

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A SPATIAL WEB-BASED GRAPHICAL USER INTERFACE WITH GIS FOR REAL ESTATE USERS

MAHMOUD FAWZI AL-HADER

FK 2007 62

DEVELOPMENT OF A SPATIAL WEB-BASED GRAPHICAL USER INTERFACE WITH GIS FOR REAL ESTATE USERS

By

MAHMOUD FAWZI AL-HADER

•

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

November 2007

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in partial fulfilment of the requirement for the degree of Master of Science

DEVELOPING OF SPATIAL WEB BASED GRAPHICAL USER INTERFACE WITH GIS FOR REAL ESTATE USERS

By

MAHMOUD FAWZI AL-HADER

November 2007

Chairman: Associate Professor Ahmad Rodzi Mahmud, PhD

Faculty : Engineering

Geographic information is a valuable source for applications and analysis, where location of objects and events, can enhance the decision making activities. Recently, the interoperability of geospatial data has been an ongoing research activity and goal of the geospatial information user community for decades. Focusing on data integration scenarios, the recent popularity and adoption of the internet and web services, has provided a new means of interoperability for geospatial information, differing from previous approaches to information exchange.

Currently the interoperability approaches of geospatial information with real estate data are inadequate. This thesis argues that utilizing the interoperability real estate data, with geospatial data using web services, is the best method to achieve efficient data exchange than traditional approaches. The thesis demonstrates this by

developing a spatial web service to facilitate transferring data, from real estate users, to Geographic Information System (GIS) data layers. The thesis also discusses how web services affect data preparation and data updating. Various scenarios of geocoding and transferring real estate data into geospatial data will be discussed.

A web interface implementation is presented, to illustrate the validity of the interoperable spatial web service approach, with real estate for which this thesis argues. The interface has two ways communication. On one hand users will be able to use the spatial web service to integrate the property data, with GIS service provider. On the other hand, user will be able to receive a map report for the geocoded property.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk ijazah Master Sains

PEMBANGUNAN PENGANTARAMUKAAN SPATIAL BERASASKAN WEB DENGAN GIS UNTUK PENGGUNA-PENGGUNA HARTANAH

Oleh

MAHMOUD FAWZI AL-HADER

November 2007

Pengerusi : Profesor Madya Ahmad Rodzi Mahmud, PhD

Fakulti : Kejuruteraan

Maklumat geografi adalah sumber yang penting bagi analisis, di mana lokasi objek dan kejadian boleh membantu dalam membuat keputusan polisi. Baru-baru ini keberinteroperasian data geospatial telah menjadi penyal-dekan semasa dan impian puluhan tahun kepada komuniti matlamat masyarakat pengguna maklumat geospatial. Menumpu kepada senario integrasi data, populariti dan penggunaan internet yang kan meluas serta khidmat web telah memberikan suatu lagi kaedah keberinteroperasian yang baru bagi maklumat geospatial, yang berbeza dengan pendekatan dahulu dalam pertukaran maklumat.

Kaedah biasa dalam keberinteroperasian maklumat geospatial dengan makumat hartanah tidak memadai. Tesis ini mengemukakan bahawa menggunakan data hartanah berinteroperasi adalah cara yang paling bagus untuk mencapai pertukaran data yang lebih cekap berbanding kaedah tradisional. Tesis ini menunjukkannya

dengan mengembangkan sebuah khidmat web spatial untuk memudahkan pemindahan data, daripada pengguna hartanah, kepada lapisan data Sistem Maklumat Geografi. Tesis ini juga membincangkan bagaimana khidmat web memeberi kesan terhadap penyediaan data serta kemaskini data. Pelbagai senario geokod dan pemindahan data hartanah kepada data geospatial akan dibincangkan.

Perlaksanaan antaramuka web dikemukakan untuk memperlihatkan kesahihan pendekatan khidmat web spatial dengan hartanah, seperti mana dibahaskan oleh tesis ini. Antaramuka ini mempunyai dua kaedah komunikasi. Pengguna boleh menggunakan khidmat web spatial untuk mengintegrasi data hartanahnya, dengan pemberi khidmat GIS. Selain itu, pengguna juga boleh menerima laporan peta untuk hartanah yang telah digeokod.

