

UNIVERSITI PUTRA MALAYSIA

MINIMIZATIONOF TEST CASES AND FAULT DETECTION
EFFECTIVENESS IMPROVEMENT THROUGH MODIFIED REDUCTION

WITH SELECTIVE REDUNDANCY ALGORITHM

SHIMA NIKFAL

FSKTM 2007 20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Putra Malaysia Institutional Repository

https://core.ac.uk/display/42992437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MINIMIZATIONOF TEST CASES AND FAULT DETECTION

EFFECTIVENESS IMPROVEMENT THROUGH MODIFIED REDUCTION
WITH SELECTIVE REDUNDANCY ALGORITHM

By

SHIMA NIKFAL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

December 2007

ii

DEDICATION

To

My Beloved Father and Mother,
My Brother and Sisters

iii

ABSTRACT
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment

of the requirement for the degree of Master of Science

MINIMIZATION OF TEST CASES AND FAULT DETECTION
EFFECTIVENESS IMPROVEMENT THROUGH MODIFIED REDUCTION

WITH SELECTIVE REDUNDANCY ALGORITHM

By

SHIMA NIKFAL

December 2007

Chairman: Associate Professor Abdul Azim Abd. Ghani, PhD

Faculty: Computer Science and Information Technology

In any software development lifecycle, testing is necessary to guarantee the quality

of the end product. As software grows, the size of test suites grows too. Due to this

grows, maintaining of test suites become more difficult. Therefore, test suite

minimization techniques are required to control the test suite size. One way of doing

this is by ensuring that the set of test suite includes the important test cases with all

redundancies in test cases eliminated.

Most test suite minimization techniques remove redundant test cases with respect to

a particular coverage criterion at a time. A potential drawback of these techniques is

that they may result in loss of test suite coverage with respect to other coverage

criteria, thus affecting the ability of reduced test suite in detecting faults.

iv

To overcome this weakness, this research objective is to minimize the test suite by

selectively including coverage redundancy while improving fault detection

effectiveness. To achieve such goal, this research modifies and improves the

Reduction with Selective Redundancy (RSR) algorithm.

In the modify algorithm, test cases would be selected according to the branch

coverage if they covered different branch combination. Then the algorithm gathers

all the test cases based on the definition occurrence and def-use pair if they cover

same definition occurrence of one variable but they don’t cover def-use pair of the

same variable. Among these selected test cases, the algorithm identifies the

redundant test cases based on definition occurrence, if they cover a similar

combination of branch coverage except in one branch and also if the test cases cover

a similar definition occurrence .

The results show the algorithm used in this research can reduce the test suite size as

well as significantly improve the fault detection effectiveness. The fault detection

loss of reduced suite size was significantly less than the amount of suite size

reduction. Moreover, the results reveal that test suit minimization based on branch

combination is effective in term of faults detection.

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Master Sains

ABSTRAK

PENGURANGAN KES UJIAN DAN PENAMBAHBAIKAN
KEBERKESANAN PENGESANAN KECACATAN MELALUI PERUBAHAN

ALGORITMA PENGECILAN DENGAN PEMILIHAN BERLEBIHAN

Oleh

SHIMA NIKFAL

Disember 2008

Pengerusi: Associate Profesor Abdul Azim Abd. Ghani, PhD

Fakulti: Sains Komputer dan Teknologi Maklumat

Dalam mana-mana kitaran pembangunan perisian, pengujian diperlukan untuk

menjamin kualiti produk yang dihasilkan. Apabila berkembangnya perisian, saiz suit

ujian perisian juga turut berkembang. Berdasarkan pengembangan ini,

penyenggaraan terhadap suit ujian akan menjadi lebih sukar. Sehubungan dengan itu,

satu teknik pengurangan suit ujian diperlukan untuk mengawal saiz suit ujian yang

dihasilkan. Salah satu cara ialah dengan memastikan setiap suit ujian mengandungi

kes pengujian yang terpenting sahaja dan mana yang berulang akan dihapuskan.

