

UNIVERSITI PUTRA MALAYSIA

THE GENETIC RELATIONSHIP BETWEEN THREE TRICHODERMA SPECIES AND INHIBITORY EFFECTS OF T. HARZIANUM (RIFAI) ON GANODERMA BONINENSE

MD. SHAFIQUZZAMAN SIDDIQUEE

FS 2007 48

THE GENETIC RELATIONSHIP BETWEEN THREE TRICHODERMA SPECIES AND INHIBITORY EFFECTS OF T. HARZIANUM (RIFAI) ON GANODERMA BONINENSE

MD. SHAFIQUZZAMAN SIDDIQUEE

MASTER OF SCIENCE

UNIVERSITI PUTRA MALAYSIA

2007

THE GENETIC RELATIONSHIP BETWEEN THREE TRICHODERMA SPECIES AND INHIBITORY EFFECTS OF T. HARZIANUM (RIFAI) ON GANODERMA BONINENSE

By

MD. SHAFIQUZZAMAN SIDDIQUEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

November 2007

DEDICATIONS

Dedicated especially to my elder brother Mr. Md. Shamsuzzaman Siddiquee (Shahin), for his financial support, guidance and encouragement during the writing of this thesis and to my sister-in-law Ms. Jesmin Hossain and niece Samarah Siddiquee and all those individuals who behind the scenes make me possible to complete my study successfully.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

THE GENETIC RELATIONSHIP BETWEEN THREE TRICHODERMA SPECIES AND INHIBITORY EFFECTS OF T. HARZIANUM (RIFAI) ON GANODERMA BONINENSE

By

MD. SHAFIQUZZAMAN SIDDIQUEE

November 2007

Chairman: Professor Faridah Abdullah, PhD

Faculty: Science

Trichoderma is a genus of soil-borne fungus with abundant reports on its success as biological control agents of a variety of plant pathogens. Antagonistic assessment by dual culture technique showed that 18 out of 48 selected *T. harzianum* isolates successfully inhibited the mycelial growth of the pathogen *Ganoderma boninense* (isolate: PER71) at 47.86 to 72.06% with the strongest inhibitor exhibited by strain FA30. Eight samples produced effective volatile antifungal compounds which suppressed the growth of PER71 at 24.528 to 58.70 % over 6 days. When the 10 samples were assayed for the production of non-volatile antifungal compounds, whereby showed the inhibitory effects of 18.35 to 40.16% over 6 days. Strain FA30 was the best inhibitor isolate not only by dual culture inhibition technique, but was also the best producer of volatile and non-voltile inhibitor compounds, at 58.70 and 40.16% respectively.

The identifications of species of *Trichoderma* worldwide are currently deduced from micro-morphological descriptions which is tedious and prone to error. This study undertook a molecular approach, using isozyme electrophoresis, random amplified microsatellite (RAMS) analysis and gene sequence of the internal transcribed spacer-1 (ITS 1) region of the ribosomal DNA of selected *Trichoderma* isolates.

Electrophoretic variation of nine isozyme systems of 47 isolates from 3 species of *Trichoderma* namely, *T. harzianum*, *T. aureoviride* and *T. longibrachiatum* were studied. The UPGMA cluster analysis of the isozyme data showed the putatively identified *T. harzianum* to be distinctly separated from the outgroup sample of *T. longibrachiatum*, whereas *T. aureoviride* showed a closer genetic relationship to the *T. harzianum* populations. No distinct conclusion could be drawn from the dendrogram as the level of separation between *T. harzianum* and *T. aureoviride* and may not necessarily indicate a difference at the species level. A second molecular approach used was to extract DNA and characterise the sample for their Random Amplified Microsatelite DNA (RAMS) profile. The RAMS generated dendrogram showed that besides the distinct *T. longibrachiatum*, 2 other lineages were evident by UPGMA analysis. Again the level of taxonomic difference could not be determined. However, no clear separation was obtained by the dendrogram generated by the neighbor-joining (NJ).

