

provided by Universiti Putra Malaysia Institutional Repository

UNIVERSITI PUTRA MALAYSIA

REMOVAL OF COLOUR AND ORGANIC POLLUTANTS FROM TEXTILE WASTEWATER USING INTEGRATED BIOLOGICAL AND ADVANCED OXIDATION PROCESS

ADEL MOHAMED AHMED

T FK 2007 41

REMOVAL OF COLOUR AND ORGANIC POLLUTANTS FROM TEXTILE WASTEWATER USING INTEGRATED BIOLOGICAL AND ADVANCED OXIDATION PROCESS

By

ADEL MOHAMED AHMED

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2007

To the soul of my father. A father who shows me his support from the day of my cradle till the day he dies. And to all faithful Muslims in the world.

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirement for the degree of Doctor of Philosophy

REMOVAL OF COLOUR AND ORGANIC POLLUTANTS FROM TEXTILE WASTEWATER USING INTEGRATED BIOLOGICAL AND ADVANCED OXIDATION PROCESS

By

ADEL MOHAMED AHMED

June 2007

Chairman: Professor Azni Idris, PhD

Faculty : Engineering

Textile industrial wastewater effluent varies greatly in characteristics within a plant and even from the same process from time to time. Removal of pollutants such as colour and organics by conventional techniques has been difficult and could not reach the level of required discharge. In this study, colour and organic removals from textile wastewater in a continuous process using an integrated system of activated sludge and advanced oxidation process was studied. The primary objective was to reduce colour to 50 PtCo; the total organic carbon (TOC), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solid (TSS) to less than 20, 50, 20 and 20 mg/l, respectively; and to remove oil and grease (O&G). Activated sludge was satisfactory in terms of removing TOC, COD, BOD, O&G and TSS. At 36 h

retention time, the removal of TOC, COD, BOD, O&G and TSS were 80, 78, 79, 53 and 61%, respectively. However, the colour removal was only 37%.

With equalization tank, combining of 50 mg/l O_3 with 1 ml/l H_2O_2 and UV was proven capable of reducing the colour, TOC, COD, BOD, O&G and TSS after 60 min by 97, 60, 64, 62, 90 and 36%, respectively.

Without equalization tank, activated sludge treatment was efficient in terms of removing TOC, COD, BOD, O&G and TSS from the different strengths of textile wastewater samples. Removals of TOC, COD, BOD, O&G and TSS were 76-86, 77-84, 78-82, 34-61 and 65-74%, respectively. However, colour removal was from 17 to 34%. This means that activated sludge was satisfactory in removing only organics pollutants.

Having different, easy control and successful processes that treat different strengths of textile wastewater is the best formulation of process treatment options to ensure appreciable removals of colour and organic pollutants from any strength of textile wastewater.

A software called TexTreat was successfully developed. It can determine the required process treatment option of AOP_s for any existing textile treatment plant and predict the characteristics of the final discharge using different retention times. The validation of the process treatment options using TexTreat shows their applicability with different textile wastewater plants.

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENYINGKIRAN WARNA DAN BAHAN PENCEMAR ORGANIK DARIPADA AIR SISA BUANGAN TEKSTIL MELALUL PROSES BERSEPADU BIOLOGIKAL DAN PENGOKSIDAAN TERMAJU

Oleh

ADEL MOHAMED AHMED

Januari 2007

Pengerusi: Profesor Azni Idris, PhD

Fakulti : Kejuruteraan

Ciri-ciri air sisa buangan industri tekstil adalah berbeza bagi setiap kilang malah juga berbeza walaupun ia melalui proses yang sama dari semasa ke semasa.

Penyingkiran bahan cemar seperti warna dan organik melalui teknik konvensional adalah sukar dan tidak dapat mencapai tahap pembuangan. Oleh itu, kajian penyingkiran warna dan organik daripada sisa buangan tekstil sebenar melalui proses berterusan menggunakan sistem bersepadu enapcemar teraktif dan proses pengoksidaan termaju dijalankan. Objektif utama kajian adalah untuk mengurangkan bahan cemar warna kepada 50 PtCo dan Jumlah Karbon Organik (TOC), Keperluan Oksigen Kimia (COD), Keperluan Oksigen Biokimia (BOD), dan Jumlah Pepejal Terampai (TSS) kepada nilai kurang daripada 50 mg/l serta penyingkiran Minyak dan Lemak (O&G).

