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In any software development lifecycle, testing is necessary to guarantee the quality 

of the end product.   As software grows, the size of test suites grows too. Due to this 

grows, maintaining of test suites become more difficult. Therefore, test suite 

minimization techniques are required to control the test suite size. One way of doing 

this is by ensuring that the set of test suite includes the important test cases with all 

redundancies in test cases eliminated.  

 

Most test suite minimization techniques remove redundant test cases with respect to 

a particular coverage criterion at a time. A potential drawback of these techniques is 

that they may result in loss of test suite coverage with respect to other coverage 

criteria, thus affecting the ability of reduced test suite in detecting faults. 
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To overcome this weakness, this research objective is to minimize the test suite by 

selectively including coverage redundancy while improving fault detection 

effectiveness. To achieve such goal, this research modifies and improves the 

Reduction with Selective Redundancy (RSR) algorithm.  

 

In the modify algorithm, test cases would be selected according to the branch 

coverage if they covered different branch combination. Then the algorithm gathers 

all the test cases based on the definition occurrence and def-use pair if they cover 

same definition occurrence of one variable but they don’t cover def-use pair of the 

same variable.  Among these selected test cases, the algorithm identifies the 

redundant test cases based on definition occurrence, if they cover a similar 

combination of branch coverage except in one branch  and also if the test cases cover 

a similar definition occurrence  . 

 

The results show the algorithm used in this research can reduce the test suite size as 

well as significantly improve the fault detection effectiveness. The fault detection 

loss of reduced suite size was significantly less than the amount of suite size 

reduction. Moreover, the results reveal that test suit minimization based on branch 

combination is effective in term of faults detection. 
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Dalam mana-mana kitaran pembangunan perisian, pengujian diperlukan untuk 

menjamin kualiti produk yang dihasilkan. Apabila berkembangnya perisian, saiz suit 

ujian perisian juga turut berkembang. Berdasarkan pengembangan ini, 

penyenggaraan terhadap suit ujian akan menjadi lebih sukar. Sehubungan dengan itu, 

satu teknik pengurangan suit ujian diperlukan untuk mengawal saiz suit ujian yang 

dihasilkan. Salah satu cara ialah dengan memastikan setiap suit ujian mengandungi 

kes pengujian yang terpenting sahaja dan mana yang berulang akan  dihapuskan.  

 

Kebanyakan teknik pengurangan menghapuskan kes pengujian yang berulang 

berdasarkan beberapa kriteria liputan yang tertentu. Kelemahan teknik ini ialah ia 

mungkin mengurangkan liputan suit ujian berdasarkan kriteria liputan tertentu, 

sekaligus mempengaruhi kebolehan  suit ujian untuk mengesan kecacatan.  
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Untuk mengatasi kelemahan ini, objektif penyelidikan ini adalah untuk 

mengurangkan suit ujian dengan membuat pemilihan termasuk keberulangan liputan 

sementara menambahbaik keberkesanan pengesanan kecacatan. Untuk mencapai 

objektif tersebut, penyelidikan ini merubah dan menambahbaik teknik pengurangan 

suit ujian terkini yang dinamakan Pengecilan dengan Pemilihan Berlebihan. 

 

Dalam algoritma yang diubah, kes-kes ujian akan dipilih berdasarkan kepada liputan 

cabang jika ianya meliputi kombinasi cabang yang berbeza. Kemudian algoritma 

tersebut mengumpul semua kes ujian berdasarkan kepada takrifan kejadian dan 

pasangan def-use jika ianya meliputi takrifan kejadian satu pembolehubah yang 

sama, tetapi ianya tidak meliputi pasangan def-use pembolehubah yang sama. 

Diantara kes ujian terpilih, algoritma tersebut mengenal pasti kes ujian berulang 

berdasarkan takrifan kejadian jika ianya meliputi kombinasi serupa liputan cabang 

kecuali dalam satu cabang dan juga jika kes ujian meliputi takrifan kejadian serupa.  