ACKNOWLEDGEMENTS

First and foremost, all praise to supreme almighty ALLAH S.W.T. The only creator, for giving me the strength, ability and patience to complete this research.

I would like to profusely thank my supervisor Assoc. Prof. Dr. Ahmad Rodzi Mahmud for reviewing my work, and who has helped me with his timely advice and suggestions and assistance throughout the research. I would like to express my gratitude to Dr. Abdul Rashid Bin Mohamed Shariff for his timely advices and encouragement throughout my research work.

I would also thank Dr. Pushpita PR. Roy and Mr. Fathi Burshaid for their guidance and support. Utmost thanks to all friends specially Mohammad Shhadeh and Omar Kouri for thier encouragement and support. Special thanks to my family my father and my mother and my wife, for their patience and understanding. They are of always being there with me through the period of my Master study.

I would also like to thank all who helped me during my research work.

I certify that an Examination Committee has met on 30 November 2007 to conduct the final examination of Mahmoud Fawzi Abdallah Alhader on his Master of Science thesis entitled "Development of a Spatial Web-Based Graphical User Interface with GIS for Real Estate Users" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Examination Committee were as follows:

Abdul Halim Chazali, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Shattri Mansor, PhD

Professor Office of Development and Asset Management Universiti Putra Malaysia (Internal Examiner)

Helmi Zuihaidi Mohd Shafri, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Sr. Mohd Sanusi Ahamad, PhD

Associate Professor School of Civil Engineering Universiti Sains Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 February 2008

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as partial fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Ahmad Rodzi Mahmud, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Abdul Rashid Mohamed Shariff, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

> **AINI IDERIS, PhD** Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 February 2008

DECLARATION

I hereby declare that the thesis is based on my original work except that for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Mellin

MAHMOUD FAWZI AL-HADER

Date: Jan 13th 2008

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xii
LIST OF APPENDIXES	xiv
LIST OF ABBREVIATIONS	xvii

CHAPTER

1
2
4
6
6
7
8

2 LITERATURE REVIEW

2.1 Introduction	9
2.2 GIS Applications in Real Estate	10
2.2.1 GIS and Real Estate Market Analysis	11
2.2.2 E- Commerce's Impact on Real Estate	12
2.2.3 Future for Accessing Real Estate Information	15
2.2.4 GIS Rule in Competition Encouragement	16
2.3 Geographical Analysis of Property Values	16
2.3.1 Real Estate valuation	16
2.4 Site Selection Criteria	17
2.5 State-of-Art in Real Estate Analysis	18
2.6 Addresses Matching	20
2.6.1 Geocoding Coordinates	21
2.7 GIS Applications and Mapping Capabilities	21
2.7.1 Design of GIS Application	22
2.8 The Concept of Web Services	23
2.8.1 Spatial Web Services Platform Environment	27
2.8.2 Components of Spatial Web Services	28
2.8.3 Geography Markup Language (GML)	29
х	

	2.8.4 Importance of Spatial Web Services	30
	2.8.5 Fundamental Operations of Spatial Web Service	31
	2.8.6 Spatial Web Services Architecture	35
	2.8.7 Web Services Tools	36
		30 39
	2.8.8 Characteristics of Spatial Web Services	
	2.8.9 Spatial Web Services and Client Applications	39
	2.8.10 Chaining of Spatial Web Services	41
	2.8.11 Spatial Web Services Data Access	43
	2.8.12 Performance of Web Services Process	43
	2.8.13 Using Web Services for Improving Data Efficiency	44
	2.9 ArcIMS Components and Connectors	45
	2.9.1 ArcIMS Viewers	48
3	METHODOLOGY	
	3.1 Introduction	51
	3.2 Collecting and preparing GIS datasets	54
	3.2.1 Administrative layers	54
	3.2.2 Building Foot Prints	55
	3.2.3 Building Address	56
	3.2.4 Classification of Road Network	57
	3.2.5 Point of Interest (POI)	58
	3.3 Developing ArcIMS service using ActiveX Connector	59
	3.3.1 ActiveX Connector	60
	3.3.2 Web Services	61
	3.4 Providing Spatial Web Services	62
	3.5 Spatial Web Services	65
	3.6 Upload Data to GIS Server	66
	3.6.1 Creating Polygon Using Coordinates	66
		68
	3.6.2 Address Matching for Uploaded Addresses	08
4	RESULTS AND DISCUSSION	71
	4.1 Introduction	71
	4.2 Graphical User Interface (GUI)	71
	4.3 Uploading Coordinates	73
	4.3.1 Geocoding Coordinates	73
	4.3.2 Comparison between Conventional and New Web Services	
	Scenarios	75
	4.3.3 Problems with Uploading Coordinates	78
	4.3.3.1 Mathematical Model Used for Calculating Length	
	Shapes	82
	4.3.3.2 Mathematical Model Used for Calculating Area	
	Shape	83
	4.3.4 Statistical Analysis of Area and Length in Different	
	Uploading Scenarios	83
	4.4 Address Uploading	85
	4.4.1 Matching Addresses	86
	4.4.2 Incompatibility between digital map and address list	87

