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Antimony oxide exists in several different phases and this single oxide has generated 

considerable interest in applications such as polyethylene terephthalate (PET) production 

and semiconductor devices manufacturing. In this study, antimony oxide and antimony 

bismuth oxide have been prepared via precipitation and coprecipitation technique, 

respectively. The influence of various preparation parameters (starting material, 

precipitating agent, precipitation route and pH) on the prepared antimony oxide has been 

investigated. The characteristics of the samples (antimony oxide and antimony bismuth 

oxide) were determined by Differential Thermogravimetry/Thermogravimetric Analysis 

(DTG/TGA), Powder X-ray Diffraction Analysis (XRD), Fourier Transform Infrared 

Analysis (FTIR), Brunauer-Emmett-Teller Surface Area Measurements (BET) and 

Scanning Electron Microscopy (SEM). Extent of reduction of antimony bismuth oxide 

  iii



was investigated by employing Temperature-Programmed Reduction in H2 (TPR) 

technique. 

 

Starting material and precipitation route have influenced the formation of the final 

products which have given the different surface area. By using antimony(III) acetate 

(raw material) via forward precipitation route, a single phase of Sb2O3 senarmontite 

phase with high surface area can be obtained. As the concentration of precipitating 

agent, NaOH is increased, the formation of antimony oxide phase changed from single 

phase to mixed phase which was vice versa with increasing of NH4OH concentration. 

The sample of high surface area with corresponding ultrafine particle could be achieved 

at optimum condition (0.6 M of NaOH concentration). 

 

The microstructural change of prepared antimony oxide was determined at various pH 

values. The pH change does not effect the formation of antimony oxides phases but led 

to the higher surface area as the pH increases. The evolvement of the antimony bismuth 

oxide phase occurred as the NH4OH concentration increases. The high surface area 

sample with small grain size can be obtained using 0.6 M NH4OH. This sample gave 

small amount of oxygen removal in accordance to TPR result.       
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Antimoni oksida wujud di dalam beberapa fasa yang berlainan dan oksida tunggal ini 

telah mendapat perhatian di dalam pengaplikasian seperti penghasilan polietilena 

taraftalat (PET) dan pembuatan peranti semikonduktor. Di dalam kajian ini, antimoni 

oksida dan antimoni bismut oksida telah disediakan melalui teknik pemendakan dan 

kopemendakan. Kesan pelbagai parameter penyediaan (bahan pemula, agen 

pemendakan, arah pemendakan dan pH) ke atas antimoni oksida yang disediakan telah 

dikaji. Ciri-ciri bagi sampel antimoni oksida dan antimoni bismut oksida telah 

ditentukan dengan menggunakan Analisis Termogravimetri (DTG/TGA), Analisis 

Pembelauan X-ray (XRD), Analisis Spektroskopi Sinarmerah (FTIR), Pengukuran Luas 

Permukaan dengan kaedah BET dan Mikroskopi Pengimbas Elektron (SEM). Penurunan 

antimoni bismut oksida dikaji dengan menjalankan ujikaji Penurunan Berprogram Suhu 

(TPR). 
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Bahan pemula dan arah pemendakan telah mempengaruhi pembentukan hasil di mana ia 

telah memberikan luas permukaan yang berbeza. Dengan menggunakan antimoni 

triasetat sebagai bahan pemula melalui teknik pemendakan secara ke hadapan, fasa 

tunggal iaitu Sb2O3 fasa senarmontite yang mempunyai luas permukaan yang besar 

boleh dicapai. Bagi kajian kesan agen presipitasi; apabila kepekatan NaOH meningkat, 

pembentukan fasa antimoni oksida berubah daripada fasa tunggal kepada fasa campuran 

di mana keadaan sebaliknya berlaku apabila kepekatan NH4OH ditingkatkan. Sampel 

dengan luas permukaan yang tinggi dan partikel yang halus boleh dicapai pada keadaan 

optimum (kepekatan NaOH adalah 0.6 M). 

 

Perubahan struktur mikro pada antimoni oksida yang disediakan telah ditentukan pada 

pelbagai pH. Pembentukan fasa antimoni oksida tidak dipengaruhi oleh perubahan pH 

tetapi cenderung memberikan luas permukaan yang tinggi apabila pH ditingkatkan. 