Kebanyakan teknik pengurangan menghapuskan kes pengujian yang berulang

berdasarkan beberapa kriteria liputan yang tertentu. Kelemahan teknik ini ialah ia

mungkin mengurangkan liputan suit ujian berdasarkan kriteria liputan tertentu,

sekaligus mempengaruhi kebolehan suit ujian untuk mengesan kecacatan.

vi

Untuk mengatasi kelemahan ini, objektif penyelidikan ini adalah untuk

mengurangkan suit ujian dengan membuat pemilihan termasuk keberulangan liputan

sementara menambahbaik keberkesanan pengesanan kecacatan. Untuk mencapai

objektif tersebut, penyelidikan ini merubah dan menambahbaik teknik pengurangan

suit ujian terkini yang dinamakan Pengecilan dengan Pemilihan Berlebihan.

Dalam algoritma yang diubah, kes-kes ujian akan dipilih berdasarkan kepada liputan

cabang jika ianya meliputi kombinasi cabang yang berbeza. Kemudian algoritma

tersebut mengumpul semua kes ujian berdasarkan kepada takrifan kejadian dan

pasangan def-use jika ianya meliputi takrifan kejadian satu pembolehubah yang

sama, tetapi ianya tidak meliputi pasangan def-use pembolehubah yang sama.

Diantara kes ujian terpilih, algoritma tersebut mengenal pasti kes ujian berulang

berdasarkan takrifan kejadian jika ianya meliputi kombinasi serupa liputan cabang

kecuali dalam satu cabang dan juga jika kes ujian meliputi takrifan kejadian serupa.

Keputusan menunjukkan bahawa algoritma yang digunakan dalam penyelidikan ini

dapat mengurangkan saiz suit ujian sementara menambahbaik keberkesanan

pengesanan kecacatan. Kerugian pengesanan kecacatan untuk saiz suit yang

dikurangkan adalah lebih kecil daripada amaun pengurangan saiz suit. Selain

daripada itu, keputusan juga mendedahkan bahawa pengurangan suit ujian

berdasarkan kepada kombinasi cabang adalah efektif dari segi pengesanan kecacatan.

vii

ACKNOWLEDGEMENTS

First and foremost I would like to express my deep gratefulness to my parent for

providing me the opportunity to continue my master’s program and financial support.

And I’m grateful to my supervisor Associate Professor. Dr. Abdul Azim Abdul

Ghani, for his kind assistance, critical advice, encouragement and suggestions during

the study and preparation of this thesis. Moreover, I appreciate his encouragement to

provide the opportunity to attend several conferences. I truly appreciate the time he

devoted in advising me and showing me the proper directions to continue this

research and for his openness, honesty and sincerity.

I would also like to express my gratitude to my co-supervisor Associate Professor.

Hj.Mohd Hassan Selamat, to whom I’m grateful for his practical experience and

knowledge that made an invaluable contribution to this thesis.

I also owe thanks to all of the people who were been willing to provide assistance

and give advice. Last but not the least the deepest appreciation goes to my friends

Fawzi Elfaidi, Farzaneh Abed and Mr. Mohamad Farid Bin Jaafar for their

contentious support and encouragement. Another thank you goes to Ms. Fakariah

Hani Mohd Ali for the translation of my abstract into Malay language.

viii

APPROVAL
I certify that an Examination Committee has met on 7 December 2007 to conduct the
final examination of Shima Nikfal on her Master of Science thesis entitled "
Minimization of Test Cases and Fault Detection Effectiveness Improvement through
modified reduction with selective redundancy Algorithem " in accordance with
Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian
Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the
candidate be awarded the degree of Master of Science.