	4.4.3 Incompatibility with digital map attributes	89
4.4.4 Incompatibility with digital road geometry and topology 4.4.5 Common Problems Encountered While Geocoding		
	4.5.1 Requesting Map Report for the Concerned Address	93
	4.5.2 Requesting Map Report Using Map Extent Parameters	95
	4.5.3 Requesting Map Report Using Map Based Search	97
	4.5.4 Requesting Map Report Using XY Coordinates	99
4.6 Summary of the Results and Discussion		100
5	CONCLUSION AND SUGGESTIONS FOR FUTURE WORKS 5.1 Conclusion	104
		104
	5.1.1 Research Findings	
	5.1.2 Research Advantages	106
	5.1.3 Suggestions for Future Works	107
R	EFERENCES	109
A	PPENDIX	112
BIODATA OF THE AUTHOR		110
R	ODATA OF THE AUTHOR	116

LIST OF TABLES

Table		Page
2.1	ArcIMS Components, (ESRI, 2000 a)	68
3.1	XML request and response structure	86
4.1	Operational tasks of geocoding plot beacons using conventional scenario	97
4.2	Operational tasks of geocoding plot beacons using spatial web service scenario	99

LIST OF FIGURES

Figure		Page
1.1	Procedure of collecting and preparing GIS data layers	21
1.2	Interfacing spatial web services with real estate	22
2.1	Conceptual database sharing architecture, (Gil, 1998)	32
2.2	Distribution of GIS software expertise, (Gil, 1998)	33
2.3	GIS functionality exposed by Spatial web services, (Brian, 2002)	44
2.4	Spatial web services server platform environment, (Xiaolin Lu, 2005)	48
2.5	Fundamental operations of a web service, (Heather, 2001)	53
2.6	System architecture of WMS mapping application,(Xiaolin Lu, 2005)	53
2.7	Simplified view of the Spatial web services architecture, (Nadine,	
	2003)	56
2.8	Simple spatial web service to expose Topological Operators, Brian,	58
2.9	(2002) A simple service-chaining example of a map,(OpenGIS Abstract	
	Specification, 1999)	61
2.10	Key parameters of the address-matching, mapping, and reprojection	63
2.11	services, (Nadine, 2003) ArcIMS components connectivity, (ESRI, 2001 b)	67
3.1	Framework of providing spatial web service	74
3.2	Administrative data layers as per Bahrain official division	76
3.3	Building foot prints data layers with satellite imagery and aerial	77
3.4	Process flows of managing and geocoding building addresses	78
3.5	Process flows of conversion and roads Geo-referencing	79
3.6	Process flows of collecting and geocoding POI's	80
3.7	ArcIMS connectors and web application developer framework,	81

(ESRI, 2005)

3.8	Web Services roles, operations and artifacts, (Heather, 2001)	83
3.9	Procedure of providing spatial web service	85
3.10	Creating polygon-using coordinates	89
3.11	Address matching for uploaded addresses	91
4.1	GeoEstate portal home page	93
4.2	Uploading beacon coordinates	94
4.3	Geocoding coordinates	95
4.4	Geocoding coordinates and creating polygon	96
4.5	Time consumed to geocode plot beacons using conventional scenario	98
4.6	Time consumed to geocode plot beacons using spatial web service	99
4.7	scenario Problems in geocoding coordinates and polygon creation	100
4.8	Importance of the seriality of uploading coordinates	103
4.9	Variations in shape length as per uploading scenarios	105
4.10	Variations in area shape as per uploading scenario	106
4.11	Uploading feature address	107
4.12	Address matching result	108
4.13	Unsuitability between digital maps and address list	110
4.14	Problems with digital map attributes	111
4.15	Unsuitability with digital road geometry and topology	112
4.16	Form for requesting map report	114
4.17	Map report for concerned address	115
4.18	Form for requesting map report	116