The third approach was to putatively sequence the samples using the internal transcribed spacer 1 (ITS 1) region of the rDNA. The nucleotide sequences were multiple aligned and compared against the ex-type strains sequences from the NCBI and *Tricho*BLAST Genbank database. Results showed that 25 out of the 26 putatively identified *T*.

harzianum were in agreement with the genome of the *T. harzianum* ex-type strain while the single exception belonged to *T. virens* instead. The 9 putative *T. aureoviride* were misidentifications where 7 were *T. harzianum* and 2 were *T. virens* based on the Genbank database. The single strain of *T. longibrachiatum* (IMI: 375055) was in agreement with the ex-type strain. This study showed that conventional identification of *T. harzianum*, despite being done under the best possible care and condition, can still lead to incorrect identifications. Molecular studies by isozyme analysis did not give confident level of separation at the species level. The dendrogram based on UPGMA from RAMS analysis supported the ITS 1 gene sequence analysis but it could not confirm the specific species level. The ITS 1 region study showed that the gene sequences of *Trichoderma* samples were the most accurate technique for identification, with a bootstrap stability at 100% and a homology of 98-100%.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PERHUBUNGAN GENETIK ANTARA TIGA SPESIS *TRICHODERMA* DAN KESAN PERENCATAN *T. HARZIANUM* (RIFAI) TERHADAP *GANODERMA BONINENSE*

Oleh

MD. SHAFIQUZZAMAN SIDDIQUEE

November 2007

Pengerusi: Profesor Faridah Abdullah, PhD

Fakulti: Sains

Trichoderma adalah sejenis kulat yang hidup dan berasal dari tanah yang sehingga kini telah banyak dikaji dan dilaporkan mengenai kejayaannya sebagai agen kawalan biologi bagi berbagai kulat patogen tumbuhan. Teknik dual kultur telah menunjukkan 18 daripada 48 isolat *T. harzianum* berjaya menghalang pertumbuhan miselia patogen *Ganoderma boninense* (PER71) pada 47.86 hingga 72.06% dengan penghalangan tertinggi telah ditunjukkan oleh strain FA30. Lapan sampel telah menghasilkan sebatian volatil antikulat yang berkesan dalam menindas pertumbuhan patogen pada 24.528 hingga 58.70 % dalam tempoh masa enam hari. Apabila 10 sampel tersebut telah diuji untuk penghasilan sebatian bukan volatil antikulat, didapati semua strain menunjukkan kesan penghalang sebanyak 18.35% hingga 40.16% dalam masa 6 hari. Strain FA30 adalah isolat terbaik bukan sahaja bagi teknik dual kultur malahan terbaik bagi menghasilkan sebatian penghalang volatil dan bukan volatil, pada 58.70 and 40.16%.

Pengenalpastian spesies *Trichoderma* secara meluasnya pada masa ini ditentukan daripada deskripsi mikromorfologi agregrat spesis. Pada kebiasaannya, teknik ini rumit dan cenderung kepada ralat. Menenusi penyelidikan ini pendekatan molekular telah diambil, dengan menggunakan elektroforesis isozim, analisis 'random amplified microsatellite' (RAMS) dan pencirian gen daripada 'internal transcribed spacer-1' (ITS 1) region' daripada ribosomal DNA.

Variasi elektroforetik bagi sembilan sistem isozim telah dikaji pada 47 isolat daripada 3 spesies *Trichoderma*, iaitu *T. harzianum*, *T. aureoviride* dan *T. longibrachiatum*. Melalui penggunaan analisis kluster UPGMA, populasi *T. harzianum* dan *T. longibrachiatum* secara keseluruhannya dipisahkan antara satu sama lain, manakala *T. aureoviride* menunjukkan persamaan genetik yang rapat dengan populasi *T. harzianum*. Tiada kesimpulan yang tepat dapat dilakarkan daripada dendrogram kerana aras pemisahan mungkin tidak menunjukkan perbezaan spesies. Pendekatan molekular kedua, dengan ekstrak DNA dan analisis menggunakan 'Random Amplified Microsatelite DNA' (RAMS). Dendrogram dengan generat RAMS telah menunjukkan kumpulan *T. harzianum* dan luar kumpulannya adalah jelas terpisah antara satu sama lain tetapi tiada pemisahan yang jelas didapati melalui 'neighbor joining' (NJ).

