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Despite the several years of studies that have been contributed to the human 

knee joint in pursue of producing a failure free knee joint protheses, there are 

still a lot of rooms for improvement on the available prostheses. In this present 

study, a series of analyses on the human tibia has been carried out. The 

objectives of the present study were to study effects of stress distribution on 

human tibia in various degrees of flexion simulating walking and squatting. The 

Finite Element (FE) method was adopted for the analysis. Through the finite 

element analyses, data concerning the stress distribution and von Misses stress 

during gait cycle and squatting were obtained. The results obtained were 

compared with those of the experimental literature for validation. The results of 

this present study indicated that low stress value occurs during toe-off simulation 

while the high stress value occurs during deep flexion with the knee is flexed 

90˚. The von Mises stress observed on the medial compartment during these 
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instants were 13.85MPa and 26.84MPa respectively. The obtained average 

stress distribution of a gait cycle and deep flexions were 15.29MPa and 

25.09MPa respectively. it is worth to note that a high stress concentration occurs 

at the tibial plateau, distinctively at the medial compartment. This implies that 

under deep flexion a possible unstable fracture will be initiated since the 

maximum stress allowable on the tibia is 25MPa. 

 

In conclusion, this kind of research  gives a better understanding of the stress 

applied on the tibia by body weight that assist on designing Total Knee 

Replacement against failure. The result could support in the context of 

minimizing contact stress between the tibia bone and the tibial insert. 
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Walaupun bertahun-tahun penyelidikan dan ujikaji telah dijalankan 

terhadap sendi lutut manusia dalam menghasilkan sendi lutut tiruan yang 

tidak bermasalah, masih banyak lagi ruang yang perlu diperbaiki dalam 

sendi lutut tiruan yang ada di pasaran.  Di dalam kajian ini, analisis-

analisis telah dijalankan terhadap tulang tibia manusia. Tujuan kajian ini 

dijalankan ialah untuk mengetahui kesan tegasan terhadap tulang tibia 

manusia di dalam beberapa darjah bengkokan yang mewakili keadaan 

berjalan dan bertinggung. Permodelan secara unsur terhingga telah 

digunakan untuk menganalisis kajian ini. Data-data mengenai sentuhan 

tegasan maksimum dan tegasan von Mises semasa pusingan berjalan 

dan bertinggung dihasilkan melalui analisis permodelan secara unsur 

terhingga.  Keputusan- keputusan yang dihasilkan telah dibandingkan 

dengan maklumat dari ujikaji sebagai pengesahan. Keputusan yang 
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dihasilkan oleh kajian ini menunjukkan sentuhan tegasan yang rendah 

semasa simulasi ‘toe-off’. Manakala sentuhan tegasan yang tinggi terjadi 

semasa lutut dibengkokkan sebanyak 90˚. Tegasan purata von Mises di 

atas bahagian medial semasa kedua-dua keadaan tersebut masing-

masing ialah 13.85MPa dan 26.84MPa. Purata tegasan untuk ‘gait cylce’ 

dan ‘deep flexions’ masing-masing ialah 15.29MPa dan 25.09MPa. Fokus 

tegasan yang tinggi terjadi di kawasan ‘tibial plateau’. Ini menyarankan 

bahawa semasa ‘deep flexion’, terdapat kemungkinan terjadinya rekahan 

yang tidak seimbang kerana tegasan maksima yang dibenarkan ke atas 

tibia ialah 25MPa.  

 

Kesimpulannya, kajian ini memberikan pemahaman yang lebih baik 

tentang tegasan yang dikenakan ke atas tibia oleh berat badan yang 

mana membantu merekacipta ‘Total Knee Replacement’ yang mampu 

mengelakkan kegagalan. Hasilnya boleh menolong meminimakan 

tegasan sentuhan di antara tulang tibia dengan tibia gantian.  
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     CHAPTER 1 

1 INTRODUCTION 
 

Total knee replacement (TKR), also referred to as total knee arthroplasty (TKA), 

is a surgical procedure where worn, diseased, or damaged surfaces of a knee 

joint are removed and replaced with artificial surfaces.  The substitution of bone 

surfaces are crucial for arthritic knees where the articular cartilage is damaged. 