Members of the Examination Committee are as follows:

Rahmita Wirza O.K Rahmat, PhD
Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Masrah Azrifah Azmi Murad, PhD
Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Internal Examiner)

Rusli Abdullah, PhD
Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Internal Examiner)

Shamsul Sahibuddin, PhD
Associate Professor
Faculty of Computer Science and Information Technology
University of Technology Malaysia
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 29 Januari 2008

ix

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the degree of Master of Science.
Members of the Supervisory Committee were as follows:

Abdul Azim Abdul. Ghani, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Mohd Hassan Selamat, PhD
Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

 AINI IDERIS, PhD
 Professor and Dean
 School of Graduate Studies
 Universiti Putra Malaysia

 Date: 21 February 2008

x

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations
and citations which have been duly acknowledged. I also declare that it has not been
previously or concurrently submitted for any other degree at UPM or other
institutions.

 SHIMA NIKFAL

 Date:

xi

TABLE OF CONTENTS

 Page

ABSTRACT ... iii
ABSTRAK v
ACKNOWLEDGMENTS ... vii
APPROVAL .. viii
DECLERATION х
LIST OF TABLES .. xiv
LIST OF FIGURES ... xv
LIST OF ABBREVIATIONS ... xvii

1 INTRODUCTION ... 111

1.1 Background 1
1.2 Problem Statement 4
1.3 Research Objectives 5
1.4 Research Scope 6
1.5 Research Contributions 6
1.6 Thesis Organization 6

2 LITERATURE REVIEW ... 88

2.1 Introduction 8
2.2 Software Testing Classifications 8

2.2.1 Black Box Testing Techniques 9
2.2.2 White Box Testing Techniques 12

2.3 Code Coverage Criteria 12
2.3.1 Control Flow Testing 13
2.3.2 Data Flow Testing 16

2.4 Fault Detection Effectiveness 19
2.4.1 Comparison of Mutation-Based with All-Uses Method 20
2.4.2 The Effect of Suite Coverage/Size on Fault Detection Effectiveness 20
2.4.3 Comparison of Data-Flow and Control-Flow Effectiveness 21
2.4.4 Fault Detection based on Product /Testing Process Measures 23
2.4.5 Comparison of Different Control-Flow Effectiveness 24

2.5 Test Case Minimization 25
2.5.1 Automatic Test Analysis for C Minimization 25
2.5.2 Algorithm of Harrold, Gupta and Soffa (HGS) 27
2.5.3 Mega Blocks and Global Dominator Graphs Minimizing Method 29
2.5.4 Ordering the Test Execution Minimization Method 30
2.5.5 Minimizing for Probabilistic Statement Sensitivity Coverage 31
2.5.6 Modified Condition/Decision Coverage Minimization 33
2.5.7 Comparison of Coverage and Distribution Based Minimization 34
2.5.8 Bi-Criteria Minimizing Method 35
2.5.9 Model-Based Minimization Method 36
2.5.10 Test Suite Reduction with Selective Redundancy 37

2.6 Drawback of Previous Works 42

xii

2.7 Summary 45

3 RESEARCH METHODOLOGY .. 4646

3.1 Introduction 46
3.2 General Steps of Methodology 46
3.3 Designing the ITS 48

3.3.1 Data Resources 49
3.3.2 Designing the Scanner 50
3.3.3 Constructing Test Suite 50
3.3.4 Analysis of Branch Coverage 51
3.3.5 Analysis of Data Flow Coverage 51

3.4 Developing a Test Suite Minimization Method 51
3.5 Experimental Design 52
3.6 Performance of Evaluation Parameters 53

3.6.1 Size Reduction 53
3.6.2 Fault Loss 54

3.7 Summary 54

4 DESIGNING THE INITIAL TEST SUITE (ITS) ... 55

4.1 Introduction 55
4.2 Designing of the Scanner 55
4.3 Constructing the Test Cases 63

4.3.1 Valid and Invalid Classes 64
4.3.2 Designing the Test Cases 65

4.4 Analysis of Branch Coverage 69
4.5 Analysis of Data Flow Coverage 71
4.6 Summary 75

5 MINIMIZATION ALGORITHM ... 76

5.1 Introduction 76
5.2 General Description of MRSR Algorithm 76
5.3 Specific Implementation of the MRSR Algorithm 78
5.4 Case Study 84
5.5 Summary 89