Pendekatan ketiga pula menggunakan 'internal transcribed spacer 1' (ITS 1) region' daripada rDNA. Turutan nukleotida telah disusun secara rawak dan dibandingkan dengan susunan strain sebelumnya yang diperolehi daripada pangkalan data NCBI dan *Tricho*BLAST Genbank. Keputusan menunjukkan 25 daripada 26 sampel dikenalpasti putatif sebagai *T. harzianum* kerana mempunyai genom yang sama dengan strain *T*.

harzianum yang sebelumnya, manakala satu sampel lagi adalah *T. virens*. Sembilan sampel telah salah dikenalpastikan sebagai *T. aureoviride* kerana 7 daripadanya ialah *T. harzianum* dan 2 lagi ialah *T. virens* berdasarkan pangkalan data Genbank. Stren tunggal *T. longibrachiatum* (IMI: 375055) adalah sama dengan stren sebelumnya. Kajian ini menunjukkan bahawa walaupun cara tradisional mengenalpasti *T. harzianum* telah dilakukan dalam keadaan yang rapi, ia masih boleh membawa kepada pengenalpastian spesis yang salah. Menerusi kajian ini didapati teknik molekular seperti isozim tidak depat megnhasilkan pengasingan yang sempurna pada peringkat spesies. Dendrogram yang dihasilkan menerusi UPGMA bagi teknik analisis RAMS telah menyokong analisis turutan gen ITS 1, tetapi ia tidak dapat memberikan kepastian mengenai peringkat spesis.

Kajian ini menunjukkan pencirian gen sampel *Trichoderma* pada 'non-coding ITS 1 region' adalah teknik yang tepat untuk pengenalpastian dengan kestabilan 'bootstrap' pada 100% dan homologi sebanyak 98-100%.

ACKNOWLEDGEMENTS

My greatest and ultimate debt and gratitude to Allah (S.W. T) the Most Beneficent and the Most Merciful, may Allah pardon and forgive my weakness and endow me with knowledge and help.

I would like to express my sincere gratitude and thanks to my supervisor Professor Dr. Faridah Abdullah for her time, support, excellent supervision, valuable suggestions, encouragement and constructive criticisms throughout the study. And most of all, for giving me chance to improve myself to be a better person in an authentic life.

My sincere thanks go to Professor Dr. Tan Soon Guan for his valuable and positive advice on molecular studies and invaluable suggestions, especially facing any problems to carry on the study period. Dr. Subah Bhassu was thanked for her help and positive advice throughout isozyme study. I would like to thank especially Josephine for her help during isozyme and phylogenetic analysis.

I would also like to thank our lab mate Halim, Ida, Ita, Haffni, Laila and Nazif for their excellent behave and technical assistance. I also wish to express my appreciation to all my friends in Malaysia and Bangladesh. Especial thanks also go to Nurul Amin, Kabir, Shahana, Tabassum, Altab, Akhter, Altaf, Shahin and Ainey for their mental supports and encouragement during my study period. Parvez and Jakir were particularly thanked for their countless support and care.

I would like to acknowledge to the Ministry of Science, Technology and Innovation Malaysia (MOSTI) for support under the Intensified Research in Priority Areas (IRPA) grant which has financed this research under project no. 01-02-04-6020 EA001.

Last but not the least; I would like to thank my parents for their kind support, encouragement and nurturing a love of science at a young age, they gave me and raising me the way I am today, my sister, Nargis and Nasima, and my younger brother Shamim for all support, encourage and their love. Finally, I am most grateful to Emila Rohaza for her kindness, endless support, love, care, patience, sacrifices and understanding various ways.

I certified that an Examination Committee met on 9th November, 2007 to conduct the final examination of **Md. Shafiquzzaman Siddiquee** on his **Master's degree** entitle "**Molecular Evaluation of Selected** *Trichoderma harzianum* **Rifai Isolates and its Inhibitory Effects**" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the student be awarded the Master's degree.

Members of the Examination Committee were as follows:

Siti Khalijah Daud, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Radzali Muse, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Faridah Qamaruz Zaman, PhD

Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Siti Azizah Mohd Nor, PhD

Associate Professor School of Biological Sciences Universiti Sains Malaysia Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 December 2007

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Faridah Abdullah, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Tan Soon Guan, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 22 January 2008

