

UNIVERSITI PUTRA MALAYSIA

MAPPING THE CENTRAL MATANG MANGROVE FOREST RESERVE, PERAK, USING REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEM

AZIAN BINTI MOHTI

FH 2006 7

MAPPING THE CENTRAL MATANG MANGROVE FOREST RESERVE, PERAK, USING REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEM

By

AZIAN BINTI MOHTI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Master of Science

April 2006

DEDICATION

Wish to thank ALLAH the Almighty for his wisdom, guidance and strength in completing this Master

Dedicated to my daughter FIEFA my family members; MAK, ABAH, LAN, YAYA, AAH, IZAM, K.CHIK, UDIN, IETA, ENGKUK, arwah ADIK DULLAH and also IEMA last but not least ABANG... for their love, continuous moral support and encouragement.

"I'm the winner after going through the bad and good time within 7 years..."

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement of the degree of Master of Science.

MAPPING THE CENTRAL MATANG MANGROVE FOREST RESERVE, PERAK, USING REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEM

By

AZIAN BINTI MOHTI

April 2006

Chairman : Ismail Adnan Abdul Malek, M.F.

Faculty : Forestry

Mangroves are characterized by littoral forest formation occurring in all estuaries of the Peninsular Malaysia. It plays an important role to protect the shoreline along the coast. In Malaysia, although mangroves are well managed especially in Perak, Johor and Selangor but the integration of remote sensing with geographic information system (GIS) for mapping and managing mangrove forest is not widely practiced. The purpose of this study is to use remote sensing technique using SPOT and IKONOS data integrated with GIS for mapping the extent of mangrove forest in central part of MMFR and for quantifying temporal changes in stand density and areal extent within the MMFR from year 1989 – 2000.

A study in mapping the mangrove forest using remote sensing integration with GIS was carried out in central part of Matang Mangrove Forest Reserve (MMFR) in the Range Kuala Trong, Perak. The study area faces the Straits of Malacca lying between latitudes 4°38′N to 4°49′N and longitudes 100°20′E to 100°36′E, where the classification of mangrove forest areas was carried out and recorded.

Multispectral SPOT (Systeme Pour'l Observation de la Terre) images of 1989, 1993, 1997 and 2000 and IKONOS image of 2000 for Kuala Trong areas (based on AOI) were enhanced, classified and vectorized using image processing software for the purpose of mapping the mangrove forest. Spatial data for the mangrove forests such as information of compartments, blocks, names of area digitized by the Forestry Department (Mapping and GIS Section) using ARC/INFO Version 3.4.2 Geographic Information System (GIS) software were used as secondary data in the study.

Based on the image analysis of the SPOT images, the mangrove forest reserves were classified as Excellent Forest Reserve, Good Forest Reserve, Poor Forest Reserve, Dryland Forest Reserve and Damaged Forest Reserve. These five classes of mangrove forests, can be further categorised as Productive and Non-productive area. The analysis showed that the average volumes of timber available within the productive areas of the study site were Excellent Forest (362.50m³/ha - 50.82%); Good Forest (256.31m³/ha -

5.93%) and Poor Forest (94.54m³/ha - 13.25%) with an overall classification accuracy of more than 70% while the statistics value obtained from Kappa's was shown more than 0.6 which is relatively quite good results for image processing.

It can be concluded that the satellite remote sensing with the integration of GIS can be successfully used and implemented for mangrove classification and mapping for the advance purposes of providing fast, efficient and accurate information on the mangrove resource.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMETAAN BAHAGIAN TENGAH HUTAN SIMPAN PAYA BAKAU MATANG, PERAK, MENGGUNAKAN PENDERIAAN JAUH (RS) DAN SISTEM MAKLUMAT GEOGRAFI (GIS)

Oleh

AZIAN BINTI MOHTI

April 2006

Pengerusi : Ismail Adnan Abdul Malek, M.F.