Enapcemar teraktif berkesan dalam menyingkirkan TOC, COD, BOD, O&G dan TSS. Selepas 36 jam masa penahanan, penyingkiran TOC, BOD, O&G dan TSS adalah sebanyak 80, 78, 79, 53 dan 61%. Walaubagaimanapun, penyingkiran warna hanya sekadar 37% yang berkemungkinan disebabkan oleh kehadiran bahan organik tak berwarna dalam air sisa buangan tekstil dan kadar larut pewarna biodegradasi yang rendah.

Kombinasi 50mg/l O₃ dengan 1ml/l H₂O₂ dan UV dalam tangki penyamaan berupaya mengurangkan kadar warna TOC, COD, BOD, O&G dan TSS kepada 97, 60, 64, 62, 90 dan 36 %. Tanpa tangki penyamaan, rawatan ke atas enapcemar teraktif sangat berkesan dalam menyingkirkan TOC, COD, BOD, O&G dan TSS daripada sampel air sisa buangan tekstil yang mempunyai keupayaan yang berbeza. Nilai penyingkiran TOC, COD, BOD, O&G dan TSS adalah sebanyak 76-86, 77-84, 78-82, 34-61 dan 65-74%. Walaubagaimanapun, penyingkiran warna adalah dari 17 kepada 34%. Ini bermakna enapcemar teraktif hanya berkesan dalam menyingkirkan bahan cemar organik sahaja.

Oleh yang demikian, kawalan yavg mudah dan proses yang berjaya kepelbagaian keupayaan dalam air sisa buangan tekstil merupakan strategi rawatan terbaik dalam memastikan penyingkiran lebih berkesan terhadap bahan cemar warna dan organik daripada semua jenis keupayaan air sisa buangan tekstil.

vi

Proses regressi yang berkaitan dengan formulasi rawatan telah dibangunkan dalam kod perisian (TexTreat). Penilaian terhadap strategi rawatan dan juga TexTreat menunjukkan keupayaannya terhadap kepelbagaian air sisa buangan kilang tekstil.

ACKNOWLEDGEMENTS

All praise and thanks are due to Allah (S.W.T) the most gracious and merciful who has given me the ability to complete this study successfully after years of hard work.

There are so many people to thank for getting me to where I am today. First of all I would like to thank my supervisor Prof. Dr. Azni bin Idris for his confidence in my ability, his invaluable guidance, helpful discussions and continuous encouragement. I would to like to express my sincere appreciation and gratitude to my members of my co-supervisors committee, Assoc. Prof. Dr. Luqman Chuah Abdullah and Dr. Katayon Saed for their valuable suggestions and help.

I also would like to extend my thanks to all members of Dept. of Chemical and Environmental Engineering, Universiti Putra Malaysia, for their kind assistance during my studies. This particularly goes to Assoc. Prof. Dr. Robiah binti Yunus, Head of Deptment of Chemical & Environmental Engineering.

I wish to express my utmost gratitude to my, Prof. DR. Abdul Samed Hazaa dean of Sana'a community collage for his limitless support, spiritual, guidance and encouragement during my study. I would like further like to thank Mr. Murad Alazzany for editing my work, Mr. Abduldayam for helping me with the Bacterium Identification, Mr. Mogeeb Alzokry for helping me with the Visual

Basic software program. I am grateful to all my friends, especially Dr. Ahmed Hurairah, Dr. Umar Bamakga and Umar Yusuf for their comments, encouragement and cooperation.

My special thanks and deep gratitude goes to my beloved wife and my kids, for their patience, sacrifice and moral support throughout this period of study. My special thanks also go to my mother, brothers and sisters for all their support.