6 EXPERIMENTATION, RESULTS AND DISCUSSION 90

6.1 Introduction 90
6.2 Experiment Setup 90

6.2.1 Subject Programs and Test Case Pools 90
6.2.2 Test Suite Generation 91
6.2.3 The Experiments for the MRSR and RSR Algorithms 92

6.4 Case Study 104
6.4.1 Case Study Using RSR Algorithm 107
6.4.2 Case Study Using the MRSR Algorithm 110

6.5 Summary 114

7 CONCLUSION AND FUTURE WORK .. 115

7.1 Conclusion 115
7.2 Future Works 116

xiii

BIBLIOGRAPHY .. 118
BIODATA OF THE AUTHOR... 124

xiv

LIST OF TABLES

Table Page

3.1 Subject Programs 50

4.1 Block Table 62

4.3 Valid and Invalid Classes 66

4.4 Test Cases 68

4.5 Branch Coverage for Test Cases in T 71

4.6 Definition-Use Pair Coverage for Variable X 74

4.7 Definition-Use Pair Coverage for Other Variables 74

4.8 Definition Occurrence for Variables 75

5.1 Selected Test Cases with Respect to Branch Coverage 86

5.2 Definition Occurrence of Variable X 87

5.3 Definition-Use Pair of Variable X 88

5.4 Reduced Suite by the MRSR Algorithm 88

6.1 Experimental Subjects 90

6.2 Results for MRSR and RSR Algorithms 97

6.3 Average Percentage for Size Reduction and Fault Loss 99

6.4 Average Percentage of Size Reduction 103

6.5 Average Percentage of Fault Loss 104

6.6 Branch Coverage Information for Test Cases 106

6.7 Definition-use Pair Coverage Information for Test Cases 106

6.8 More Definition-use Pair Coverage Information for Test Cases 106

6.9 Definition Occurrence for Test Cases 110

xv

LIST OF FIGURES

Figure Page

2.1 Program using for Statement Coverage ... 13

2.2 Program using for Branch Coverage .. 14

2.3 Data Flow Criteria .. 18

2.4 Input/output for RSR algorithm ... 37

2.5 RSR Algorithm .. 38

2.6 Function to Select the Next Test Case ... 39

3.1 General Steps of Methodology 47

3.2 System Architecture 48

3.3 Steps of Designing the ITS 49

3.4 Flowchart of Developed Test Suite Minimization 52

4.1 Scanner (Lexical Analyzer) 56

4.2 Scanning Process 56

4.3 Acceptance of the Token of the Language 57

4.4 Tokenize Code Function 58

4.5 Lex Function 59

4.6 Input Program 60

4.7 Define Valid & Invalid Class Function 65

4.8 Test Case Function 66

4.9 Branch Coverage Function 69

4.10 Data Flow Coverage Function 72

5.1 Input and Output for the MRSR Algorithm 79

5.2 The MRSR Minimization Algorithm 81

xvi

6.1 The 8 Experiments for the MRSR and RSR Algorithms 95

6.2 percentage suite size reduction in boxplot format 101

6.3 percentage fault loss in boxplot format 101

6.4 Rent Program 105

xvii

LIST OF ABBREVIATIONS

ATAC Automatic Test Analysis for C

ATACMIN Automatic Test Analysis for C Minimization

BVA Boundary Value Analysis

C-use Computation Use

DC Decision Coverage

Def Definition

EP Equivalence Partitioning

FPC Full Predicate Coverage

HGS Harrold Gupta Soffa

ITS Initial Test Suite

MC/DC Modified Condition/ Decision Coverage

MRSR Modified Reduction with Selective Redundancy

PC Primary Criterion

P-use Predication Use

RS Reduce Suite

RSR Reduction with Selective Redundancy

PSSC Probabilistic Statement Sensitivity Coverage

RTC Redundant Test Case

SC Secondary Criterion

T Test case

TC Tertiary Criterion

USC Uncovered Secondary Criterion

W.R.T With Respect To

CHAPTER 1

INTRODUCTION

1.1 Background

Software development lifecycle involves a series of production activities. These

activities create software requirement, generate the software specification and

implement the software. During these activities, some errors may occur. Therefore,