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MD. SHAFIQUZZAMAN SIDDIQUEE

Date: 9 November 2007

TABLE OF CONTENTS

ABSTRACT ABSTRAK ACKNOWLEDGEMENTS APPROVAL DECLARATION LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS		Page iii vi ix xi xiii xvii xix xxvii
CHAPTER		
Ι	GENERAL INTRODUCTION	1
II	LITERATURE REVIEW	7
	The significance of <i>Trichoderma</i>	7
	Chronology of <i>Trichoderma</i> taxonomy	9
	Taxonomic problems of T. harzianum	18
	Biological control	20
	Biological control by Trichoderma harzianum	21
	Molecular characterization	23
	Isozyme profiles	24
	Polymerase chain reaction (PCR)	28
	Random amplified microsatellite (RAMS) DNA	29
	Internal transcribed spacer (ITS)	31
III	ISOLATION AND IN VITRO SCREENING FOR ANTAGONISTIC Trichoderma harzianum ISOLATES AGAINST Ganoderma boninense	34
	Introduction	34
	Materials and Methods	36
	Field sampling	36
	Isolation of <i>Trichoderma</i>	38
	Identification of Trichoderma	39
	Selection of T. harzianum isolates	39
	Source of PER71 (Ganoderma boninense)	40
	Dual culture technique	40
	Production of volatile compounds	44
	Production of antifungal non-volatile compounds	45
	Scoring for antagonistic activity	46
	Results	47
	Isolation on TSM	47
	Isolation and identification of Trichoderma	48
	Characteristics of T. harzianum	49
	PIRG and colony overgrowth assessment	50

	Inhibiting effects of volatile metabolites	51
	Inhibiting effects of non-volatile compounds	53
	Discussion	54
IV	ISOZYMES CHARACTERISATION OF THREE PUTATIVE <i>TRICHODERMA</i> SPECIES BY POLYACRYLAMIDE GEL ELECTROPHORESIS (PAGE)	59
	Introduction	59
	Materials and Methods	60
	Isolates of <i>Trichoderma</i> samples for electrophoresis	60
	Preparation of samples	61
	Extraction of enzyme	62
	Polyacrylamide gel	62
	Application of samples on polyacrylamide gel	63
	Running procedure for PAGE	64
	Isozyme staining	64 65
	Examination and storage of get	00 65
	Data analysis	66
	Dendrogram	67
	Results	68
	Isozyme banding pattern	68
	Loci and alleles scored	91
	Genetic variation within three species of	93
	Trichoderma	
	Fixation indices and outcrossing rates	94
	Genetic structure	94
	Gene flow	95
	Hardy-Weinberg equilibrium analysis of three <i>Trichoderma</i> species	95
	Analysis of population subdivision within three species of <i>Trichoderma</i>	96
	Genetic similarity	97
	Cluster analysis	97
	Discussion	101
V	MOLECULAR CHARACTERISATION OF THREE PUTATIVE <i>TRICHODERMA</i> SPECIES BY RANDOM AMPLIFIED MICROSATELLITES (RAMS) DNA	105
	Introduction	105
	Materials and Methods	107
	Trichoderma isolates	107
	Trichoderma culture	108
	Trichoderma liquid culture	108
	DNA extraction by the phenol-chloroform method	109

	DNA visualization by gel electrophoresis Selection of RAMS primers DNA amplification of RAMS RAMS-polymerase chain reaction (PCR) Gel electrophoresis by RAMS products Scoring and data analysis	111 111 112 113 113 114
	Results DNA visualisation Optimisation for RAMS analysis Random amplified microsatellites (RAMS) Similarity matrix and cluster analysis based on RAMS data	115 115 116 117 124
	Neighbor-joining (NJ) dendrogram by	124 127
	phylip	120
	Discussion	130
VI	GENE SEQUENCING OF <i>Trichoderma</i> ISOLATES BY THE INTERNAL TRANSCRIBED SPACER 1 (ITS 1) REGION OF THE RIBOSOMAL DNA	136
	Introduction	136
	Materials and Methods	138
	Trichoderma strains	138
	Samples preparation and DNA extraction	138
	PCR amplification of the ITS 1 region of rDNA	139
	DNA visualization by gel electrophoresis	139
	Purification of the PCR products	140
	DNA sequencing	141
	Multiple sequence alignment	141
	Phylogenetic analyses	144
	Results	144
	ITS 1 amplification	144
	Nucleotide sequence and alignment	146
	Phylogenetic analysis	146
	Discussion	149
VII	GENERAL DISCUSSION	151
VII	CONCLUSION	156
REFERENCES APPENDICES BIODATA OF S' LIST OF PUBLI	FUDENT CATIONS	157 180 194 195