I certify that an Examination Committee has met on 21 June 2007 to conduct the final examination of Adel Mohamed Ahmed on his Doctor of Philosophy thesis entitled "Removal of Colour and Organic Pollutants From Textile Wastewater Using Integrated Biological and Advanced Oxidation Process" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Robiah Qunus, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Fakhru'L-Rzai Ahmadun, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Tey Beng Ti, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Mohd Razman Salim, PhD

Professor Faculty of Civil Engineering Universiti Teknologi Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor / Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 27 September 2007

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Azni bin Idris, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Luqman Chuah Abdullah, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Katayon Saed, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 November 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ADEL MOHAMED AHMED

Date: 25 September 2007

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APPROVAL	х
DECLARATION	xii
LIST OF TABLES	xvii
LIST OF FIGURES	xix
LIST OF ABBREVIATIONS	xxviii

CHAPTER

1	INTR	ODUCTION	
	1.1	Introduction	1
	1.2	Waste Problem in the Textile Industry	2
	1.3	Textile Industry in Malaysia	4
	1.4	Methods of Treating Textile Wastewater	5
	1.5	Problem Statement	9
		1.5.1 Suggestion of Sample and Treatment Process	11
	1.6	Aim of the research	12
	1.7	The Objective	12
	1.8	Organization of Thesis	14
2	LITE	RATURE REVIEW	15
	2.1	Textile Wastewater	15
	2.2	Dyes Classification	15
	2.3	Major Dyes Use and Estimated Degree of Fixation	
		and Loss	25
	2.4	Characteristics of Textile Wastewater Effluent	26
	2.5	Biological Treatment	29
		2.5.1 Objective	29
		2.5.2 The Mechanisms	29
		2.5.3 Types	30
		2.5.4 Activated Sludge Process	31
		2.5.5 Previous Studies on Aerobic Biological	
		Treatment for Textile Wastewater Treatment	40
	2.6	Advanced Oxidation Process	44
		2.6.1 Theory	44
		2.6.2 Technologies Used to Produce Hydroxyl	
		Radical (OH.)	45
		2.6.3 Oxidation of Refractory Organic Compounds	46
		2.6.4 Ozone	48
		2.6.5 H ₂ O ₂ As Single Reagent	56

		$2.6.6 \text{ H}_2\text{O}_2/\text{O}_3$ (Peroxone)	56
		2.6.7 Ultraviolet System	59
		2.6.8 O ₃ /UV	61
		$2.6.9 H_2O_2/UV$	64
		$2.6.10 \text{ O}_3/\text{H}_2\text{O}_2/\text{UV}$	72
	2.7	Advanced Oxidation Process Status	73
	2.8	Cost and Economic of Advanced Oxidation Process	11
	2.9	Malaysian Textile Manufacturing	80
		2.9.1 Overview	80
		2.9.2 Textile Manufacturing Process	82
	0.10	2.9.3 Sources of Pollution	04 05
	2.10		00 05
		2.10.1 Overview	00
		Treatment Process	85
3	метн	ODOLOGY	88
	3.1	Frame Work of Study	88
	3.2	Development of a New Integrated System of	
		Biological and Advanced Oxidation Process	90
		3.2.1 Background Leading to the System	
		Development	90
		3.2.2 The Integrated System Development	91
	3.3	Determination of the Best Retention Time for	100
		Biological Treatment	109
		3.3.1 Biological Treatment	109
		Oxidation the Best Method of Chemical	113
	3.4	Formulations of Process Treatment Options	119
		3.4.1 Evaluation of the Performance of Biological	
		Treatment	119
		3.4.2 Categorization of the Biotreated Textile	
		Wastewater	119
	2 5	3.4.3 Determination of Best Processes	120
	3.5	The Software Development and validation	122
		2.5.0 The Terrest and the Fermulation Process	122
		Treatment Ontions Validation	120
	26	An abrical Magazara anta	120
	3.0	Analytical Measurements	132
		3.6.1 Food to Microorganism Ratio (F/M ratio)	132
		2.6.2 pH	120
		3.6.4 Colour	125
		3.6.5 Total Organic Carbon (TOC)	133
		3.6.6 Biochemical Ovygen Demand (BOD)	127
		3.6.7 Chemical Oxygen Demand (COD)	137
		3.6.8 Oil and grease	120
		o.o.o on and grease	109