 

Keputusan menunjukkan bahawa algoritma yang digunakan dalam penyelidikan ini 

dapat mengurangkan saiz suit ujian sementara menambahbaik keberkesanan 

pengesanan kecacatan. Kerugian pengesanan kecacatan untuk saiz suit yang 

dikurangkan adalah lebih kecil daripada amaun pengurangan saiz suit. Selain 

daripada itu, keputusan juga mendedahkan bahawa pengurangan suit ujian 

berdasarkan kepada kombinasi cabang adalah efektif dari segi pengesanan kecacatan. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Software development lifecycle involves a series of production activities. These 

activities create software requirement, generate the software specification and 

implement the software. During these activities, some errors may occur. Therefore, 

software should be comprehensively tested to remove errors and to ensure that the 

software meets its specification. Since, developed software go through maintenance, 

software may be changed over time. Due to these changes, testing and retesting of 

software occur continuously during the software development lifecycle.  

 

Software testing is a process or a series of processes for analyzing the developed 

software to make sure that the actual behavior of the software correctly followed its 

specification. The essence of software testing is to execute the software with a 

particular set of input and observing the actual software output then comparing the 

gained output with the expected output. This particular set of program input along 

with the corresponding expected output is called a test case, while a group of test 

cases is called as a test suite or a test set.  

 

Each existing test case in a test suite covers (exercises) some particular software 

testing requirements. A software testing requirement can be either Black box 

(specification based) or White box (code-based). White box requirements contain 

Statements, Decisions, Definition-use pair coverage. Black box requirements contain 

the coverage of special input values and output values which are generated from the 
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specification. A test case is generated normally to cover a particular requirement or 

set of requirements, while covering more requirement hints that most of the software 

has been tested.  

 

Software grows and evolves, along with growing of the test suites. More test cases 

are needed due to these progressive changes. Over time, several test cases in a test 

suite can cover specific requirements which may be covered by other test cases in the 

test suite. Therefore, the mentioned test cases become redundant considering a 

particular coverage criterion. 

 

For instance, a test case is redundant with respect to statement coverage if it covers a 

particular set of statements which already have been covered by other test cases in 

the test suite. However, the same test case may actually not be redundant with 

respect to another coverage criterion, such as, definition-use pair coverage. Thus, it is 

important to consider that a test case redundancy is a related property to some 

specific set of requirements. 

 

Since test suites size increases and it can be so large besides, test suites can often be 

used for retesting the software, the testing process will be so expensive. Due to time 

and resource limitations for testing the software it is essential to decrease the suites 

size. A  reduction in the size of the test suite decrease both the overhead of 

maintaining the test suite and also the number of test cases that must be rerun after 

changes are made to the software. Test suite minimization is one general technique 

that has been proposed to address the problem of extremely large test suites.  
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Minimization techniques attempt to remove test cases from test suite however, 

removing the test cases can make a minimized suite weaker than un-minimized suite 

on detecting fault in software.  Therefore a test suite minimization problem is an 

instance of a more general set-cover problem.  

 

Set-cover problem is to find a minimally-sized subset of S, while a collection S of 

sets covers a particular group of entities, which provides the same amount of entity 

coverage as the original set S. The set-cover problem has been shown to be NP-

Complete (Harrold et al., 1993), and therefore in general, no polynomial-time 

algorithm exists to optimally solve the minimization problem. Nevertheless, there 

has been some research works (Black et al., 2004; Horgan and London, 1992) in the 

area of computing optimally-minimized suites. Most of other research works in 

minimization has relied on heuristics for computing near-optimal solutions.  

 

Jones and Harrold (2003) described two minimization heuristics which are designed 

specifically to be used in conjunction with the relatively strong modified 

condition/decision coverage criterion; one algorithm builds a minimized suite 

incrementally by identifying essential and redundant test cases, while the other 

algorithm is based on a prioritization technique that simply stops computing before 

all test cases in a suite have been prioritized.  

