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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment       
                           of the requirement for the degree of Master of Science 

 
SIMULATION OF LIQUID-LIQUID DISPERSED FLOW IN                  

HORIZONTAL PIPE USING COMPUTATIONAL FLUID DYNAMICS 
 

By 

RASHMI G WALVEKAR 

February 2007 
 

Chairman : Siti Aslina Hussain, PhD 

Faculty : Engineering 

 

Liquid-liquid dispersed flows are commonly encountered in many of the industrial 

applications such as polymerization, emulsification, batch and continuous stirred 

reactors and pipeline flows such as in petroleum industries. Liquid-liquid two phase 

flows are very complex due to the existence of several flow patterns and mechanisms. 

Numerical approaches offer the flexibility to construct computational models which 

can adapt large variety of physical conditions without constructing large scale 

prototypes.  

 

The present work focuses on predicting the phase hold-up across a pipe cross-section 

and ambivalence range for phase inversion phenomena at different mixture velocity 

and range of input water fraction. The Computational Fluid Dynamics (CFD) 

computations were carried using FLUENT 6.2.16 while the geometry was created in 

pre-processor, GAMBIT 2.2.3. Dispersed phase dynamics and the turbulent 

continuous phase are modeled using an Eulerian-Eulerian approach and standard 

ε−k  turbulence model. To check the reliability of the CFD code, the predicted 
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results were validated with experimental results of previous work at different mixture 

velocities and phase fractions. 

 

CFD predicted the flow phenomenon such as phase transition from water-in-oil 

dispersion to oil-in-water dispersion and flow development along the length of the 

pipe. CFD code also predicted the phase hold-up distributions at pipe cross section. 

The pressure gradient trends similar to those observed in previous experimental 

results were obtained using CFD code. The phase inversion point obtained was within 

the ambivalence range suggested in literature. The numerical CFD simulations also 

confirmed that interphase drag, lift and turbulent dispersion forces has significant 

influence on spatial phase distribution. CFD simulations so obtained were 

subsequently compared with experimental results from previous researchers and 

correlation featuring range of mixture velocities and phase inputs. The predicted hold-

up profiles were in good agreement with the previous experimental results for high 

mixture velocities and were in reasonable agreement with those of lower mixture 

velocity. Overall good qualitative agreement was achieved between physical model 

and simulated results.  
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SIMULASI ALIRAN SERAKAN BENDALIR DIDALAM PAIP MENDATAR 
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RASHMI G WALVEKAR 

Februari 2007 
 

Pengerusi : Siti Aslina Hussain, PhD 

Fakulti : Kejuruteraan 

 

Kebanyakan aliran tersebar pelbagai cecair boleh ditemui dalam pelbagai aplikasi 

industri seperti pempolimeran, pengemulsifikasian, reaktor teraduk aliran kelompok 

dan aliran terus serta aliran dalam paip yang biasanya ditemui dalam industri 

petroleum.  Sistem aliran cecair dua fasa adalah sangat rumit disebabkan kewujudan 

pelbagai corak aliran dan mekanisme.  Pendekatan secara numerikal menawarkan 

fleksibiliti untuk membina model pengiraan yang berpadanan dengan pelbagai 

keadaan  fizikal tanpa keperluan untuk membina prototaip yang sebenar. 

 

Kajian ini tertumpu kepada pengramalan isi tertahan fasa yang berlaku pada keratan 

rentas paip dan julat ambivalens untuk fenomena penyonsangan fasa pada halaju 

bancuhan serta julat masukan pecahan air yang berlainan.  Komputasi CFD dilakukan 

menggunakan FLUENT 6.2.16 manakala geometri dihasilkan menggunakan 

GAMBIT 2.2.3.  Dinamik fasa sebaran dan fasa pengeloraan berterusan diselesaikan 

menggunakan model Eulirian-Eulerian dan model pengeloraan piawaian, ε−k .  
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Untuk menentusahkan kebolehpercayaan kod CFD, keputusan pengramalan telahpun 

dibandingkan dengan keputusan eksperimen daripada kerja-kerja terdahulu. 

 

CFD meramalkan fenomena pengaliran seperti peralihan fasa dari penyebaran air-

dalam-minyak kepada minyak-dalam air dan perkembangan aliran sepanjang paip.  

Kod CFD juga meramalkan pengagihan isi tertahan fasa pada keratan rentas paip dan 

memberikan trend kecerunan tekanan yang serupa dengan yang diperhatikan dalam 

kerja-kerja eksperimen terdahulu.  Titik penyongsangan fasa yang diramalkan juga 

didapati berada dalam julat ambivalens yang dicadangkan oleh bahan rujukan.  

Simulasi numerikal CFD juga menentusahkan seretan antara fasa, apungan dan daya 

penyebaran pergolakan mempengaruhi ruangan taburan fasa.  Simulasi CFD juga 

dibandingkan dengan keputusan eksperimen daripada penyelidik-penyelidik terdahulu 

dan korelasi pada halaju adukan dan input fasa yang berlainan.  Pengramalan ke atas 

profil isi tertahan adalah berserasi dengan keputusan eksperimen yang dijalankan pada 

halaju adukan tinggi dan agak berserasi dengan yang dijalankan pada halaju adukan 

rendah.  Secara keseluruhan, keserasian kualitatif yang tinggi wujud antara model 

fizikal dan keputusan simulasi. 
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