		3.6.9 Total Suspended Solids (TSS)	139
		3.6.10 Volatile Solids (VS) at 550°C	140
	3.7	Statistical Analysis	141
4	DETE	RMINATION THE BEST METHOD OF ADVANCED	
	OXIDA	ATION PROCESS	142
	4.1	Biological Treatment	142
		4.1.10verview	142
		4.1.2 Initial Textile Wastewater Collection and Characteristic	142
		4.1.3 Performance of Activated Sludge Process	143
		4.1.4 Bacteria Identification	147
	4.2	Advanced Oxidation Processes Treatment	151
		4.2.1 Overview	151
		4.2.2 Performance of Ozonation	151
		4.2.3 Performance of H ₂ O ₂ Process	163
		4.2.4 Performance of O_3/H_2O_2 (peroxone)	170
		4.2.5 Performance of UV ProcessError! Bookmark not	190
		defined.	191
		4.2.6 Performance of O_3/UV	198
		4.2.7 Efficiency of H_2O_2/UV process	206
	4.0	4.2.8 Performance of $O_3/H_2O_2/UV$	000
	4.3	4.2.1 Piological Treatment	209
		4.3.2 Advanced Oxidation Processes Treatment	209
		4.3.2 Advanced Oxidation Processes Treatment	209 210
5	FORM	4.3.1 Biological Treatment 4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS	209 210 213
5	FORM 5.1	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview	209 210 213 213
5	FORM 5.1 5.2	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological	 209 210 213 213 214
5	FORM 5.1 5.2	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotropted Textile Westewater	 209 210 213 213 214 218
5	FORM 5.1 5.2 5.3	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced	 209 210 213 213 214 218
5	FORM 5.1 5.2 5.3 5.4	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation	 209 210 213 213 214 218 219
5	FORM 5.1 5.2 5.3 5.4	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category	 209 210 213 213 214 218 219 220
5	FORM 5.1 5.2 5.3 5.4	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories	 209 210 213 213 214 218 219 220 225
5	FORM 5.1 5.2 5.3 5.4	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category	 209 210 213 213 214 218 219 220 225 229
5	FORM 5.1 5.2 5.3 5.4	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category 5.4.4 Third Category	 209 210 213 213 214 218 219 220 225 229 234
5	FORM 5.1 5.2 5.3 5.4	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category 5.4.4 Third Category Categorization and Selection of TexTreat Options	209 210 213 213 214 218 219 220 225 229 234 236
5	FORM 5.1 5.2 5.3 5.4 5.5 5.6	 4.3.1 Biological Healinett 4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category 5.4.4 Third Category Categorization and Selection of TexTreat Options 	209 210 213 213 214 214 218 219 220 225 229 234 236 237
5	FORM 5.1 5.2 5.3 5.4 5.5 5.6 THE T	4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category 5.4.4 Third Category Categorization and Selection of TexTreat Options Conclusion EXTREAT DEVELOPMENT	 209 210 213 213 214 218 219 220 225 229 234 236 237 239
5	FORM 5.1 5.2 5.3 5.4 5.5 5.6 THE T 6.1	 4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category 5.4.4 Third Category Categorization and Selection of TexTreat Options Conclusion 	 209 210 213 213 214 218 219 220 225 229 234 236 237 239 239
5	FORM 5.1 5.2 5.3 5.4 5.5 5.6 THE T 6.1	 4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category 5.4.4 Third Category Categorization and Selection of TexTreat Options Conclusion EXTREAT DEVELOPMENT Software Development 6.1.1 Overview	 209 210 213 213 214 218 219 220 225 229 234 236 237 239 6.1
5	FORM 5.1 5.2 5.3 5.4 5.5 5.6 THE T 6.1	 4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category S.4.4 Third Category Categorization and Selection of TexTreat Options Conclusion EXTREAT DEVELOPMENT Software Development 6.1.1 Overview 6.1.2 Determination of the Reaction Order and 	 209 210 213 213 214 218 219 220 225 229 234 236 237 239 6.1
6	FORM 5.1 5.2 5.3 5.4 5.5 5.6 THE T 6.1	 4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category 5.4.4 Third Category Categorization and Selection of TexTreat Options Conclusion EXTREAT DEVELOPMENT Software Development 6.1.1 Overview 6.1.2 Determination of the Reaction Order and Rate Constant 	 209 210 213 213 214 218 219 220 225 229 234 236 237 239 6.1 240
5	FORM 5.1 5.2 5.3 5.4 5.5 5.6 THE T 6.1	 4.3.2 Advanced Oxidation Processes Treatment ULATION OF PROCESS TREATMENT OPTIONS Overview Evaluation of the Performance of Biological Treatment System Categorization of the Biotreated Textile Wastewater Determination of the Best Method using Advanced Oxidation 5.4.1 First Category 5.4.2 Second categories 5.4.3 Fourth Category 5.4.4 Third Category Categorization and Selection of TexTreat Options Conclusion EXTREAT DEVELOPMENT Software Development 6.1.1 Overview 6.1.2 Determination of the Reaction Order and Rate Constant 6.1.3 Determination of the Best Fitting Regression 	 209 210 213 213 214 218 219 220 225 229 234 236 237 239 6.1 240