software should be comprehensively tested to remove errors and to ensure that the

software meets its specification. Since, developed software go through maintenance,

software may be changed over time. Due to these changes, testing and retesting of

software occur continuously during the software development lifecycle.

Software testing is a process or a series of processes for analyzing the developed

software to make sure that the actual behavior of the software correctly followed its

specification. The essence of software testing is to execute the software with a

particular set of input and observing the actual software output then comparing the

gained output with the expected output. This particular set of program input along

with the corresponding expected output is called a test case, while a group of test

cases is called as a test suite or a test set.

Each existing test case in a test suite covers (exercises) some particular software

testing requirements. A software testing requirement can be either Black box

(specification based) or White box (code-based). White box requirements contain

Statements, Decisions, Definition-use pair coverage. Black box requirements contain

the coverage of special input values and output values which are generated from the

2

specification. A test case is generated normally to cover a particular requirement or

set of requirements, while covering more requirement hints that most of the software

has been tested.

Software grows and evolves, along with growing of the test suites. More test cases

are needed due to these progressive changes. Over time, several test cases in a test

suite can cover specific requirements which may be covered by other test cases in the

test suite. Therefore, the mentioned test cases become redundant considering a

particular coverage criterion.

For instance, a test case is redundant with respect to statement coverage if it covers a

particular set of statements which already have been covered by other test cases in

the test suite. However, the same test case may actually not be redundant with

respect to another coverage criterion, such as, definition-use pair coverage. Thus, it is

important to consider that a test case redundancy is a related property to some

specific set of requirements.

Since test suites size increases and it can be so large besides, test suites can often be

used for retesting the software, the testing process will be so expensive. Due to time

and resource limitations for testing the software it is essential to decrease the suites

size. A reduction in the size of the test suite decrease both the overhead of

maintaining the test suite and also the number of test cases that must be rerun after

changes are made to the software. Test suite minimization is one general technique

that has been proposed to address the problem of extremely large test suites.

3

Minimization techniques attempt to remove test cases from test suite however,

removing the test cases can make a minimized suite weaker than un-minimized suite

on detecting fault in software. Therefore a test suite minimization problem is an

instance of a more general set-cover problem.

Set-cover problem is to find a minimally-sized subset of S, while a collection S of

sets covers a particular group of entities, which provides the same amount of entity

coverage as the original set S. The set-cover problem has been shown to be NP-

Complete (Harrold et al., 1993), and therefore in general, no polynomial-time

algorithm exists to optimally solve the minimization problem. Nevertheless, there

has been some research works (Black et al., 2004; Horgan and London, 1992) in the

area of computing optimally-minimized suites. Most of other research works in

minimization has relied on heuristics for computing near-optimal solutions.

Jones and Harrold (2003) described two minimization heuristics which are designed

specifically to be used in conjunction with the relatively strong modified

condition/decision coverage criterion; one algorithm builds a minimized suite

incrementally by identifying essential and redundant test cases, while the other

algorithm is based on a prioritization technique that simply stops computing before

all test cases in a suite have been prioritized.

Agrawal (1999) implied a framework for minimization of suites using the notions of

mega blocks and global dominator graphs. An algorithm based on a greedy heuristic

for reducing the size of a test suite (referred to henceforth as the HGS algorithm) was

developed by Harrold et al., (1993).