4.19	Response map report	117
4.20	Requesting map report using map based search	119
4.21	Form for requesting map report using XY coordinates	120
4.22	Response map report using XY coordinate	121

LIST OF ABBREVIATIONS

GIS	Geographic Information System
XML	Extensible Markup Language
ESRI	Environmental Systems Research Institute
POI	Point of Interest
WGS	World Geodetic System
UTM	Universal Transverse Mercator
ArcIMS	Internet Map Service
ASP	Active Server Pages
VBScript	Visual Basic Script
R&D	Research and Development
GML	Geography Markup Language
SVG	Scalable Vector Graphics
WFS	Web Feature Service
OGC	OpenGIS Consortium
CORBA	Common Object Request Broker Architecture
GUI	Graphical User Interface
VR	Virtual Reality
VRML	Virtual Reality Modeling Language
CGI	Common Gateway Interface
HTML	Hyper Text Markup Language
SCET	Service Composition and Execution Tool
WSFL	Web Service Flow Language
VS.NET	Visual Studio.NET
SOAP	Simple Object Access Protocol

RPC	Remote Procedure Call
DCOM	Distributed Component Object Model
RDBMS	Relational Database Management System
JSP	Java Script Pages
API	Application Program Interface
J2EE	Java 2 Platform, Enterprise Edition
RS	Remote Sensing
GPS	Global Positioning System
WSDL	Web Services Description Language
UDDI	Universal description, discovery and integration
CPU	Central Processing Unit
CAD	Computer Aided Design
WCS	Web Coverage Service
WFS	Web Feature Service
LBS	Location Based Services
CPS	Coverage Portrayal Service
ASP	Application Service Providers
RBS	Rule-Based System
LAN	Local Area Network
CBD	Central Business District
MRA	Multiple Regression Analysis
SQL	Structured Query Language
BCSR	Bahrain Center for Studies and Research
CIO	Central Information Organization
NAD	National Address Database

GDF	Geographic Data Format
Web ADF	Web Application Development Frameworks
СОМ	Component Object Model
DLL	Dynamic Link Library
GDB	ESRI Geo Database
URL	Universal Resource Locator
DBF	DataBase Format
PDA	Personal Digital Assistant
GDMS	GIS Data Management System
MIS	Management Information System
3G	Third Generation of mobile technologies

CHAPTER 1

INTRODUCTION

1.1 Overview

During the last decades, real estate has become a major economical factor in the development of countries. On the other hand, real estate data can be managed as spatial features. Therefore, there is a need to present properties using GIS (Geographic Information System) to be more valuable information.

Since the GIS is a system used to visualize and analyze the spatial features, the interfacing between GIS and real estate is quite feasible. Spatial web services will facilitate real estate users, to integrate their property location data with GIS service provider via web. Two main functions are developed; the first function for integrating GIS data layers with data available with users, for allowing them to upload their property coordinates. The property can be either land (without address assigned), or constructed property (address assigned to it) like home and villa. Users need to upload the address of constructed properties, and beacon coordinates of the land. Then web service will take care of creating the geometric feature representation (such as geocoding or address matching).

The second function is developed for requesting map report. This is a technological approach allowing users to request information such as map report. In the case the user

need to specify certain parameters related to the map. Some parameters may be used to request a map report via spatial web service, such as map extent, scale, center coordinates, area name, and building address.

Web services are a proper solution for the integration among distinct systems, specially the debatable systems in terms of format and platform. Therefore, the new trend of systems integrations are currently done through the web. Extensible Markup Language (XML) is one of the best solutions to develop a technology to interface both real estate properties with the GIS geospatial data. While both systems have potential relationship with ground (geographical presentation), thus the web service is termed as spatial web service.