		6.1.4 Formulation of Computer Algorithm	
		Conclusion	257
	6.2	The TexTreat and the Process Treatment Options Validation	
		6.2.1 Sample Collection	259
		6.2.2 Kim Fashion Knitwear	259
		6.2.3 Pacific Peninsula Textile	260
		6.2.4 Ramatex Textiles Industrial	262
		Conclusion	264
	6.3	6.3.1 Software Development	267
		6.3.2 The TexTreat and the Process Treatment Options Validation	267
			268
7	CONC	LUSIONS AND RECOMMENDATIONS	269
	7.1	Conclusions	269
		7.1.1 Bio–Photochemical System	269
		7.1.2 The Best Method of Advanced Oxidation Process	
		7.1.2 The Best Method of Advanced Oxidation Process7.1.3 The Formulation of Process Options Treatment	269
		7.1.2 The Best Method of Advanced Oxidation Process7.1.3 The Formulation of Process Options Treatment7.1.4 Software Development and Validation	269
		7.1.2 The Best Method of Advanced Oxidation Process7.1.3 The Formulation of Process Options Treatment7.1.4 Software Development and Validation7.1.5 Overall	269 271
		7.1.2 The Best Method of Advanced Oxidation Process7.1.3 The Formulation of Process Options Treatment7.1.4 Software Development and Validation7.1.5 OverallRecommendations	269 271 271
		7.1.2 The Best Method of Advanced Oxidation Process7.1.3 The Formulation of Process Options Treatment7.1.4 Software Development and Validation7.1.5 OverallRecommendations	269 271 271 272
	7.2	7.1.2 The Best Method of Advanced Oxidation Process7.1.3 The Formulation of Process Options Treatment7.1.4 Software Development and Validation7.1.5 OverallRecommendations	269 271 271 272 273
RE	7.2 F EREN	 7.1.2 The Best Method of Advanced Oxidation Process 7.1.3 The Formulation of Process Options Treatment 7.1.4 Software Development and Validation 7.1.5 Overall Recommendations 	269 271 271 272 273 274
RE AP	7.2 FEREN PENDIC	 7.1.2 The Best Method of Advanced Oxidation Process 7.1.3 The Formulation of Process Options Treatment 7.1.4 Software Development and Validation 7.1.5 Overall Recommendations 	 269 271 271 272 273 274 288