LIST OF TABLES

Table		Page
1	Current status of <i>Trichoderma</i> and <i>Hypocrea</i> taxa, and their attribution to phylogenetic sections and clades	16
2	Putative T. harzianum samples selected for in vitro studies	39
3	Index score for growth of PER71 non-volatile compounds	47
4	Trichoderma isolate counts according to soil samples	48
5	List of putative <i>Trichoderma</i> species, their code numbers, references and localities	61
6	Isozyme systems and the electrode buffer systems used in this study	63
7	Summary of genetic variation for 13 loci from two <i>Trichoderma</i> populations and one outgroup sample populations	92
8	Allele frequency of polymorphic loci among three putative <i>Trichoderma</i> species	93
9	Summary of F-statistics and gene flow for all loci between three putative species of <i>Trichoderma</i> populations (Nei, 1978)	95
10	Ohta's two-locus analysis of each <i>Trichoderma</i> population subdivision	96
11	Genetic similarity (above diagonal) and genetic distance (below diagonal) between three putative species of <i>Trichoderma</i> based on Nei's (1972)	97
12	Distribution of <i>Trichoderma</i> in the UPGMA cluster analysis by isozyme analysis	100
13	List of putative <i>Trichoderma</i> species, code, reference and localities of oil palm plantations	108
14	The five primers used in the RAMS analysis and their sequences	112
15	The optimised conditions for RAMS analysis using 5 primers	116
16	The 5 oligonucleotide primers and the band characteristics of 42 <i>Trichoderma</i> isolates produced	117

17	Distribution of <i>Trichoderma</i> in the UPGMA cluster analysis by RAMS, where bold codes denoted <i>T. aureoviride</i>	127
18	Neighbor-joining (NJ) cluster analysis by RAMS, where bold codes denote <i>T. aureoviride</i> isolates	130
19	List of putative <i>Trichoderma</i> species, code, reference and localities	138
20	List of isolate code, species, GenBank accession number, strains reference and identity for <i>Trichoderma</i> spp., analyses in this study	143

LIST OF FIGURES

Figure		Page
1	Developments of <i>Trichoderma</i> spp. taxonomy before and after methods of molecular phylogenetics were introduced	10
2	Comparison of the classification of the genus <i>Trichoderma</i> according to isozyme and DNA data as carried out by Lieckfeldt <i>et al.</i> (1998) with morphologically based taxonomy proposed by Bissett (1984, 1991abc)	14
3	Schematic diagram representation of common gene arrangement with the rDNA.	32
4	Location of experimental site and its surroundings	37
5	Schematic diagrams showing measurements of radial growth of <i>G</i> . <i>boninense</i> mycelia	43
6	Diagrammatic representation of plate arrangements for the antifungal activity of volatile compounds from <i>T. harzianum</i> isolates on <i>G. boninense</i>	44
7	Diagrammatic representation of sequence of methods to assess growth inhibition of PER71 by non-volatile compounds produced by T . <i>harzianum</i> isolates	46
8	Five-day old culture showing Trichoderma CFU on TSM	49
9	Five-day old colony of <i>T. harzianum</i> onto PDA media (Left) and the reverse (Right)	49
10	Antagonistic effect of <i>T. harzianum</i> (FA30) against <i>G. boninense</i> (PER71) in dual culture technique after 9 days of inoculation showing overgrowth of <i>Trichoderma</i> over the <i>Ganoderma</i> colony	51
11	Mean \pm SD of PIRG and colony degradation period of PER71 in the presence of the 18 <i>T. harzianum</i> isolates based on the dual culture technique	51
12	PIRG (Mean \pm SD) of <i>G. boninense</i> mycelial inhibited by volatile compounds of <i>T. harzianum</i>	52
13	Left: Inhibited growth of PER71 on agar with volatile compounds at 6 days, Right: Uninhibited growth of PER71 on control plate at 6 days	52

