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DYNAMIC BAYESIAN NETWORKS AND VARIABLE LENGTH GENETIC 
ALGORITHM FOR DIALOGUE ACT RECOGNITION 

 

By 

ANWAR ALI YAHYA 

August 2007 

Chairman:      Associate Professor Ramlan Mahmod, PhD 

Faculty:          Computer Science and Information Technology    

 

The recognition of dialogue act is a task of crucial importance for the processing of 

natural language in many applications such as dialogue system. However, it is one of the 

most challenging problems. The current dialogue act recognition models, namely cue-

based models, are based on machine learning techniques, particularly statistical ones. 

Despite the success of the cue-based models, they still have serious drawbacks. Among 

them are, inadequate representation of dialogue context, intra-utterance and inter-

utterances independencies assumptions, inaccurate estimation of the recognition 

accuracy and suboptimality of the lexical cues selection approaches. 

 Motivating by these drawbacks, this research proposes a new model of dialogue act 

recognition in which dynamic Bayesian machine learning is applied to induce dynamic 

Bayesian networks models from task-oriented dialogue corpus using sets of lexical cues 

selected automatically by means of new variable length genetic algorithm. In achieving 
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this, the research is planned in three main stages. In the initial stage, the dynamic 

Bayesian networks models are constructed based on a set of lexical cues selected 

tentatively from the dialogue corpus. The results are compared with the results of static 

Bayesian networks and naïve bayes. The results confirm the merits of using dynamic 

Bayesian networks for dialogue act recognition. 

In the second stage, the previous ranking approaches are investigated for the selection of 

lexical cues. The main drawbacks of these approaches are highlighted, and based on that 

an alternative approach is proposed. The proposed approach consists of preparation 

phase and selection phase. The preparation phase transforms the original dialogue 

corpus into phrases space. In the selection phase, a new variable length genetic 

algorithm is applied to select the lexical cues. The results of the proposed approach are 

compared with the results of the ranking approaches. The results provide experimental 

evidences on the ability of the proposed approach to avoid the drawbacks of the ranking 

approaches.     

In the final stage; the dynamic Bayesian networks models are redesigned using the 

lexical cues generated from the proposed lexical cues selection approaches. The results 

confirm the effectiveness of proposed approaches for the design of dialogue act 

recognition model.  
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Pengecaman aksi dialog adalah sebuah tugas penting bagi pemprosesan bahasa tabii 

dalam pelbagai aplikasi seperti sistem dialog. Ia juga merupakan satu permasalahan 

yang sangat sukar. Model-model pengecaman aksi dialog terkini, contohnya model 

pengecaman berasaskan isyarat, adalah bersandarkan teknik-teknik pembelajaran mesin 

terutamanya statistik. Di sebalik kejayaan model statistik berasaskan isyarat, model-

model ini mempunyai kelemahan yang serius. Antaranya adalah kekurangan dalam 

perwakilan konteks dialog, andaian terhadap keterbergantungan antara intra-tuturan dan 

inter-tuturan, anggaran ketepatan pengecaman yang tidak tepat, serta kaedah pemilihan 

isyarat leksikal yang tidak optima. 

Berpandukan kelemahan-kelemahan tersebut, penyelidikan ini mencadangkan satu 

model pengecaman aksi dialog yang baru melalui penggunaan pembelajaran mesin bagi 

membentuk sebuah rangkaian Bayesian dinamik daripada korpus dialog berasaskan 

tugasan dengan menggunakan sebuah set isyarat leksikal yang dipilih secara automatik 
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melalui algoritma genetik panjang bolehubah. Bagi mencapai tujuan tersebut, 

penyelidikan ini dirancang dalam tiga tahap. Pada tahap permulaan, model rangkaian 

Bayesian dinamik dibentuk berdasarkan set isyarat leksikal yang dipilih daripada korpus 

dialog. Keputusan eksperimen kemudiannya dibandingkan dengan keputusan daripada 

rangkaian Bayesian statik dan Naïve Bayes. Keputusan yang didapati mengesahkan hasil 

rangkaian Bayesian dinamik bagi pengecaman aksi dialog. 