LIST OF TABLES

Table 2.1	Chemical Classification of Dyes	Page 17
2.2	Estimated Degree of Fixation and Loss for Different Dye, Combinations	26
2.3	Characteristic of Composite Textile Wastewater	28
2.4	Summaries of The Studies on Using Aerobic Biological Treatment for Textile Wastewater	41
2.5	Oxidizing Potential for Conventional Oxidizing Agents	45
2.6	Technologies Used to Produce The Free Radical Hydroxyl	46
2.7	Properties of Ozone	48
2.8	Summary of Ozonation Studies for Textile Wastewater Treatment	51
2.9	Summary of Previous Studies of Using H_2O_2/UV Processes	66
2.10	EE/O Comparison for Textile Dyes Removal with AOPs	79
2.11	Power Needed For 95% Removal of Six Azo Dyes	80
2.12	Malaysian Export of Textile, Apparel and Footwear	81
2.13	Wastewater Generation in Textile Manufacturing Process	84
2.14	Production Performance Spinning, Weaving and Finishing of Textile	84
3.15	Wet Process and Generation Wastewater	84
4.1	The Constant Parameters during Study	93
4.2	Distance of Effluent Discharge Points in Advanced Oxidation Reactor	95
4.3	Characteristic of Ultraviolet Lamp	108

Table		Page
4.1	Design Parameter of Activated Sludge (Extended Aeration)	112
4.1	Textile Wastewater Characteristics before Treatment	143
4.2	Operating Condition for Activated Sludge	144
4.3	Characteristic of Samples before and after Biological Treatment	145
4.4	Pollutants Removal Efficiency of Activated Sludge (Extended Aeration) Process for Textile Wastewater Treatment	145
4.5	Biochemical and Morphology Characteristics of <i>Aeromonas Caviae</i>	150
4.6	Actual O ₃ Production and Applied O ₃ Concentration	153
4.7	Methods Used for Removal of H_2O_2 Residual From Sample before COD Measurement	164
5.1	Textile Wastewater Characteristics before Treatment	214
5.2	Descriptive Statistics for Biotreated Samples	217
5.3	The Characteristic of The Categories	219
5.4	Summary of Categories of Biotreated Textile Wastewater and Selected Methods of Advanced Oxidation	237
6.1	Rate Constants for Colour Removal at Different Retention Times	243
6.2	Rate Constants for TOC and COD Removals	248
6.3	Regression Equations	252
6.4	The Characteristics of Raw and Biotreated Wastewater for The Validation Purpose	259

LIST OF FIGURES

Figure 2.1	Proposed Mechanism for Reduction of Azo Dyes by Whole Bacterial Cells	Page 39
2.2	Schematic Detail of Ozone Generation	49
3.1	Framework of Study	89
3.2	The Flow Diagram of Treatment Process	91
3.3	Main Chassis of Bio–Photochemical Reactor	96
3.4	Design configuration of Bio-Photochemical Reactor	97
3.5	The Design Drawing of Experimental Set-Up (Bio- Photochemical Reactor)	98
3.6	Experimental Set-Up (Bio-Photochemical Reactor)	99
3.7	Feeding Tank (Right), Aeration Tank (Left).	100
3.8	Aeration Tank	101
3.9	Settling Tank (Front View)	102
3.10	Settling Tank (Plan View)	103
3.11	The Photograph of the Photochemical Reactor	105
3.12	The Schematic of the Photochemical Reactor	105
3.13	The Picture of the Photochemical Reactor	106
3.14	The Intensity of the UV Radiation at Different Distance from Lamp Axis	107
3.15	The Ultraviolet Lamp and Quartz	105
3.16	A Laboratory Ozone Generator	109
3.17	Equalization Tank of Treatment Plant	110
3.18	Design Experiment for Advanced Oxidation Process	114