- 14 53 PIRG (Mean \pm SD) of G. boninense colony inhibited by non-volatile compounds produced from 10 T. harzianum 15 Left: Inhibited growth of PER71 on agar with non-volatile compounds 54 at 6 days, Right: Uninhibited growth of PER71 on control plate at 6 days 16 α -EST banding patterns of putative *T. harzianum* isolates. Lanes left to 69 right: FA2, FA4, FA7, FA8, FA15, FA24, FA26, FA29, FA30, FA31, T32, FA34, FA35, FA36 and FA38 17 Schematic representation of α -EST electrophoretic phenotypes of 69 putative *T. harzianum* samples. Arrow indicates alleles of given locus 18 α -EST banding patterns of putative *T. aureoviride* isolates. Lanes left to 70 right: T29, T45, T49, T55, T58, T67, T86, T106, T126 and T127 19 Schematic representation of α -EST electrophoretic phenotypes of 70 putative *T. aureoviride* samples. Arrow indicates alleles of given locus 20 α -EST banding patterns of putative *T. longibrachiatum* isolates. Lanes 70 left to right: T28, T76, T82, T90, T91, T99, T118 and T120 21 Schematic representation of α -Est electrophoretic phenotypes of 71 putative T. longibrachiatum samples 22 MDH banding patterns of putative T. harzianum isolates. Lanes left to 72 right: FA2, FA4, FA7, FA8, FA15, FA24, FA26, FA29, FA30, FA31, T32, FA34 and FA35 23 Schematic representation of MDH electrophoretic phenotypes of 72 putative *T. harzianum* samples. Arrow indicates alleles of given locus 24 72
- 24 MDH banding patterns of putative *T. harzianum* isolates. Lanes left to right: T124, T121, T102, T101, T100, T80, T79, T71, T66, T60 and FA44
- 25 Schematic representation of MDH electrophoretic phenotypes of 73 putative *T. harzianum* samples. Arrow indicates alleles of given locus
- 26 MDH banding patterns of putative *T. aureoviride* isolates. Lanes left to 73 right: T127, T126, T106, T86, T67, T-58, T55, T49, T45 and T29
- 27 Schematic representation of MDH electrophoretic phenotypes of 73 putative *T. aureoviride* samples. Arrow indicates alleles of given locus

- 28 MDH banding patterns of putative *T. longibrachiatum* isolates. Lanes 74 left to right: T28, T76, T87, T90, T91, T99, T104 and T120
- 29 Schematic zymogram of representative of MDH electrophoretic 74 phenotypes of putative *T. longibrachiatum* samples. Arrows indicate alleles of given locus
- ACP banding patterns of putative *T. harzianum* isolates. Lanes left to
 right: FA2, FA4, FA7, FA8, FA15, FA24, FA26, FA29, FA30, FA31,
 T32, FA34, FA35, FA36 and FA38
- 31 Schematic zymogram of representative of ACP electrophoretic 75 phenotypes of putative *T. harzianum* samples
- 32 ACP banding pattern of putative *T. aureoviride* isolates. Lanes left to 75 right: T127, T126, T106, T86, T67, T58, T55, T49, T45 and T29
- 33 Schematic zymogram of representative of ACP electrophoretic 76 phenotypes of putative *T. aureoviride* isolates. Arrows indicate alleles of given locus
- ACP banding patterns of putative *T. longibrachiatum* isolates. Lanes left 76 to right: T120, T118, T99, T91, T87, T82, T76 and T28
- 35 Schematic zymogram of representative of ACP electrophoretic 76 phenotypes of putative *T. longibrachiatum* isolates. Arrows indicate alleles of given locus
- G6PDH banding patterns of putative *T. harzianum* isolates. Lanes left to
 right: FA2, FA4, FA7, FA8, FA15, FA24, FA26, FA29, FA30, FA31,
 FA32, FA34, FA35, FA36 and FA38
- 37 Schematic zymogram of representative of G6PDH electrophoretic 77 phenotypes of putative *T. harzianum* samples. Arrows indicate alleles of given locus
- 38 G6PDH banding pattern of putative *T. aureoviride* isolates. Lanes left to 78 right: T29, T45, T49, T55, T58, T67, T86, T106, T126 and T127
- 39 Schematic zymogram of representative of G6PDH electrophoretic 78 phenotypes of putative *T. aureoviride* samples. Arrows indicate alleles of given locus
- 40 G6PDH banding patterns of putative *T. longibrachiatum* isolates. Lanes 78 left to right: T120, T118, T99, T91, T87, T82, T76 and T28