Fakulti : Perhutanan

Di Semenanjung Malaysia bakau mempunyai karektor untuk hidup subur di sepanjang muara sungai. Bakau penting untuk melindungi kawasan tebing laut. Walaupun hutan bakau diuruskan dengan baik di Malaysia terutama di negeri Perak, Johor dan Selangor tetapi, integrasi teknololgi penderiaan jauh dengan sistem maklumat geografi untuk pemetaan dan pengurusan hutan paya bakau merupakan satu fenomena baru. Kajian berkenaan pemetaan dan pengurusan hutan paya bakau menggunakan penderiaan jauh dengan GIS dilakukan di bahagian tengah Hutan Simpan Paya Bakau (HSPB) iaitu kawasan Kuala Trong, Perak. Kawasan kajian ini mengadap Selat Melaka dengan latitud di antara 4°38′U hingga 4°49′U dan longitud di antara 100°20′T hingga 100°36′T.

Imej satelit SPOT tahun 1989, 1993, 1997 dan tahun 2000 serta imej satelit IKONOS tahun 2000 bagi kawasan Kuala Trong (hanya mengambil kira kawasan kajian) telah dipertingkatkan, dikelaskan dan divektorkan menggunakan perisian yang dikhaskanuntuk pemprosesan imej bagi pemetaan hutan paya bakau ini. Data spasial untuk kawasan hutan paya bakau seperti maklumat kompartmen, blok, nama, kawasan dan sebagainya lagi telah juga digunakan. Maklumat ini telah ditukarkan dalam format digital oleh Jabatan Perhutanan (Bahagian Pemetaan dan GIS) menggunakan perisian Sistem Maklumat Geografi (GIS) ARC/INFO versi 3.4.2 dan digunakan sebagai data sekunder dalam kajian ini.

Berdasarkan analisis yang telah dijalankan pada data SPOT, lima kelas hutan paya bakau dapat dikelaskan iaitu Hutan Paling Bagus, Hutan Bagus, Hutan Miskin, Hutan Darat dan Hutan Rosak. Seterusnya daripada lima kelas hutan paya bakau ini, dua daripadanya dapat dinyatakan iaitu kawasan yang Produktif dan kawasan yang Tidak Produktif. Analisis purata isipadu kayu balak telah dapat mengenal pasti bagi kawasan produktif di dalam kawasan kajian yang mana Hutan Paling Bagus ialah 362.50m³/ha meliputi 50.82%, Hutan Bagus 256.31m³/ha meliputi 35.93% dan Hutan Miskin 94.54m³/ha meliputi 13.25%. Ketepatan pengkelasan keseluruhan kawasan menggunakan kaedah penderiaan jauh melebihi 70%. Manakala nilai statistic yang diperolehi daripada Kappa pula melebihi 0.6. Ini jelas menunjukkan keputusan ini adalah baik bagi pengelasan imej.

Kesimpulannya, satelit penderiaan jarak jauh (RS) dengan integrasi Sistem Maklumat Geografi (GIS) boleh digunakan atau dilaksanakan dengan jayanya untuk pengkelasan hutan paya bakau dan pemetaan bagi tujuan selanjutnya supaya maklumat dapat disampaikan dengan cepat, efisen dan infomasi yang lebih tepat.

ACKNOWLEDGEMENTS

Alhamdulillah, Praise be to Allah Almighty for His blessing that I could complete this thesis. I would like to express my deepest appreciation to my Supervisor, En. Ismail Adnan Abd Malek for his guidance, expertise and meticulous editing towards successful completion of this study. I would also like extend my gratitude to my co-supervisor, Prof. Dr. Hj. Mazlan Hashim of Universiti Teknologi Malaysia, Dr. Ahmad Ainuddin Nuruddin and Prof. Dato' Dr. Hj. Nik Muhammad Majid for their advice on gaining leadership, communication and dynamic research skills to complete this work. I would like to thank my ex-Supervisor Capt. Prof. Dr. Kamaruzaman Jusoff in providing me the invaluable suggestions and comments towards the completion of this study.

