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JOINT MODELLING OF LONGITUDINAL AND SURVIVAL DATA IN 
PRESENCE OF CURE FRACTION WITH APPLICATION TO CANCER 

PATIENTS’ DATA 

 
By 

 
KHALID ALI SALAH 

 
 

April 2008 
 
Chairman:  Associate Professor Mohd Rizam Abu Bakar, PhD 

Faculty     :   Science 

Analyses involving longitudinal and time-to-event data are quite common in 

medical research. The primary goal of such studies to simultaneously study the 

effect of treatment on both the longitudinal covariate and survival.  Often in medical 

research, there are settings in which it is meaningful to consider the existence of a 

fraction of individuals who have little to no risk of experiencing the event of 

interest.  In this thesis, we focus on such settings with two different data structures. 

In early part of the thesis, we focus on the use of a cured fraction survival models 

performed in a population-based cancer registries. The limitations of statistical 

models which embodied the concept of a cured fraction of patients lack flexibility 

for modelling the survival distribution of the uncured group; lead to a not good fit 

when the survival drops rapidly soon after diagnosis and also when the survival is 

too high. In this study, a cure mixture model is enhanced by developing a dynamic 

semi-parametric exponential function with a smoothing parameter. 
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The latter (major) part of the thesis focuses on modelling the longitudinal and the 

survival data in presence of cure fraction jointly.  When there are cured patients in 

the population, the existing methods of joint models would be inappropriate, since 

they do not account for the plateau in the survival function. We introduce a new 

class of joint models in presence of cure fraction. In this joint model, the 

longitudinal  submodel  is a combination of a random mixed effect model and a 

stochastic process. A semi-parametric submodel is also proposed to incorporate the 

true longitudinal trajectories and other baseline time (dependent or independent) 

covariates. This model accounts for the possibility that a subject is cured, for the 

unique nature of the longitudinal data, and is capable to accommodating both zero 

and nonzero cure fractions. We generalize the two submodels to be 

multidimensional to investigate the relationship between the multivariate 

longitudinal and survival data. 

Bayesian approach was applied to the data using a conjugate  and non-conjugate 

prior families to obtain parameter estimates for the proposed models. Gibbs 

sampling scheme is modified for fitting the joint model. Metropolis Hasting and 

Adaptive Rejection Sampling steps are used to update the Markov chain to estimate 

parameter whose full conditional densities can not be sampled efficiently from the 

existing methods, leading us to propose efficient proposal densities. 

The simulation studies demonstrate that the joint modelling method results in 

efficient estimates and good coverage for the population parameters. The analysis of 

cancer patient’s data indicates that when ignoring the association between the 

longitudinal and the survival data would lead to biased estimates for the most 

important parameters. 
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Analisis melibatkan data longitudinal dan masa sehingga suatu peristiwa berlaku 

merupakan analisis yang biasa dilaksanakan dalam penyelidikan perubatan. Dalam 

penyelidikan perubatan terutamanya dalam sesetengah keadaan, kesan rawatan ke 

atas kovariat longitudinal dan mandirian adalah lebih bermakna jika 

dipertimbangkan kewujudan pecahan individu yang sedikit dan tidak berisiko 

terhadap peristiwa yang menjadi tumpuan. Dalam tesis ini, fokus adalah kepada 

keadaan yang sedemikian dengan melibatkan dua struktur data yang berbeza. 

Dalam bahagian awal tesis, fokus adalah terhadap penggunaan model mandirian 

pecahan sembuh ke atas populasi kanser yang berdaftar. Kekangan bagi model 

statistik yang mengambilkira konsep pecahan sembuh pesakit adalah ianya tidak 

begitu anjal untuk memodelkan taburan mandirian bagi kumpulan yang tidak 

sembuh, justeru mengakibatkan ketidakbagusan penyesuaian apabila mandirian 

menurun secara mendadak selepas diagnosa dan jika mandirian terlalu tinggi. Dalam 
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kajian ini, model campuran sembuh diperkasakan dengan membangunkan fungsi 

dinamik separa parametrik eksponen dengan parametrik pelicin. 

Dalam bahagian kemudiannya (utama), tesis ini memfokus kepada pemodelan 

tercantum data longitudinal dan mandirian dengan kehadiran pecahan sembuh. 

