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Cable–stayed bridges are usually constructed in coastal area in which the 

surrounding atmospheric is considered as severe environmental condition. This 

atmosphere helps in building up quickly the corrosion of steel cables with time.  

 

Visual inspection of cable-stayed bridges built up worldwide shows that the bridge 

cables suffer from serious corrosion although the cables are protected using different 

techniques. There is a considerable reduction in cable diameter due to corrosion, 

which depends on the severity of the environmental condition. 

 

There is no sufficient information regarding the effect of reduction in cable diameter 

on the structural response of cable-stayed bridge. Furthermore, snapping of cables 

due to accidental and /or corrosion is another important issue which affecting the 

structural response and safety of cable stayed bridges and need to be addressed for 

safe design. 
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In this research, the effect of reducing cables diameter, cables layout and snapping of 

individual cables on the structural behavior and safety of cable-stayed bridge are 

presented. Three cable layouts are analyzed in this study i.e. harp, semi harp and fan 

layouts. In each layout, five different reductions in cables diameters are considered 

i.e 12.50%, 25.00%, 37.50%, and 50.00%. To address snapping of cable, harp bridge 

layout is considered and the structural behavior of the bridge due to snapping 

individual cables in the bridge are presented and discussed.  

 

The analysis starts with initial shape analysis to stress the cables to minimize the 

deformation under self-weight of the structure. The analysis was carried out using 

stiffness method considering the geometrical nonlinearities. 

 

The results of initial shape analysis show that in all bridge layouts reflect comparable 

behavior. The cable forces were found to be the lowest in fan layout cable bridge 

compared to harp and semi harp layouts. Reducing cables diameter will lead to a 

redistribution of forces and moment in different components of the bridge and alter 

the structural behavior in a nonlinear fashion. Reducing cables diameter by 25% will 

compromise the bridge safety as the stresses in cables, deformation, and bending 

moment will be increased significantly.  

 

The bridge cable layouts have little effect on the structure response of the cable-

stayed bridge with reduced cables diameter. The fan layout shows better structural 

response compared to harp and semi harp layout, especially in term of cable forces 

and deformation profile. Notwithstanding this fact, 25% of cables reduction 
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diameter will significantly affect the moment in girder of fan bridge layout compared 

to other layouts of cables 

 

Snapping the individual cable in the bridge has a significant effect on the cable force 

and bending moment distribution in the girder, tower and will cause bridge failure. 
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Kabel jambatan gantung biasanya dibina di pesisir pantai di mana keadaan  alam 

sekitar dianggap teruk. Suasana ini menyebabkan kakisan keluli kabel boleh berlaku 

dengan cepat. 

 

Pemeriksaan visual kabel jambatan gantung menunjukkan bahawa kabel jambatan 

terjejas dari kakisan serius walaupun kabel terpelihara menerusi berbagai teknik. 

Kakisan ini boleh menyebabkan pengurangan saiz kabel yang banyak. 

 

Tiada maklumat yang lengkap berkenaan dengan kesan pengurangan saiz kabel 

keatas kelakuan jambatan gantung. Kabel boleh tersentap disebabkan kemalangan 

dan/atau pengaratan. Ini merupakan isu tambahan yang memberi kesan kepada 

kelakuan struktur. Keselamatan jambatan gantung disebabkan oleh dua perkara ini 

perlu ditangani. 
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Dalam kajian ini, kesan pengurangan saiz kabel, susun atur kabel dan kesan kabel 

tersentap pada kelakuan dan keselamatan jambatan gantung dibentangkan. Tiga 

susunatur kabel iaitu ‘harp’,’semi-harp’ dan kipas dianalisis dalam kajian ini. Untuk 

setiap susunatur lima pengurangan garispusat kabel telah dipertimbangkan iaitu 

12.50%, 25.00%, 37.50%, dan 50.00%. Untuk mengambilkira kabel tersentap, 

jambatan susunatur ‘ harp’ telah dipertimbangkan dan kelakuan struktur jambatan 

disebabkan oleh kabel tersentap dibentang dan dibincangkan. 

 

Analisis bermula dengan analisis awalan dimana kabel ditegang untuk 

mengurangkan ubahbentuk di bawah beban diri. Analisis dilakukan dengan 

menggunakan kaedah kekukuhan dengan mengambilkira ketidaklurusan. 

 

Hasil dari analisis awalan menunjukkan semua jambatan dengan susunatur kabel 

yang berbeza menunjukkan kelakuan yang setara. Daya kabel didapati paling rendah 

untuk susunatur kipas, berbanding dengan susunatur ‘harp’ dan ‘semi-harp’. 