 

Agrawal (1999) implied a framework for minimization of suites using the notions of 

mega blocks and global dominator graphs. An algorithm based on a greedy heuristic 

for reducing the size of a test suite (referred to henceforth as the HGS algorithm) was 

developed by Harrold et al., (1993).  
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Jeffrey and Gupta (2005) presented an algorithm, named Reduction wit Selective 

Redundancy (RSR), based on a greedy heuristic to reduce the size of suite with 

selective redundant test case retain to decrease the loss of fault detection 

effectiveness. There are two coverage criteria used in RSR algorithm which are 

Branch coverage and data flow coverage used to identify a redundant test case. The 

test case becomes redundant if it does not cover any new branch and at the same time 

does not cover any new Definition-use pair. Therefore, in RSR algorithm if all the 

branches are covered once, then different combinations of these branches can’t be 

recognized. 

 

1.2  Problem Statement 

Test suite minimization problem is to find a minimal subset of the test cases in a test 

suite that exercises the same set of coverage requirements as the original suite. The 

key idea behind minimization techniques is to remove the test cases in a test suite 

that have become redundant with respect to the coverage of some particular set of 

program requirements. On the other hand, the purpose of test cases is to reveal faults 

in software.    

 

By removing test cases from test suite, the minimized suites may be weaker than 

their non-minimized counterparts on detecting faults in software. Hence, fault 

detection effectiveness is intuitively a measure of the ability of a test suite to detect 

faults in software. Therefore, in this thesis, it is attempted to improve the fault 

detection capabilities of reduced suites without significant effect on suite size 

reduction.  
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Jeffrey and Gupta (2005) suggested that it is possible to achieve high suite size 

reduction with little loss in fault detection effectiveness by keeping certain test cases 

that are redundant with respect to the particular coverage criterion. The RSR 

algorithm selects test cases considering the most uncovered coverage criterion. Here, 

if some test cases cover the maximum number of uncovered coverage criterion then 

among those test cases, one arbitrary test case is selected. The arbitrarily selection 

affects the ability of fault detection of the test suite reduction.  

 

To achieve this goal, test suite sizes will be small — but not necessarily minimal — 

with respect to minimization criteria. Since, removing redundant tests from a suite 

based on one criterion will throw away some important tests that are not redundant 

according to other criteria in most of the cases. The following is suggested: test suite 

reduction with the goal of achieving high suite size reduction with little loss in fault 

detection effectiveness, in general, should incorporate some notion of keeping certain 

redundant test cases with respect to the particular set of program requirements by 

which minimization is carried out.  

 

1.3  Research Objectives 

The main objective of this research is to improve a RSR minimization algorithm to 

decreasing fault detection effectiveness loss.  Details objectives are as follows: 

 

• To propose Modified RSR (MRSR) algorithm to reduce the test suite size. 

• To improve RSR algorithms to increase fault detection effectiveness.  
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1.4  Research Scope 

This research is scoped according to the following delimitations: 

 

• The program under test has been written in C++ language. The program is 

free from syntax errors. 

• Very simple code has been considered that contains one function with not 

more than 5 IF statement and each IF statement has one condition not more. 

• Loop, pointer, string and array are not considered. 

 

1.5   Research Contributions 

Many test suite minimization algorithms have been proposed to minimize the number 

of test cases existing in a test suite without effecting on the fault detection 

effectiveness. The main contribution of this research is: 

 

• A test suite minimization algorithm is developed to produce a reduced suite 

with a high chance of fault detection, by keeping some redundant test cases   

 

1.6  Thesis Organization 

This thesis is outlined in 7 chapters. This chapter provides background information 

about test suite minimization, and explains the problem statement. The objective and 

contribution of this research is also included in this chapter.  

 

Chapter 2 consists of the reviewed literature of the related works. Furthermore the 

related works to test suite minimization and fault detection effectiveness have been 

discussed later. Chapter 3 contains a general description of research methodology. It 
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explains the test suite generation, proposed test suite minimization method, 

experimental design and evaluation methods. Chapter 4 is a detailed description of 

test suite generation, developing the scanner and developing the test cases and test 

cases coverage computing.  

 

In chapter 5 the improvement of test suite minimization algorithm has been discussed 

and in it is illustrated that how this method works in later part of the chapter as a case 

study. In chapter 6 the experimental design and the performance of MRSR algorithm 

is evaluated, and in the last section comparative analysis has been discussed. Chapter 

7 shows the conclusion that summarizes the most important aspects of research. This 

chapter ends with suggested future works. 