Apabila terdapatnya pesakit yang sembuh dalam populasi, keadaan model tercantum 

yang sedia ada tidak bersesuaian disebabkan ianya tidak mengambilkira bahagian 

mendatar dalam fungsi mandirian. Oleh itu, kami memperkenalkan suatu kelas 

model tercantum yang baharu dengan kehadiran pecahan sembuh. Dalam model 

tercantum ini, submodel longitudinal merupakan kombinasi model rawak kesan 

bercampur dan proses stokastik. Submodel separa parametrik disarankan juga 

mengambilkira trakjetori longitudinal yang sebenar dan kovariat (bersandar atau 

merdeka) berdasar masa yang lain. Model ini mengambilkira kemungkinan yang 

subjek akan sembuh, merupakan keunikan data longitudinal dan berupaya 

menangani pecahan sembuh sifar dan bukan sifar. Seterusnya kami mengitlak dua 

submodel ini menjadi multidimensi untuk menyelidik hubungan di antara 

longitudinal multivariat dan data mandirian.  

Pendekatan Bayesian dilaksanakan kepada data menggunakan famili prior konjugat 

dan bukan konjugat untuk memperolehi anggaran parameter bagi model yang 

dicadangkan. Skema pensampelan Gibbs diubahsuai untuk penyesuaian model 

tercantum. Langkah pensampelan penolakan penyesuaian dan Hasting Metropolis 

digunakan untuk mengemaskini rantaian Markov bagi menganggar parameter yang 

ketumpatan bersyarat penuh tidak boleh dicerap secara berkesan menggunakan 
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kaedah yang sedia ada. Ini menyebabkan kami usulkan cadangan ketumpatan 

efisien.  

Kajian simulasi menunjukkkan keputusan kaedah pemodelan tercantum memberikan 

anggaran yang lebih efisien dan libutan yang baik bagi parameter populasi. Analisis 

data pesakit kanser menunjukkan jika diabaikan hubungan di antara cirian 

longitudinal dan data mandirian, ianya akan menghasilkan anggaran yang pincang 

bagi kebanyakan parameter yang penting. 
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Often in applied statistics, after some empirical data have been collected, the purpose

of the analysis is to construct a statistical model. Otherwise; said, we are interested in

situations where the aim is to explain how an outcome, or response, variable of particular

interest is related to a set of explanatory variables, or covariates.

Longitudinal data is, data in the form of repeated measurements on the same unit over

time. Data are routinely collected in this fashion in a broad range of applications,

including agriculture and the life sciences, medical and public health research, and

physical science and engineering. For example, in a medical study, the antibody immune

measures IgG and IgM may be taken at weekly or monthly intervals on patients with

cancer vaccine. The main reason and advantage of longitudinal analysis is to study the

change over time. That is also how longitudinal analysis differs from repeated measures

analysis. In longitudinal analysis, we model both the dependence of the response on the

covariates and the associations among responses. Longitudinal study has the ability to

distinguish the variation in the outcomes across time for an individual from the ones

among the population. To model the random variability in the longitudinal models

with continuous outcomes, Diggle et al. (1994) distinguish among three components of

variability: random effects, serial association and measurement errors.

In many studies, multivariate outcomes are observed and hence multivariate longitudinal

models are necessary. Many studies have discrete outcome variables which renders tra-

1



ditional likelihood-based methods that require the multivariate normality assumptions

and cumbersome with time-varying covariates inapplicable. Three modern analysis ap-

proaches have been developed over the years for the analysis of longitudinal repeated

measures study with discrete outcome variables. They are the marginal model, the

nonlinear mixed effect model, and the transition model.

The scientific questions of interest often involve not only the usual kinds of questions,

such as how the mean response differs across treatments, but also how the change in

mean response over time differs and other issues concerning the relationship between

response and time. Thus, it is necessary to represent the situation in terms of a sta-

tistical model that acknowledges the way in which the data were collected in order to

address these questions. Complementing the models, specialized methods of analysis

are required. For example, longitudinal data modelling is essential to describe both

trend and variation for biological processes, such as growth curves, effects over time

of medical intervention on physiological characteristics, monitoring human exposure to

carcinogens, and so forth.

A promising approach for longitudinal data analysis is to treat their pathways as real-

izations of a smooth stochastic process, see, e.g., Ramsay and Silverman (2005). This

idea originated when researches wanted to describe the effects of certain treatments on

a response trajectory and naturally progressed to the modelling of random curves in-

cluding models for the effects of treatments and covariates on multivariate longitudinal

observations.

In this thesis, we describe an approach for capturing the correlation structure between

multivariate longitudinal responses, leading to the notion of dynamical correlation to

2