Normally, the cartilage acts like a cushion to reduce friction between joint 

surfaces. However, in damaged surfaces of a knee joint, the erosion causes 

aching and progressive degeneration of uncovered bone ends. 

The knee is a hinge joint which provides motion at the point where the thigh 

meets the lower leg. The thigh bone (or distal femur) adjoins the large bone of 

the lower leg (proximal tibia) at the knee joint. During a total knee replacement, 

the distal femur and the proximal tibia are removed and replaced by metal 

shells. A polyethylene insert will be placed in between both of the metal shell.  

The procedure has been proven to help individuals return back to moderately 

challenging activities such as golf, bicycling, and swimming.  

The ultimate goals for total knee replacement are to relieve and restore normal 

knee kinematics while ensuring the biocompatibility of the prosthesis and its 

long-term fixation and durability. 
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1.1 Problem Statement 
 

Undeniably, total knee replacement has been a great achievement in the 

medical history.  The story is still unfolding as surgery and technology advance. 

To this day there are more than 100 different prosthesis designs available, and 

the choice is not only for size and geometry, but also involves more critical 

issues such as cruciate retaining/substituting, uni/tri-compartmental and 

mobile/fixed bearing (Zuffi et al. 1999).  

 

The number of TKR has been increasing in the last years. In 1995, 216 000 

TKR’s were performed in the United States. However, this figure should have be 

seen together with the 18 000 revisions performed during the same period, 

which means an average failure rate of more than 8% (Zuffi et al. 1999). 

Problems faced by TKR are usually due to bone-implant bond loosening and 

other issues such as biocompatibility, instabilities, fatigue, wear, dislocation and 

inadequate bone in growth. 

 

Annually, about 150,000 total knee replacement surgeries are performed in 

North America. Despite the huge number, the current designs of knee 

prostheses have mechanical problems that include a limited range of motion, 

abnormal gait patterns, patellofemoral joint dysfunction, implant loosening or 

subsidence, and excessive wear. These problems fall into three categories; 

failure to reproduce normal joint kinematics, which results in altered limb 
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function; bone implant interface failure; and material failure (Hollerbach and 

Hollister, 1997).  

 

Another hindrances in the TKA are the limited number of studies reporting 

biomechanics of deep flexion beyond 90˚ (Takeo Nagura et al. 2002 and Guoan 

Li et al. 2004); and the stress distribution within the bone implant construct 

where excessive stresses may lead to delamination of the polyethylene (Zuffi et 

al. 1999, Godest et al 2002, and Clarke et al.).  

TKA and other current surgical treatments of the diseased knee have provided 

pain relief and excellent function in the range 0˚-120˚ of flexion. However, little 

data have been reported regarding knee kinematics beyond 120˚ of flexion. 

Knowledge of higher degrees of flexion is important to knee function for many 

drills such as in sports, hobbies like gardening and also religious worship.  (Li et 

al. 2004).   

As surgical technique and prosthesis design have developed, the range of 

motion (ROM) after TKA has improved enough to permit patients more than 

100° of flexion, sometimes enough to perform squatting or kneeling. However, 

there are concerns regarding possible mechanical failure in the long term follow 

up, and also instability occurrences with both types of prostheses (i.e. posterior 

cruciate ligament(PCL) substituting and PCL retaining prostheses) (Takeo et al. 

2002).  
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Part of the mechanical failure is due to effect of stress and strain on the 

prosthesis and also the bone itself. High contact stress causes early wear 

failure, and overconstraint causes early loosening failure (Buechel 1996). While 

according to Zuffi et al. 1999, implant failure is mainly due to wear of the 

polyethylene insert, associated with an excessive stress at the artificial joint 

interface, as consequence of an abnormal knee kinematics.  