- 41 Schematic zymogram of representative of G6PDH electrophoretic 79 phenotypes of putative *T. longibrachiatum* samples
- 42 GP banding patterns of putative *T. harzianum* isolates. Lanes left to 80 right: T60, T66, T71, T79, T80, T100, T101, T102, T121 and T124
- 43 Schematic zymogram of representative of GP electrophoretic 80 phenotypes of putative *T. harzianum* samples. Arrow indicates alleles of given locus
- 44 GP banding pattern of putative *T. aureoviride* isolate. Lanes left to right: 80 T127, T126, T86, T106, T67, T58, T55, T49, T45 and T29
- 45 Schematic zymogram of representative of GP electrophoretic 81 phenotypes of putative *T. aureoviride* samples. Arrow indicates alleles of given locus
- 46 GP banding patterns of putative *T. longibrachiatum* isolates. Lanes left 81 to right: T118, T104, T99, T91, T90, T82, T76 and T28
- 47 Schematic representation of GP electrophoretic phenotypes of putative 81 *T. longibrachiatum* samples. Arrows indicate alleles of given locus
- 48 SORDH banding patterns of putative *T. harzianum* isolate. Lanes left to right: FA2, FA4, FA7, FA8, FA15, FA24, FA26, FA29, FA30, T32, FA31, FA34, FA35, FA36 and FA38
- 49 Schematic representation of SORDH electrophoretic phenotypes of 82 putative *T. harzianum* samples
- 50 SORDH banding pattern of putative *T. aureoviride* isolates. Lanes left 83 to right: T29, T45, T49, T55, T58, T67, T86, T106, T126 and T127
- 51 Schematic representation of SORDH electrophoretic phenotypes of 83 putative *T. aureoviride* samples. Arrow indicates allele of given locus
- 52 SORDH banding patterns of putative *T. longibrachiatum* isolates. Lanes 83 left to right: T120, T118, T104, T91, T90, T82, T76 and T28
- 53 Schematic representation of SORDH electrophoretic phenotypes of 84 putative *T. longibrachiatum* samples
- 54 SOD banding patterns of putative *T. harzianum* isolate. Lanes left to right: T60, T66, T71, T79, T80, T100, T101, T102, T121 and T124
- 55 Schematic representation of SOD electrophoretic phenotypes of putative 85 *T. harzianum* samples. Arrow indicates alleles of given locus

56	SOD banding patterns of putative <i>T. aureoviride</i> isolates. Lanes left to right: T29, T45, T49, T55, T58, T67, T86, T106, T126 and T127	85
57	Schematic representation of SOD electrophoretic phenotypes of putative <i>T. aureoviride</i> samples. Arrows indicate alleles of given locus	86
58	SOD banding patterns of putative <i>T. longibrachiatum</i> isolates. Lanes left to right: T118, T104, T99, T91, T90, T82, T76 and T28	86
59	Schematic representation of SOD electrophoretic phenotypes of putative <i>T. longibrachiatum</i> samples. Arrows indicate alleles of given locus	86
60	ME banding patterns of putative <i>T. harzianum</i> isolates. Lanes left to right: T60, T66, T71, T79, T80, T100, T101, T102, T121 and T124	87
61	Schematic representation of ME electrophoretic phenotypes of putative <i>T. harzianum</i> samples. Arrows indicate alleles of given locus	87
62	ME banding patterns of putative <i>T. aureoviride</i> isolates. Lanes left to right: T127, T126, T106, T86, T67, T58, T55, T49, T45 and T29	88
63	Schematic representation of ME electrophoretic phenotypes of putative <i>T. aureoviride</i> samples. Arrows indicate alleles of given locus	88
64	ME banding patterns of putative <i>T. longibrachiatum</i> isolates. Lanes left to right: T28, T76, T82, T87, T90, T91, T118 and T120	88
65	Schematic representation of ME electrophoretic phenotypes of putative <i>T. longibrachiatum</i> samples. Arrow indicates allele of given locus	89
66	ADH banding patterns of putative <i>T. harzianum</i> isolate. Lanes left to right: FA38, FA36, FA35, FA34, T32, FA31, FA30, FA29, FA26, FA24, FA15, FA8, FA7, FA4 and FA2	89
67	Schematic representation of ADH electrophoretic phenotypes of putative <i>T. harzianum</i> samples. Arrows indicate alleles of given locus	90
68	ADH banding patterns of putative <i>T. aureoviride</i> isolates. Lanes left to right: T127, T126, T106, T86, T67, T58, T55, T49, T45 and T29	90
69	Schematic representation of ADH electrophoretic phenotypes of putative <i>T. aureoviride</i> samples	90
70	ADH banding patterns of putative <i>T. longibrachiatum</i> isolates. Lanes left to right: T28, T76, T82, T90, T91, T99, T118 and T120	91