Special appreciation to the Forestry Department of Peninsular Malaysia Headquarters especially The Mapping and GIS Section, Malaysian Centre for Remote Sensing (MACRES) for kindly allowing the use of digital and spatial data for this study, to the Department of Forestry, Perak Darul Ridzuan especially En. Azni Rahman (ADFO) and Tn. Hj. Mohamad Ismail (DFO) of the Taiping District Forestry Department for their kindness in giving useful information and data for this study. My thanks also go to all staff of Range Kuala Trong, Sungai Kerang and Kuala Sepetang especially Pakcik Raja Shahar, Pakcik Abu Bakar, Pakcik Hadri, Pakcik Ahmad

Mashhor, En. Zaidi, En. Isa, En. Fauzi, En. Kamaruddin, Miss A'ah and others for their kindness and technical assistance during field survey and data collection. Thank you very much to all.

Finally, my loving thanks to my beloved 'cute' baby girl, family and my very good friend (A.R.A) who have been patient and faithfully praying for my success. Not to be forgotten are my friends; Iwan, Madi, Pak Tamal, Fandi, Elia, Harzany, Sheriza, Khor, Fairuz, Kamarul, Teacher Khazila, members of Forest Research Institute of Malaysia (FRIM) and last but not least Zul as well others for their moral support and help in this study.

I certify that an Examination Committee has met on 5th April 2006 to conduct the final examination of Azian Binti Mohti on his Master of Science thesis entitled "Mapping The Central Matang Mangrove Forest Reserve, Perak, using Remote Sensing and Geographic Information System" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommended that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Shattri Bin Mansor, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Helmi Zulhaidi Bin Mohd Shafri, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Anuar Bin Abdul Rahim, PhD

Lecturer Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Sulong Bin Ibrahim, M.Sc.

Lecturer Institute of Oceanography Kolej Universiti Sains & Teknologi Malaysia (KUSTEM) (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

:

Date

This thesis submitted to the Senate of Universiti Putra Malaysia and has accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Ismail Adnan Bin Abdul Malek, M.F.

Lecturer Faculty of Forestry Universiti Putra Malaysia (Chairman)

Mazlan Bin Hashim, PhD

Professor Faculty of Geoinformation Science and Engineering Universiti Teknologi Malaysia (Member)

Ahmad Ainuddin Bin Nuruddin, PhD

Lecturer Faculty of Forestry Universiti Putra Malaysia (Member)

Dato' Nik Muhammad Bin Nik Abd. Majid, PhD

Professor Faculty of Forestry Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date :

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AZIAN BINTI MOHTI

Date :

TABLE OF CONTENTS

APPROV DECLAR LIST OF LIST OF	CT K WLEDGEMENTS AL ATION TABLES FIGURES RY OF TERMS	Page ii vi ix xi xii xvi xvi xvii xix
I	INTRODUCTION	
-	General Background	1
	Justification	5
	Objectives of Study	8
II	LITERATURE REVIEW	
	Scenario of Mangrove Forest in Malaysia	9
	Definition of Satellite Remote Sensing	14
	SPOT Satellite System	16
	IKONOS Satellite System	21
	Geographic Information System (GIS)	24
	Mapping and Managing Mangrove	29
	Application / Integration of Remote Sensing with GIS to	37
	Assist Mangrove Mapping	
III	MATERIALS AND METHODS	
	Description of Study Area	44
	Topography, Soil and Climate	46
	Forest Description and Vegetation	47
	Materials and Equipment	49
	Data Acquisition	49
	Image Processing System	51 52
	Components and Techniques of GIS	52 54
	Methodology Digital Image Processing and Visual Interpretation	54 58
	Pre-Processing	59
	Masking	61
	Image Enhancement	64
	0	