Pada tahap kedua, pendekatan susunan untuk pemilihan isyarat-isyarat leksikal diselidik. 

Kekurangan utama pendekatan ini ditekankan melalui perbandingan dengan pendekatan 

alternatif yang dicadangkan. Pendekatan yang dicadangkan terdiri daripada fasa 

persediaan dan fasa pemilihan. Fasa persediaan mengubah korpus dialog yang asal 

kepada ruangan frasa-frasa. Dalam fasa pemilihan, algoritma genetik panjang bolehubah 

digunakan bagi memilih isyarat-isyarat leksikal tersebut. Keputusan daripada 

pendekatan yang dicadangkan kemudiannya dibandingkan dengan keputusan pendekatan 

berasaskan susunan. Hasil keputusan memberikan bukti ekperimental bahawa 

pendekatan yang dicadangkan berupaya mengelak daripada kelemahan-kelemahan 

dalam pendekatan berasaskan susunan. 

Dalam fasa terakhir, model rangkaian Bayesian dinamik diolah bagi menggunakan 

isyarat-isyarat leksikal yang dihasilkan melalui pendekatan isyarat leksikal yang 

dicadang. Hasil keputusan mengesahkan bahawa pendekatan yang dicadangkan adalah 

berguna dan efektif bagi rekabentuk model pengecaman aksi dialog. 
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CHAPTER 1 

INTRODUCTION  

1.1 Introduction 

Emulation of human conversation ability is one of the earliest goals of Artificial 

Intelligence (AI). In 1950, in an article published in the scientific journal Mind, 

British mathematician, Alan Turing, asked the question "Can a machine think?" He 

answered in the affirmative, but he went on to ask another question: "If a computer 

could think, how could we tell?" Turing's suggestion was that if the responses from 

the computer are indistinguishable from that of a human, the computer could be said 

to be thinking. This is known as Turing Test, and it is the main motivation for the 

researches in the area of Natural Language Processing (NLP) in general and dialogue 

system in particular.  

Fifteen years after Turing proposed his test, Weizenbaum (1966) designed his first 

dialogue system, named ELIZA, which attempted to engage a human in a 

conversation. Since then, dialogue systems have witnessed substantial developments, 

and as a result of this, many commercial domains that demand human-machine 

interaction have adopted dialogue system technology. Travel planning domain has 

been the key concern of dialogue systems for quite a long time. Automatic call 

routing is another interesting domain of dialogue systems. In this domain, the call 

routing dialogue system directs incoming call in a telephone call centre, transferring 

the call to the appropriate human. Figure 1.1 shows an example of a dialogue from 

the AT&T system between the system and the user, denoted by S and U respectively 

(Gorin et al., 1997). 

                                                       1.        
 

1 



 S: How may I help you? 
U: Can you tell me how much it is to Tokyo? 
S: You want to know the cost of a call? 
U: Yes, that’s right. 
S: Please hold on for rate information. 

 

Figure 1.1: Dialogue from the AT&T System (Gorin et al., 1997). 

A somewhat different domain is information exchange and transaction in virtual 

environments such as theatre. The dialogue system provides information to its users 

about theatre performances and can also make reservations if necessary. Figure 1.2 

shows part of a dialogue from the theatre domain. 

U: What will be on in the theater next week (19 March)?   
S: There is no show on that date.    
U: And on 18 March?      
S: on 18 March you can go to Deelder Denkt and Indonesian Tales.   
U: At what time does Deelder start?      
S: The show starts at 20:00. 
U: How much does it cost?   …  

 

 
 
 

Figure 1.2: Dialogue Example from Theater Domain 

Technically speaking, dialogue system is an advanced NLP application that provides 

a relatively natural interaction between users and computer-based applications. In so 

doing, the dialogue system subsumes the major fields of NLP including speech 

recognition and synthesis, language understanding, dialogue management, and 

language generation. Figure 1.3 shows how the typical architecture of the dialogue 

system combines the major fields of NLP.  

 

 
 
 
 
Figure 1.3: Typical Dialogue System Architecture (Jurafsky and Martin, 2000)  
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