Processed by stirring speeds of 300 rpm by temperature cycles. Magnification of 10x10.	191
8.3	SFC trend of fluid palm oil with 0.02% lecithin processed by different stirring speed (rpm) as a function of palm oil content (%)	195
8.4	Viscosity (cPs) trend of fluid palm oil with 0.02% lecithin processed by different stirring speed (rpm) as a function of palm oil content (%)	196
8.5	Crystal diameter (μ m) trend of fluid palm oil with 0.02% lecithin processed by different stirring speed (rpm) as a function of palm oil content (%)	199

8.6	Pourability (s/100 ml) trend of fluid palm oil with 0.02% lecithin processed by different stirring speed (rpm) as a function of palm oil content (%)	200
9.1	Overlayed spectra of palm oil-based fluid shortening with SFC values of 8.92 and 4.21 by NMR at wave number region 3068 to 2496 cm ⁻¹ , 1831 to 1032 cm ⁻¹ and 777 to 650 cm ⁻¹ .	211
9.2	The difference spectrum of palm oil-based fluid shortening with SFC values of 8.92 and 4.21 by NMR at wave number region 3068 to 2496 cm ⁻¹ , 1831 to 1032 cm ⁻¹ and 777 to 650 cm ⁻¹ .	211
9.3	Calibration plot of SFC by NMR vs. FT-IR predicted SFC of wave number region 3068 to 2496 cm ⁻¹ , 1831 to 1032 cm ⁻¹ and 777 to 650 cm ⁻¹ obtained for palm oil-based fluid shortening at 20°C.	218
9.4	Validation plot of SFC by NMR vs. FT-IR predicted SFC of wave number region 3068 to 2496 cm ⁻¹ , 1831 to 1032 cm ⁻¹ and 777 to 650 cm ⁻¹ obtained for palm oil-based fluid shortening at 20°C	219
9.5	Calibration plot of SFC by NMR vs. FT-IR predicted SFC of wave number region 3068 to 2496 cm ⁻¹ , 1831 to 1032 cm ⁻¹ and 777 to 650 cm ⁻¹ obtained for palm oil-based fluid shortening at 30°C.	220
9.6	Validation plot (B) of SFC by NMR vs. FT-IR predicted SFC of wave number region 3068 to 2496 cm ⁻¹ , 1831 to 1032 cm ⁻¹ and 777 to 650 cm ⁻¹ obtained for palm oil-based fluid shortening at 30°C.	221
10.1A	Stirring speed (RPM) as a function of palm oil content (%) with 0.02% lecithin on SFC (%) at storage of 25°C for three weeks.	237
10.1B	Stirring speed (RPM) as a function of palm oil content (%) with 0.02% lecithin on viscosity (cP) at storage of 25°C for three weeks.	238
10.1C	Stirring speed (RPM) as a function of palm oil content (%) with 0.02% lecithin on crystal size diameter (μ m) at Storage of 25°C for three weeks.	239

10.1D	Stirring speed (RPM) as a function of palm oil content (%) with 0.02% lecithin on pourability (s/100ml) at storage of 25°C for three Weeks	240
10.2A	Stirring speed (RPM) as a function of palm oil content (%) with 0.06% lecithin on SFC (%) at storage of 30°C for three weeks	249
10.2B	Stirring speed (RPM) as a function of palm oil content (%) with 0.06% lecithin on viscosity (cP) at storage of 30°C for three weeks.	249
10.2C	Stirring speed (RPM) as a function of palm oil content (%) with 0.06% lecithin on diameter (μ m) at storage of 30°C for three weeks.	250
10.2D	Stirring speed (RPM) as a function of palm oil content (%) with 0.06% lecithin on pourability (s/100 ml) at storage of 30°C for three weeks.	250
B-1	Flow Chart of Palm Oil-Based Fluid Shortening Processing	282
B-2	Samples of RBD Palm oil, Palm olein and Palm stearin	283
B-3	Jacketed Glass Crystallizer Vessel	284
B-4	Set Up of Crystallization Equipment (Jacketed Crystallizer Glass Vessel, Circulating Baths)	285
B-5	Collection of Sample for Analysis	286
B-6	Palm oil-based Fluid Shortening	287
B-7	Brookfield Digital Viscometer	288
B-8	Capillary Slip Melting Point	289
B-9	Fourier Transform Infra Red Spectrometer	290
B-10	Polarized Light Microscope Attached to A Leica Qwin (crystal analyzer)	291

C-1	Microstructure of Fluid Palm Oil of Different Formulations during Processing	292
C-2	Microstructure of Fluid Palm Oil of Different Formulations on Storage at 25 and 30C for 1 and 3 weeks	299
D-1	Letter from the permission controller of Blackwell Publishing	307
D-2	Permission request form	308