Pengurangan garispusat kebal akan mengakibatkan pengagihan semula daya dan 

momen pada berbagai komponen jambatan dan merubah kelakuan dalam bentuk 

tidak ‘lelurus’. Pengurangan saiz kabel sebanyak 25% boleh mengancam 

keselamatan jambatan kerana tegasan kabel, ubahbentuk jambatan dan momen 

lenturan akan meningkat secara mendadak. 

 

Susunatur berbagai kabel mempunyai kesan kecil pada respon struktur bila saiz kabel 

dikurangkan.  Susunatur kipas menunjukken respon yang lebih baik berbanding 

dengan susun atur ‘harp’ dan ‘semi-harp’. Walaubagaimanapun, pengurangan 
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25% saiz kabel memberi kesan besar kepada rasuk pada jambatan susunatur kipas, 

berbanding dengan susunatur lain.  

 

Kabel inidividu yang tersentap mempunyai kesan siginifikan kepada daya kabel dan 

agihan momen dalam rasuk dan menara, dan boleh menyebabkan kegagalan 

jambatan. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 General 

 

Cable-stayed bridges have been serving humankind since early times. In ancient times, 

Egyptians built their boats in the form of cable-stayed structures. Many years after, 

advancements of the cable-stayed concept and materials are most notable and can be 

divided into two periods. The first period was from the 1600s to 1950, where the new 

style and concept of cable-stayed bridges were developed. The second period was from 

the 1950s until nowadays, where new cables are made from high-strength strands, bars 

and wires, and high load-carrying capacity and ease of installation are offered. 

Moreover, rapid progress in the analysis and construction of cable-stayed bridges has 

been also made. This progress is mainly due to developments in the fields of computer 

technology, high-strength steel cables, and orthotropic steel decks. 

 

A cable-stayed bridge consists of three principal components, namely girders, towers 

and inclined cable stays. The girder is supported elastically at points along its length by 

inclined cable stays so that, the girder can span a much longer distance without 

intermediate piers. The dead load and traffic load on the girders are transmitted to the 

towers by inclined cables. High-tension forces exist in cable-stays, which induce high 

compression forces in towers and part of girders. Since high pretension force exists in 

inclined cables before live loads are applied, the initial geometry and the prestress of 

cable-stayed bridges are dependent on each other. They cannot be specified  
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independently as conventional steel or reinforced concrete bridges. Therefore, the initial 

shape, i.e., the geometric configuration and the pre-stress distribution of cable-stayed 

bridges has to be determined prior to analyze them. Therefore, the initial shape has to be 

determined correctly prior to analyze the bridge. Only based on the correct initial shape 

a correct non-linear analysis can be achieved. The sources of nonlinearity in cable-

stayed bridges mainly include the cable sag, beam-column, and large deflection effects  

 

Cable stayed bridge usually built in coastal areas, which often exposed in the open air, 

are inevitably subjected to atmospheric corrosion. Cables, which play the main key in 

the performance and the behavior of the bridge, can suffer a reduction in cable diameter 

due to the corrosion. 

 

Nevertheless, most the cables are preserved by rust preventive methods, which have 

been used in Europe and America. In Japan, no protection was provided as the existing 

because that rust preventive methods were not effective enough under Japan’s weather 

conditions with high humidity and large temperature change (Yukikazu et al 2002). New 

York State Bridge Authority has presented studied many types of cable structures 

system, since 2003 and it was found that, most of tested cables have broken wires 

(Engineering News-Record.com, 2003).  
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1.2 Problem Statement 

 

There is no sufficient information regarding the effect of reduction in cable diameter on 

the structural response of cable-stayed bridge. Furthermore, snapping of cables due to 

accidental events during the life of the structure and /or corrosion, which usually 

happened due to poor maintenance of the bridge which is another important issue which 

affecting the structural response and safety of cable stayed bridges and need to be 

addressed for safe design. 

 

1.3 Objectives 

 

The aim of this research is  

 

1. To investigate the effect of reducing the cables diameter on the structural response of 

the cable stayed bridges with different cable layout considering the actual non-linear 

behavior of the bridge structure. 

 

2. The effect of snapping individual cables in harp cable stayed bridge on the structural 

safety of the bridge. 

 

1.4 Scope  

This study performs linear and nonlinear analysis of cable-stayed bridge, including 

initial shape analysis. A computer code is also developed based on stiffness method to 