Figure Page 3.19 **Ozone Generator Test** 116 3.20 Flowchart of Producing the Formulation of Process 121 **Treatment Options** 3.21 Flowchart of the TexTreat Development 124 3.22 The Main and Submenus Interfaces 126 3.23 The Decision Support Interface 127 3.24 Flowchart of Instructions of Using the TexTreat 128 3.25 Flow Diagram of the TexTreat Algorithm 129 3.26 The Equalization Tank of Kim Fashion Knitwear 131 3.27 The Equalization Tank of Pacific Peninsula Textile 131 3.28 The Equalization Tank of Ramatex Textiles Industrial 131 3.29 Flowchart of the TexTreat and the Formulation of 132 Process Treatment Options Validation 3.30 Determining Sludge Volume Index (SVI) 134 3.31 pH meter 135 3.32 136 Spectrophotometer 3.33 137 Total Organic Carbon (TOC) Analyzer 3.34 **BOD** Incubator 138 3.35 **COD** Reactor 139 3.36 140 Oven 3.37 Muffle Furnace 141 4.1 Colour Removal Efficiency of Activated Sludge at 146 **Different Retention Time**

4.2 Cellular Morphology of Aeromonas caviae Strain on a 149 Nutrient Agar Plate

Figure		Page
4.3	Gram Staining of Aeromonas caviae Strain.	149
4.4	The Calibration of Ozone Production	152
4.5	Effect of O_3 (183 mg/l) Application on Colour, TOC and COD Removals before and after Modification of System	155
4.6	Effect of O_3 Concentration on Colour, TOC and COD Removal at 15 Min	155
4.7	Effect of O ₃ Concentration on Colour Removal	157
4.8	Effect of O ₃ Concentration on TOC Removal	157
4.9	Effect of O ₃ Concentration on COD Removal	158
4.10	Effect of O ₃ Concentration on BOD Removal	160
4.11	Effect of O ₃ Concentration on O&G Removal	160
4.12	Effect of O ₃ Concentration on TSS Removal	161
4.13	Effect Concentration of H_2O_2 on COD Values in Sample before and after Removal of H_2O_2 Residual	165
4.14	Effect of H_2O_2 Different Concentration on Colour Removal	166
4.15	Effect of H ₂ O ₂ Concentration on TOC Removal	167
4.16	Effect of H ₂ O ₂ Concentration on COD Removal	168
4.17	Effect of H ₂ O ₂ Concentration on BOD Removal	169
4.18	Effect of H ₂ O ₂ Concentration on TSS Removal	169
4.19	Colour Removal Efficiency of O ₃ /H ₂ O ₂ Processes	172
4.20	TOC Removal Efficiency of O ₃ /H ₂ O ₂ Processes	173
4.21	COD Removal Efficiency O ₃ /H ₂ O ₂ Processes	174
4.22	BOD Removal Efficiency of O ₃ /H ₂ O ₂ Processes	174
4.23	O&G Removal Efficiency of O ₃ /H ₂ O ₂ Processes	176

Figure

4.24	TSS Removal Efficiency of O ₃ /H ₂ O ₂ Processes	176
4.25	Colour Removal Efficiency of O ₃ /H ₂ O ₂ Processes	177
4.26	TOC Removal Efficiency of O ₃ /H ₂ O ₂ Processes	179
4.27	COD Removal Efficiency of O ₃ /H ₂ O ₂ Processes	179
4.28	BOD Removal Efficiency of O ₃ /H ₂ O ₂ Processes	180
4.29	O&G Removal Efficiency of O ₃ /H ₂ O ₂ Processes	181
4.30	TSS Removal Efficiency of O ₃ /H ₂ O ₂ Processes	181
4.31	Colour Removal Efficiency of O ₃ /H ₂ O ₂ Processes	184
4.32	TOC Removal Efficiency of O ₃ /H ₂ O ₂ Processes	184
4.33	COD Removal Efficiency of O_3/H_2O_2 Processes	185
4.34	BOD Removal Efficiency of O ₃ /H ₂ O ₂ Processes	185
4.35	O&G Removal Efficiency of O ₃ /H ₂ O ₂ Processes	187
4.36	TSS Removal Efficiency of O ₃ /H ₂ O ₂ Processes	187
4.37	Effect of UV on the Parameters Removals	191
4.38	Colour Removal Efficiency of /O ₃ /UV Processes	192
4.39	TOC Removal Efficiency of O ₃ /UV Processes	193
4.40	COD Removal Efficiency of O ₃ /UV Processes	194
4.41	BOD Removal Efficiency of O ₃ /UV Processes	195
4.42	O&G Removal Efficiency of O ₃ /UV Processes	196
4.43	TSS Removal Efficiency of O ₃ /UV Processes	196
4.44	Effect of Different Concentration of H_2O_2/UV on Colour Removal	199
4.45	Effect of Different Concentration of H_2O_2/UV on TOC Removal	200