4

Jeffrey and Gupta (2005) presented an algorithm, named Reduction wit Selective

Redundancy (RSR), based on a greedy heuristic to reduce the size of suite with

selective redundant test case retain to decrease the loss of fault detection

effectiveness. There are two coverage criteria used in RSR algorithm which are

Branch coverage and data flow coverage used to identify a redundant test case. The

test case becomes redundant if it does not cover any new branch and at the same time

does not cover any new Definition-use pair. Therefore, in RSR algorithm if all the

branches are covered once, then different combinations of these branches can’t be

recognized.

1.2 Problem Statement

Test suite minimization problem is to find a minimal subset of the test cases in a test

suite that exercises the same set of coverage requirements as the original suite. The

key idea behind minimization techniques is to remove the test cases in a test suite

that have become redundant with respect to the coverage of some particular set of

program requirements. On the other hand, the purpose of test cases is to reveal faults

in software.

By removing test cases from test suite, the minimized suites may be weaker than

their non-minimized counterparts on detecting faults in software. Hence, fault

detection effectiveness is intuitively a measure of the ability of a test suite to detect

faults in software. Therefore, in this thesis, it is attempted to improve the fault

detection capabilities of reduced suites without significant effect on suite size

reduction.

5

Jeffrey and Gupta (2005) suggested that it is possible to achieve high suite size

reduction with little loss in fault detection effectiveness by keeping certain test cases

that are redundant with respect to the particular coverage criterion. The RSR

algorithm selects test cases considering the most uncovered coverage criterion. Here,

if some test cases cover the maximum number of uncovered coverage criterion then

among those test cases, one arbitrary test case is selected. The arbitrarily selection

affects the ability of fault detection of the test suite reduction.

To achieve this goal, test suite sizes will be small — but not necessarily minimal —

with respect to minimization criteria. Since, removing redundant tests from a suite

based on one criterion will throw away some important tests that are not redundant

according to other criteria in most of the cases. The following is suggested: test suite

reduction with the goal of achieving high suite size reduction with little loss in fault

detection effectiveness, in general, should incorporate some notion of keeping certain

redundant test cases with respect to the particular set of program requirements by

which minimization is carried out.

1.3 Research Objectives

The main objective of this research is to improve a RSR minimization algorithm to

decreasing fault detection effectiveness loss. Details objectives are as follows:

• To propose Modified RSR (MRSR) algorithm to reduce the test suite size.

• To improve RSR algorithms to increase fault detection effectiveness.

6

1.4 Research Scope

This research is scoped according to the following delimitations:

• The program under test has been written in C++ language. The program is

free from syntax errors.

• Very simple code has been considered that contains one function with not

more than 5 IF statement and each IF statement has one condition not more.

• Loop, pointer, string and array are not considered.

1.5 Research Contributions

Many test suite minimization algorithms have been proposed to minimize the number

of test cases existing in a test suite without effecting on the fault detection

effectiveness. The main contribution of this research is:

• A test suite minimization algorithm is developed to produce a reduced suite

with a high chance of fault detection, by keeping some redundant test cases

1.6 Thesis Organization

This thesis is outlined in 7 chapters. This chapter provides background information

about test suite minimization, and explains the problem statement. The objective and

contribution of this research is also included in this chapter.

Chapter 2 consists of the reviewed literature of the related works. Furthermore the

related works to test suite minimization and fault detection effectiveness have been

discussed later. Chapter 3 contains a general description of research methodology. It

7

explains the test suite generation, proposed test suite minimization method,

experimental design and evaluation methods. Chapter 4 is a detailed description of

test suite generation, developing the scanner and developing the test cases and test

cases coverage computing.

In chapter 5 the improvement of test suite minimization algorithm has been discussed

and in it is illustrated that how this method works in later part of the chapter as a case

study. In chapter 6 the experimental design and the performance of MRSR algorithm

is evaluated, and in the last section comparative analysis has been discussed. Chapter

7 shows the conclusion that summarizes the most important aspects of research. This

chapter ends with suggested future works.