Perkembangan fasa antimoni bismus oksida berlaku apabila kepekatan NH4OH 

meningkat. Sampel yang mempunyai luas permukaan yang tinggi dan bersaiz butiran 

kecil boleh dihasilkan pada NH4OH berkepekatan 0.6 M. Sampel ini memberikan amaun 

penyingkiran oksigen yang rendah berdasarkan keputusan TPR.             
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

1.1 Antimony Oxide 

 

Antimony exists in the oxidation states of -3, 0, +3 and +5. There are a few phases in 

oxide of antimony which exist in several different compositions and display 

polymorphism. Sb2O3, Sb2O4, Sb2O5 and Sb6O13 are the common phases of antimony 

oxide. Golunski et al. [1] claimed that phase studies of the antimony-oxygen system 

have often been complicated by the following factors (a) the oxides tend to exhibit 

allotropy; (b) both Sb(III) and Sb(V) ions can be present in oxides of different 

stoichiometries; and (c) the evolution of water from hydrated precursors does not 

necessarily yield the expected anhydrous oxides. 

 

The research on Sb-O composition and structure by many researchers has been 

summarized. Antimony trioxide exists in two crystal structures, cubic and orthorhombic 

both of which are stable at room temperature [2, 3]. Cubic Sb2O3, also known as               

senarmontite, has a structure based on Sb4O6 molecule [1, 4, 5]. This crystal was stable 

below 843 K [6] and can exist as molecules in the gas phase [2]. Meanwhile, 

orthorhombic Sb2O3, also known as valentinite, has a layered structure, in which long 

chains (each “link”contains three O2- ions and shares four Sb3+ ions) are held together by 

weak Sb-O interactions [5].  



When heating senarmontite in the absence of oxygen, the first thermal effect to be 

observed is usually the onset of sublimation at ca. 775 K. Senarmontite is transformed to 

valentinite, at about 829 K with a melting point of 929 K [7, 8]. Finely ground 

valentinite has also been reported to oxidize at a lower temperature than senarmontite [2, 

3]. In addition, Trofimov et al. [9] found that mixtures of senarmontite and valentinite 

do not oxidize additively. In their work, when finely divided senarmontite was oxidized 

in air, orthorhombic Sb2O4 also known as cervantite, was produced at 733 K. Under 

similar conditions, valentinite oxidized at 673 K. The oxidation of orthorhombic 

valentinite Sb2O3 to orthorhombic cervantite Sb2O4 as well as the reverse reduction is a 

topotactic reaction, where the structure of valentinite is completely preserved in 

cervantite.  

 

The oxidation involves very little change in the structure of valentinite, and the 

additional oxygen atoms in cervantite merely occupy positions along the empty channels 

present in the former. The mechanism has been proposed whereby the diffusion of 

oxygen atoms involving the making and breaking of bonds between (pentavalent) 

antimony and these oxygen atoms. The additional oxygen atoms in cervantite occupy 

positions along the empty channels available in the structure of valentinite and bridge 

the (Sb2O3)∞ chains in the direction a perpendicular to the length of the channels [10].  

Molten Sb2O3 is very volatile between 925 and 1125 K, but it loses mass more slowly at 

higher temperatures [2, 3]. It seems probable that, on melting, valentinite forms a mobile 

liquid consisting of Sb4O6 molecules, which then associates to form polymeric Sb-O 

chains [2] and thus yields a much more viscous liquid phase. All the observations 

suggested that sublimation is critical in the oxidation of Sb2O3 [7]. 
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In common with other elements in the B subgroups of the Periodic Table, antimony has 

a tendency to form mixed-valent compounds in which the two oxidation states may be 

represented by N and N-2 (where N is the principal state for the group) [1]. In Sb2O4, the 

Sb(V) and Sb(III) ions are present in equal proportions [1, 11]. Therefore, the fact that 

some commercial samples are listed as “antimony(IV) oxide” can only be justified as a 

way of indicating the mean oxidation state of the metal ions, and so distinguishing the 

tetroxide from Sb6O13. There are two polymorphic forms of Sb2O4  i. e.  orthorhombic α-

phase (cervantite) and a high-temperature monoclinic β-phase [1]. According to Xiong 

et al. [12], pure α-Sb2O4 is inactive and inert.  

 

Figure 1.1 (a) and (b) show a molecular structure of α-Sb2O4 and β-Sb2O4. The α-Sb2O4 

structure is similar to the β structure, but of a lower symmetry. A major difference 

between α and β forms is in the coordination of the Sb3+ ions. In the β structure four 

oxygen atoms are within bonding distance, whereas in α structure a fifth oxygen atom 

comes within bonding distance [13].   

 

Between the two, the orthorhombic α-form (cervantite) [1, 14 and 15] is the more 

common; it is the usual product of the oxidation of Sb2O3 under air/oxygen, and of the 

decomposition of some of the higher oxides such as Sb2O5.nH2O [2] or Sb6O13 [2, 16]. 