It is crucial to investigate ways that might help to reduce the failure rate of total 

knee replacement and the need of revision surgeries which are of great cost to 

both patient and health service. The problems in total knee replacement have 

motivated researchers to find a new novel means of enhancing the performance 

of the knee prosthesis. The challenge is to suggest new development in the 

designs with respect to new geometry.  

 

1.2 Objectives 

 

The main objective of this research is to investigate the stress distribution that 

arises in the weight-bearing FE tibia model in various degrees of flexion 

simulating walking and squatting. The objectives are to model the tibia bone and 

to determine the stress distribution on human tibia under different loading 

condition with respect to certain instant of gait cycle and squatting. 

 

A numerical method Finite Element Modeling (FEM) is used to accomplish the 

set objectives. A FEM includes three phases, preprocessing, processing, and 
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postprocessing. In case of complex structure such as bone, the most difficult 

phase of FEM laid in preprocessing. 

 

1.3 Layout of Thesis 

 

This thesis is divided into five chapters. Following this preliminary chapter, which 

is the introduction to this study; chapter two is the literature review where the 

biomechanics of the knee joint and the type of analyses which had been done 

on the tibia are discussed extensively. The history of the TKR and current 

design of the available knee prostheses are also discussed in details in the 

literature review. Subsequent to the literature review, the methodology of the 

study and specific details of the finite element modeling and simulation of the 

tibia model are described in chapter three. The results of the analyses and the 

discussion of the results are presented in chapter four. Finally, the conclusion 

and future recommendations are presented in chapter five. 
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      CHAPTER 2 

2 LITERATURE REVIEW 
 

Total knee replacements (TKR) are now performed regularly all over the world. 

Most knee replacements are performed for relief from the symptoms of 

osteoarthritis. The aim of TKR is restoring movement whilst still relieving pain 

and maintaining stability. Looking at the prosthesis progress throughout several 

years and the way it is today, TKR experts (i.e. doctors and engineers) can have 

a better hope to understand future developments and evaluate future designs 

and modification. The anatomy of the knee joint is discussed in section 2.1. 

Section 2.2 focused on the biomechanics of the knee joint. The history of TKR 

and all known previous studies done on TKR are discussed in Section 2.3 and 

2.4 respectively. Section 2.5 summarizes all discussion corresponding to TKR in 

the thesis. 

 

2.1 Anatomy of the knee joint 

The knee joint is the largest joint in the body. It is a synovial hinge type joint. It  

essentially consists of four bony structures; femur, tibia, fibula and patella. The 

femur, which is the large bone in the thigh, is attached to the tibia by ligaments 

and a capsule. The tibia or shinbone, is the large medial bone of the leg. The 

medial and lateral condyles of the distal end of the femur articulate with the 

medial and lateral tibial condyles at the proximal end of the tibia. The fibula is 
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located parallel to the tibia. The patella (knee cap) slides up and down in a 

groove in the femur (the femoral groove) as the knee is bent and straightened.  

 

The human knee is a two-joint structure composed of tibiofemoral joint and the 

patellofemoral joint. Figure 2.1 shows the lateral view of two-joint structure of the 

knee with patella attached. Figure 2.2 shows the anterior view of two-joint 

structure of the knee without patella. Figure 2.3 shows the proximal view of the 

tibia surface. The knee joint is the largest and perhaps the most complex joint in 

the human body compared to other joints. Its function is to transmit loads, 

participate in motion, aids in conservation of momentum, and provide a force 

couple for activities involving the leg. The knee is prone to injury due to the fact 

that it sustains high forces and is situated between the body’s two longest lever 

arms.  

 

 

 

 

 

 

 

Figure 2.1: Lateral view of two-joint structure of the knee (adapted from
          Nordin and Frankel 1989). 
 

 