	Image Classification	66		
Ground Verification				
Survey Design for Ground Truthing				
Accuracy Assessment				
	Raster to Vector Conversion			
	Data Analysis for Mangrove Volume Estimation			
	Development of MMFR Geographic Information	78		
	Systems	70		
	MMFR Database Design	78		
	Data Integration of Remote Sensing and	80		
	Geographic Information System			
IV	RESULTS AND DISCUSSION			
Mangrove Classification				
	Mangrove Classification Ground Truthing			
	Accuracy Assessment			
	Raster to Vector Conversion			
	Mangrove Mapping			
	Temporal Changes in Stand Density and Areal Extent			
	from 1989 - 2000			
v	CONCLUSIONS AND RECOMMENDATIONS			
-	Conclusions	120		
	Recommendations	122		
REFEREN	JCFS	124		
	APPENDICES			
	APPENDICES BIODATA OF THE AUTHOR			

LIST OF TABLES

Table		Page
1	Extent of mangrove forest reserves and state land mangroves in Malaysia (2003)	11
2	Area of mangrove forest reserves in Malaysia 1980 and 1990	11
3	Differences between SPOT and IKONOS satellite and sensor characteristics	23
4	Summaries of IKONOS products	24
5	List of major trees, palms, rattan and ferns in Range Kuala Trong	48
6	12 clusters of Unsupervised Classification for 1989 SPOT image	85
7	Seven clusters of Unsupervised Classification for 1993 SPOT image	86
8	11 clusters of Unsupervised Classification for 1997 SPOT image	87
9	12 clusters of Unsupervised Classification for 2000 SPOT image	88
10	12 clusters of Unsupervised Classification for 2000 IKONOS image	89
11	Statistical results of six classes by MLC of SPOT images for year 1989	92
12	Statistical results of six classes by MLC of SPOT images for year 1993	93
13	Statistical results of six classes by MLC of SPOT images for year 1997	94
14	Statistical results of six classes by MLC of SPOT images for year 2000	95

15	Statistical results of six classes by MLC of IKONOS images	96
16	Summary results of ground truthing	99
17	Accuracy total for SPOT 1989	105
18	Accuracy total for SPOT 1993	106
19	Accuracy total for SPOT 1997	106
20	Accuracy total for SPOT 2000	106
21	Accuracy total for IKONOS	107
22	Summary of change detection results between 10 years in Kuala Trong, Perak	113
23	Summary of mangrove productive area in Kuala Trong	115
24	Summary of mangrove non - productive area in Kuala Trong	115
25	Average of mangrove productive volume (m ³ /ha)	116
26	The areal extent of mangroves areas based on 2000 database and years 1989 to 2000 images	118

LIST OF FIGURES

Figure		Page
1	Remote sensing process	15
2	Oblique viewing offers two key advantages	17
3	SPOT HRV imaging instruments	19
4	SPOT "XS" bands and typical spectral signatures	20
5	SPOT "Xi" bands and typical spectral signatures	20
6	The planning process of GIS	29
7	A map of Peninsular Malaysia showing the location of the study area	45
8	A flow diagram of Remote Sensing and Geographic Information System methodology	55
9	The method flowchart of the image processing for SPOT images	56
10	The method flowchart of the image processing for IKONOS image	57
11	The ground survey team for field verification	72
12	Sample of field survey design	73
13	The method flowchart of the MMFR GIS processing	79
14	Flow of Remote Sensing and GIS integration processes	82
15	12 clusters of Unsupervised Classification on SPOT image for year 1989	85
16	Seven clusters of Unsupervised Classification on SPOT image for year 1993	86