Figure

Page

4.46	Effect of Different Concentration of $\mathrm{H_2O_2/UV}$ on COD Removal	201
4.47	Effect of Different concentration of H_2O_2/UV on BOD Removal	202
4.48	Effect of Different Concentration of H_2O_2/UV on O&G Removal	203
4.49	Effect of Different Concentration of H_2O_2/UV on TSS Removal	204
4.50	Effect of $O_3/UV/H_2O_2$ on the Parameters Removals	207
4.51	Colour Removal with Different Combination of Advanced Oxidation	211
4.52	TOC Removal with Different Combination of Advanced Oxidation	211
4.53	COD Removal with Different Combination of Advanced Oxidation	212
5.1	The Efficiency of Biological Treatment in Removing Pollutants	215
5.2	Colour Concentration after Biological Treatment	217
5.3	Organic Pollutants Concentration after Biological Treatment	218
5.4	Effect of 0.25 ml/l H_2O_2/UV on Colour Removal for the Different Samples	221
5.5	Effect of 0.25 ml/l $\rm H_2O_2/\rm UV$ on TOC Removal for the Different Samples	222
5.6	Effect of 0.25 ml/l $\rm H_2O_2/\rm UV$ on COD Removal for the Different Samples	222
5.7	Effect of 0.25 ml/l H_2O_2/UV on BOD Removal for the Different Samples	223
5.8	Effect of 0.25 ml/l H_2O_2/UV on O&G Removal for the Different Samples	223

Figure

- 5.9 Effect of 0.25 ml/l H_2O_2/UV on TSS Removal for the 224 Different Samples
- 5.10 Samples Before and after Biological and Advanced 224 Oxidation for Category 1
- 5.11 Effect of 0.75 ml/l $H_2O_2/UV/$ 50 mg/l O_3 on Colour 226 Removal for the Different Samples
- 5.12 Effect of 0.75 ml/l $H_2O_2/UV/50$ mg/l O_3 on TOC 226 Removal for the Different Samples
- 5.13 Effect of 0.75 ml/l $H_2O_2/UV/50$ mg/l O_3 on COD 227 Removal for the Different Samples
- 5.14 Effect of 0.75 ml/l $H_2O_2/UV/50$ mg/l O_3 on BOD 227 Removal for the Different Samples
- 5.15 Effect of 0.75 ml/l $H_2O_2/UV/50$ mg/l O_3 on O&G 228 Removal for the Different Samples
- 5.16 Effect of 0.75 ml/l $H_2O_2/UV/50$ mg/l O_3 on TSS 228 Removal for the Different Samples
- 5.17 Samples Before and After the Biological and Advanced 229 Oxidation for Category 2
- 5.18 Effect of 1.5 ml/l $H_2O_2/UV/134$ mg/l O_3 on Colour 230 Removal for the Different Samples
- 5.19 Effect of 1.5 ml/l $H_2O_2/UV/134$ mg/l O_3 on TOC 231 Removal for the Different Samples
- 5.20 Effect of 1.5 ml/l $H_2O_2/UV/134$ mg/l O_3 on COD 231 Removal for the Different Samples
- 5.21 Effect of 1.5 ml/l $H_2O_2/UV/134$ mg/l O_3 on BOD 232 Removal for the Different Samples
- 5.22 Effect of 1.5 ml/l $H_2O_2/UV/134$ mg/l O_3 on O&G 232 Removal for the Different Samples
- 5.23 Effect of 1.5 ml/l $H_2O_2/UV/134$ mg/l O_3 on TSS 233 Removal for the Different Samples

Page