1.2 Overview of GIS Data Layers Preparation

Preparing and collecting GIS data layers is government responsibility. Data is the critical path in this kind of applications, that developed based on data usability. Data is the most expensive, and time consuming in most of GIS applications. Therefore, government should host both, GIS server applications, and all developed internet mapping services.

ESRI GIS data structure (shapefile), used to facilitate the mapping analytical tools, and to enhance the performance for the updating, and requesting the mapping report. Figure 1.1 shows the procedure of data collecting, and data consolidation between distinct governmental establishments.

Interfacing spatial web services, with real estate clearly illustrated in Figure 1.2. The property needs to be updated, either in beacon coordinates for lands, or in address for constructed properties, such a villa or home. Users able to use spatial web service, to upload property locational parameters.

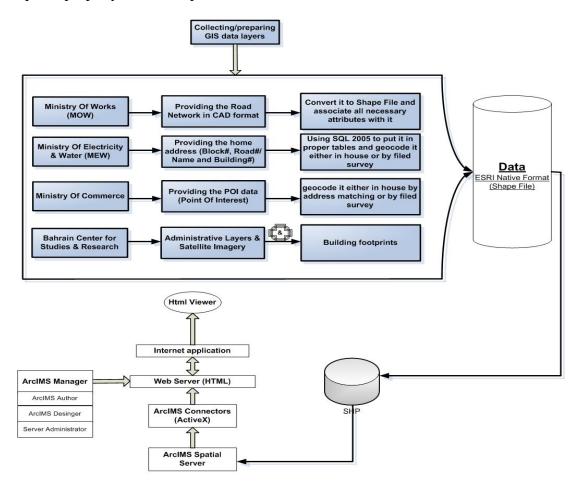


Figure 1.1 Procedure of collecting and preparing GIS data layers in Bahrain

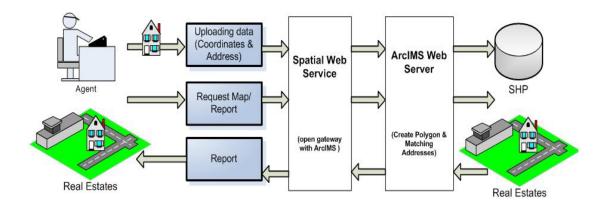


Figure 1.2 Interfacing spatial web services with real estate

1.3 Problem Statements

The efficient data update procedure is extremely important in any any geospatial organization dealing with intelligent GIS data. Due to the importance of the GIS data in any geospatial application, that considered as the core of the application. It needs dedicated efforts and financial resources. After making data intelligent and GIS ready, these organizations provide the GIS data to other end user companies or organizations. Also as per the license agreement, data producing organizations, update the database at a regular time interval, and provide the same to end users. This data transfer process needs special attention and means extra overheads to both data providers and data users.

Intelligent GIS data is a great analysis tool, for the presentation and supporting decision making in extensive disciplines such as real estate systems. On the other hand, by monitoring the number of transactions related to real estate, either, in selling, or in renting distinct types of properties. Especially in those countries which are very active in construction, and in land development. It is clearly investigated that the investment gets widespread in investing, both locally and internationally (Yoon *et al*, 2006). Therefore, the needful to obviously recognize property much closer, and crystal clear, is one of the critical and essential issues in any property transaction.

At the time being, most of developed systems, tried to represent properties using photos, and map locations or schemas. To realize the announced property as much as possible, in order to amend the investor's decision making. The decision either to accept the property, or to reject it, but still there are so many important, and essential criteria's effects the decision of property acceptance. Some of criteria's related to property location, availability of services, and simplicity of transportation to and form that particular property. The closeness from the trade, education, and medical centers within the property area is also important. All of these criteria's are extremely important in the sense of property purchasing value.

This research is creating a new technique using web services to solve the bad interfacing between the GIS and real estate data. Hence, web services provide kind of channel among real estate service provider, with several categories of users, along suitable interfacing with GIS data. Due to spatially nature of real estate features, therefore real estate can be presented on the ground and can be integrated with the web services. Web services are feasible enough, to integrate property data with GIS service provider. Spatial web services will make properties more viewable/presentable by locating the property on adequate digital mapping system (GIS).