17	11 clusters of Unsupervised Classification on SPOT image for year 1987	87
18	12 clusters of Unsupervised Classification on SPOT image for year 2000	88
19	12 clusters of Unsupervised Classification on IKONOS image for year 2000	89
20	Seven clusters of Supervised Classification on SPOT image for year 1989	92
21	Six clusters of Supervised Classification on SPOT image for year 1993	93
22	Six clusters of Supervised Classification on SPOT image for year 1997	94
23	Seven clusters of Supervised Classification on SPOT image for year 2000	95
24	Seven clusters of Supervised Classification on IKONOS image for year 2000	96
25	Location of training sites	97
26	A segment of Excellent Forest Reserve	101
27	A segment of Good Forest Reserve	101
28	A segment of Poor Forest Reserve	102
29	A segment of Damaged Forest Reserve	102
30	A segment of Dryland Forest Reserve	103
31	Vectorization of 1989 Supervised Classified image	108
32	Vectorization of 1993 Supervised Classified image	109
33	Vectorization of 1997 Supervised Classified image	110
34	Vectorization of 2000 Supervised Classified image	111

35	The average productive volume (m ³ /ha) of mangrove	117
36	The changes of mangrove areas from year 1989 to 2000	118
37	The extent of mangrove areas based on database and images in the study	119

GLOSSARY OF TERMS

AOI	Area of Interest	
CASI	Compact Airborne Spectrographic Imager	
CCRS	Canada Centre for Remote Sensing	
CD	Compact Disk	
CD-ROM	Compact Disk - Read Only Memory	
CNES	Centre National d'Etudes Spatiales	
DEMs	Digital Elevation Models	
DN	Digital Number	
ENVI	Environmental for Visualizing Images	
ESRI	Environmental Systems Research Institute	
etc	et cetera	
FAO	Food and Agricultural Organization	
FCC	False colour composite	
F.D.(MGS)	Forestry Department (Mapping and GIS Section)	
GCPs	Ground Control Points	
GIS	Geographic Information Systems	
GPS	Global Positioning Systems	
HRV	High Resolution Visible	
IFOV	Instantaneous Field of View	

IRS	Indian Remote Sensing	
ITTO	International Tropical Timber Organization	
LiDAR	Light Detection and Ranging	
LISS	Linear Imaging Self-scanning Sensor	
LUT	Look Up Table	
MACRES	Malaysian Centre for Remote Sensing	
MLC	Maximum Likelihood Classifier	
MMFR	Matang Mangrove Forest Reserve	
NDVI	Normalized Difference Vegetation Index	
NIR	Near Infrared	
PFE	Permanent Forest Estate	
pixel	picture elements	
R-G-B	Red - Green - Blue	
r.m.s	root mean square	
RSO	Rectified Skew Orthomorphic Projection	
ROI	Region of Interest	
SPOT	Systeme Pour'l Observation de la Terre	
TM	Thematic Mapper	
USGS	United State Geological Survey	
UPM	Universiti Putra Malaysia	
UTM	Universal Transverse Mercator	

www	world wide web
	morra mac mee

- XP/P Panchromatic mode
- XS/Xi Multispectral mode

CHAPTER I

INTRODUCTION

General Background

Mangrove forests form an integral component of the dynamic homeostatic coastal ecosystem. They are also termed as "Coastal Woodlands" or "Tidal Forest" mangroves (Kumari *et al.*, 1999), which are composed of salt tolerant, inter tidal halophytic vegetation forming a locale specific unique community with specific ecological amplitude. Mangroves are an integral part of the coastal environment extending throughout the tropics and sub-tropics of the world. It covers an area of one third of the world's total in South East Asia (Rao, 1992), and is considered rich in species diversity and luxuriant in growth (FAO, 1984).

Mangrove forests occur in the intertidal zone along the seacoast in most of the tropical and sub-tropical region (Arksornkoae, 1995). Although mangrove forests have multiple functions (such as human settlement, transportation and resource utilization) their occurrences are frequently regarded as wasteland having low economic value. Even if they are productive, there is a general early perception that mangroves are of lower value and their contribution to the adjacent ecosystem is not clear (Ong, 1984). Consequently, as human population increases and urbanization accelerates, mangrove land and resources are often converted to other uses.

