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Adsorbed natural gas (ANG) technique was used in this study to test the adsorption 

capacity of carbon materials fro methane gas storage. An adsorption system based on 

volumetric method was designed and fabricated for this purpose. The carbon 

materials used were Malaysian industrial activated carbon produced from palm 

kernel shell and coconut shells. These materials have not been thoroughly 

investigated for ANG applications. Also a new material which is a composite of 

CNTs and activated carbon (ACNT) produced in this work along with commercial 

CNTs were investigated as ANG storage media. 

 

ACNT was produced using chemical vapour deposition (CVD) method using 

activated carbon as catalyst substrate. The presence of activated carbon, besides 

being substrate, served as auxiliary storage media. This method successfully 

produced CNTs with diameters ranged form 25 to 70 nm and lengths, mostly, of 
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more than  10 μm.  These  long  tubes  could be a result  of the  long reaction  time  

(3 hours), thus if shorter CNTs are required, shorter reaction times should be applied. 

 

The adsorption storage experiments were run at pressures up to 50 bar and 

temperatures of 30, 40 and 50 °C. The adsorption capacity on mass basis (at 35 bar 

and 30 °C) ranged from as low as 1.48 mmol/g for com-CNT to 6.20 mmol/g for 

CSAC3. ACNT showed a relatively high adsorption capacity of 4.51 mmol/g. The 

results indicate that there is a general trend of increasing in adsorption capacity with 

increasing micropore volume. However, micropore size distribution (MPSD) must be 

taken into account in evaluating the adsorbents. 

 

The adsorption capacity on volume basis (V/V) ranged from 51.57 for com-CNT to 

106.46 for CSAC2. These values are still below the targeted 150 V/V. While some 

adsorbents showed the highest adsorption capacity on mass basis compared to others 

(CSAC3 versus CSAC2), yet their capacity on volume basis was lower as a result of 

their lower bulk density. This showed the importance of this parameter in ANG 

applications. 

 

The methane delivered values were 7-25% lower than the volumetric methane 

storage capacity. The high retention of methane gas at atmospheric pressure by some 

adsorbents could be explained by their narrow MPSD. Accordingly, the narrow 

MPSD helps in increasing the adsorption capacity, yet, the very narrow MPSD will 

increase the amount of gas retained. 
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Several single component isotherm models were used to fit the experimental 

adsorption isotherm data. All the adsorption isotherm models used showed a good fit 

to the experimental data. However, Langmuir isotherm model was chosen to be used 

in the dynamic model to restrict the already heavy computational load from being 

unrealistic. 

 

The experimental data obtained from the storage and delivery tests were compared to 

those obtained from process simulation using a dynamic model. The simulation 

model was run using the measured equilibrium data as input parameters. A good 

agreement was observed between experimental and simulated results. Pressure and 

temperature histories were acceptably well predicted. 
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Teknik gas asli terjerap (GAT) telah digunakan di dalam kajian ini untuk 

mempelajari keupayaan penjerapan bahan karbon untuk penyimpanan gas metana. 

Sesuatu sistem penjerapan yang berdasarkan kaedah isi padu telah direka bentuk dan 

dibikin untuk tujuan ini. Bahan karbon yang digunakan adalah bahan industri karbon 

teraktif yang dihasilkan daripada tempurung buah sawit dan tempurung kelapa, dari 

Malaysia. Bahan-bahan ini belum pernah disiasat sepenuhnya untuk aplikasi GAT. 

Di dalam kerja ini, sebuah bahan baru iaitu komposit karbon teraktif dan tiub nano 

karbon (CNT), dan juga komersial tiub nano karbon telah disiasat sebagai media 

penyimpanan. 

 

Tiub Nano Karbon Teraktif (ACNT) telah dihasilkan dengan kaedah penguraian wap 

kimia dengan menggunakan karbon teraktif sebagai susbtrat pemangkin. Kehadiran 

karbon teraktif, selain dari sebagai substrat, berfungsi sebagai bantuan media 

penyimpanan. Kaedah ini telah berjaya menghasilkan CNT dengan garis pusat julat 
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antara 25 hingga 70 nm and panjang, kebanyakannya melebihi 10 μm. Tiub-tiub 

yang panjang ini adalah hasil daripada masa tindak balas yang lama (3 jam). Oleh 

itu, jika lebih pendek CNTs dikehendaki, masa tindak balas yang lebih pendek patut 

dikenakan. 

 

Ujikaji-ujikaji penyimpanan secara penjerapan dilakukan pada tekanan setinggi 50 

bar dan suhu-suhu 30, 40 dan 50 darjah Celsius. Julat muatan penjerapan atas asas 

jisim (pada 35 bar dan 30oC) ialah dari serendah 1.48 mmol/g untuk CNT komersil 

ke setinggi 6.12 mmol/g untuk CSAC3. ACNT menunjukkan muatan penjerapan 

yang agak tinggi, iaitu 4.51 mmol/g. Keputusan menunjukkan arah-tuju am di mana 

muatan penjerapan meningkat dengan isipadu liang mikro. Walau bagaimanapun, 

taburan saiz liang mikro (TSLM) mesti juga diambil-kira dalam penilaian calon-

calon penjerap. 

 

Muatan penjerapan berasaskan isipadu (V/V) menjangkau julat 51.57 untuk CNT 

komersil ke 106.46 untuk CSAC2. Nilai-nilai ini masih di bawah sasaran 150 V/V.  

Walaupun sesetengah zat penjerap menunjukkan muatan penjerapan tertinggi 

berasaskan jisim (CSAC3 lawan CSAC2), muatan penjerapan mereka berasaskan 

isipadu adalah lebih rendah disebabkan ketumpatan pukal mereka yang lebih rendah. 

Ini mencerminkan kepentingan ketumpatan pukal dalam penilaian penjerap. 

 

Nilai metana-boleh-hasil ialah 7 ke 25% lebih rendah daripada muatan simpanan 

berasaskan isipadu. Nilai penahanan gas metana pada tekanan atmosfera oleh 

sesetengah zat penjerap boleh dijelaskan oleh TSLM-nya yang sempit. Sewajarnya, 
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TSLM yang sempit membantu meningkatkan muatan penjerapan, tetapi TSLM yang 

tersangat sempit turut meningkatkan jumlah gas yang tertahan. 

 

Beberapa komponen tunggal isterma telah digunakan untuk pemadanan eksperimen 

yang tersesuai  bagi data penjerapan isoterma. Kesemua penjerapan isoterma model 

menunjukan pemadanan yang bagus terhadap data eksperimen. Bagaimanapun, 

isoterma model Langmuir telah dipilih untuk digunakan di dalam model dinamik 

untuk menghadkan beban pengiraan yang telah pun berat daripada menjadi tidak 

realistik. 

 

Data eksperimen yang diperolehi daripada simpanan dan ujian serahan telah 

dibandingkan dengan data daripada proses simulasi menggunakan model dinamik. 

Model simulasi telah dijalankan dengan menggunakan data keseimbangan sebagai 

parameter input. Persetujuan yang baik telah diperhatikan di antara keputusan 

eksperimen dan simulasi. Sejarah tekanan dan suhu adalah seperti yang diramalkan. 
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