Cervantite is remarkably stable and is found not to undergo any physical or chemical 

change on heating below 1273 K, either in air or nitrogen [2, 3]. Above 1273 K, an 

endothermic process occurs [3], leading to a complete loss of mass. One possibility is 

that cervantite sublimes at high temperatures [2]. Accordingly, it has been proposed that 
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cervantite decomposes to yield oxygen and Sb2O3, which immediately melts and 

volatilizes [3]: 

 

α-Sb2O4 (s)          ½O2 (g)  +   Sb2O3 (s)                                                                       (1) 

Sb2O3 (s)          [Sb2O3 (l)]           ½Sb4O6 (g)                                                               (2) 

 

Rogers and Skapski, quoted by Golunski [1], have suggested the following route for the 

transformation of α-Sb2O4 to the monoclinic β-form: 

2α-Sb2O4 (s)           Sb4O6 (g) +  O2   2β-Sb2O4 (s)                                               (3) 

  

 

Figure 1.1: (a) α-antimony oxide (α-Sb2O4). (b) β-antimony oxide (β-Sb2O4). Filled 
spheres represent Sb atoms; open spheres, oxygen atoms. Note the two 
kinds of coordination for the two types of Sb atoms. Sb5+ atoms are 
octahedrally coordinated. The asymmetric coordination of the Sb3+ is due 
to the presence of a lone electron pair; these form channels of electron 
density perpendicular to the views presented here. These Sb atoms are 
four-coordinate in the β form. In α form, fifth oxygen is weakly bonded 
to Sb3+. There are two types of oxygen atoms in β-Sb2O4, one type 
bridges Sb5+ atoms only, while the second type bridges Sb3+ and Sb5+ 
atoms [13]. 
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Under high pressure, the oxidation of the tetroxide [1] becomes more likely than its 

dissociation. Golunski et al. [1] suggested that the following sequence may, therefore 

apply: 

α-Sb2O4 + ½O2  Sb2O5           β-Sb2O4  +  ½O2                                                         (4) 
                            (antimony(V) oxide)    
 

 

The most common hydrated form of antimony(V) oxide (antimonic acid) has a 

pyrochlore-type structure [1, 17], in which anion vacancies may be occupied by oxygen 

atoms from the water molecules [1]. Olen’kova, quoted by Golunski, [1] also predicted 

that the maximum value of n should be 3 in Sb2O5.nH2O, though this value is often 

exceeded. On heating Sb2O5.nH2O to 1273 K, most of the mass is lost below 1125 K [2]. 

The loss occurs in two stages where the first stage (350-475 K) is due to partial 

dehydration; while the second (925-1125 K) is the result of concurrent evolution of 

water of crystallization and of lattice oxygen, with the resultant formation of Sb6O13 [2]. 

Cubic Sb2O5 loses oxygen progressively on heating above 673 K, leading eventually to 

the formation of orthorhombic Sb2O4 [3]. Anhydrous antimony(V) oxide cannot be 

prepared directly from Sb2O5.nH2O [1, 2].  

 

The final antimony oxide that exists is Sb6O13 which can be considered as intermediate 

phase between Sb2O5 and Sb2O3 in terms of both structure [1] and thermal stability [2]. 

There are several reasons why Sb6O13 can be mistakenly identified as Sb2O5, but it 

seems that the original cause was the widespread belief that Sb2O5 could be prepared by 

heating Sb2O5.nH2O until no further water was evolved. 
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1.2       Preparation of Antimony Oxide 

 

1.2.1 Preparation Methods 

 

The material properties are strongly affected by every step of the preparation together 

with the quality of the raw materials. The choice of a laboratory preparation of a given 

material depends on the physical and chemical characteristics desired in the final 

composition [18]. Nowadays, many methods and techniques have been discovered by 

researchers in order to synthesize the mono and mixed metal oxide systems with the best 

performance, which is very useful in industry.  

 

Recently, however, to our knowledge, only a few studies on synthesis of the antimony 

oxide and its characteristics have been reported [19, 20]. This oxide can be readily 

synthesized with various well-develop techniques such as thermal vapor condensation 

[21, 22], hydrothermal method [20, 23] and sol-gel method [23, 24]. There are however 

some problems and limitations, such as complex technique, limited success with 

refractory metal for the gas condensation, high temperature and high pressure for the 

hydrothermal method [23]. Beside the weakness of the thermal vapor condensation, this 

method is considered to be the most appropriate for the production of nonagglomerated 

nanoparticles with clean surface [22]. The antimony trioxide was successfully 

synthesized under controlled atmosphere using the γ-ray radiation-oxidation route 

method or chemical method [19, 23]. Recently, scientists have developed a new method 

using the hybrid induction and laser heating (HILH) method. This method was claimed 
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