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4.60 (b) DI/MS   spectrum  monitored  in  full  scan  corresponding  to  MB      232 
 and its intermediates detection at  time, t = 240 minutes as referred  
 to peak number 1 
 
4.60 (c) DI/MS   spectrum  monitored  in  full  scan  corresponding  to  MB      233 
 and its intermediates detection at  time, t = 240 minutes as referred  
 to peak number 2 
 
4.61 (a) DI/MS chromatogram monitored in full scan corresponding to MB      234 
       and   its   intermediates  detection  at   time,  t = 360  minutes,  two  
      intermediate compounds were identified (peak 1 and 2) 
 
4.61 (b) DI/MS   spectrum  monitored  in  full  scan  corresponding  to  MB      235 
 and its intermediates detection at  time, t = 360 minutes as referred  
 to peak number 1 
 
4.61 (c) DI/MS   spectrum  monitored  in  full  scan  corresponding  to  MB      236 
 and its intermediates detection at  time, t = 360 minutes as referred  
 to peak number 2 
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LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS 

 

ASAP  Analysis of Surface Area and Porosity  

 b   constant related to the energy of sorption 

C0  initial concentration of dye in solution 

cb  conduction band  

Ce  equilibrium concentration of dye 

Ct  dye concentration in solution at time t 

DI/MS  Direct Insertion / Mass Spectroscopy 

FT-IR   Fourier Transform Infrared Spectroscopy 

GC/MS Gas Chromatography / Mass Spectroscopy 

k    initial sorption rate  

kapp   apparent rate constant  

L  litre 

MB  Methylene blue 

MD  Mixed dyes 

min  minute(s) 

mL  mililitre  

μL  microlitre 

MO  Methyl orange 

Mw  molecular weight 

qe   amount of dye adsorbed on the surface of the sorbent at equilibrium  
 
qt   amount of dye adsorbed on the surface of time t  
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R2  correlation coefficient 

SEM-EDX Scanning Electron Microscopy coupled with Energy Dispersive X-ray 

analysis 

t  time 

t1/2  half life 

TGA  Thermogravimetric Analysis 

UV/vis  Ultra violet/visible spectrometer analysis 

 vb  valence band  

 vs  versus 

XRD  X-ray diffractometry 
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The combination effect of photodegradation-adsorption using the immobilized TiO2 and 

chitosan supported on glass (TiO2-Chitosan/Glass) under the illumination of light with 

suitable energy ( hν > Ebg ) as a new method for the treatment or pre-treatment of dye-

containing wastewater has been studied. The prepared photocatalyst was characterized by 

scanning electron microscopy, X-ray microanalysis, X-ray diffraction analysis, Fourier 

transform infrared spectroscopy, surface area and porosimetry analysis and 

thermogravimetric analysis.  

 

Methyl orange (an anionic dye of the monoazo series) removal was studied based on the 

effect of TiO2 : Chitosan ratio, photocatalyst loading, initial concentration, light intensity, 

different light source, temperature and pH. Comparison was also made to dyes with different 

characteristics, namely methylene blue (a cationic dye) and mixed dyes (a mixture of methyl 

orange and methylene blue). Methyl orange removal was optimum when the experiment was 

run using 5 pieces of 4 dip-coated TiO2-Chitosan/Glass (45 mm X 80 mm X 2 mm) and 500 

 iii



ml of 20 ppm methyl orange solution at 40 °C under the illumination of a 230 V near UV 

lamp for 6 hours.  

 

About 87.0 % of 20 ppm methyl orange can be removed successfully with approximately 9.2 

% removal efficiency attributable to photodegradation process and another 77.8 % 

attributable to adsorption process. Comparatively, approximately 93.8 % or 18.51 ppm of 

methylene blue can be removed by applying the same condition with approximately 43.7 % 

removal efficiency attributable to photodegradation process and another 50.1 % attributable 

to adsorption process. 

 

The solution pH was found to have a significant and yet complex effect. Solutions with pH 

4.0 – 6.0 and 10.0 – 12.0 were found to be the optimum range for methyl orange and 

methylene blue respectively. In view of the electrostatic attraction between the catalyst and 

substrates, the ionic characteristic of the dyes is suggested to play an important and selective 

role in both the photodegradation and adsorption processes. The adsorption of model 

pollutant solutes on the prepared TiO2-Chitosan photocatalyst surface leads to the effective 

photodegradation process.  

 

Removal rate of methyl orange and methylene blue were studied based on the integrated form 

of Langmuir-Hinshelwood kinetic equations. The photodegradation-adsorption process obeys 

first order kinetics for the first 60 minutes. After that, it was most likely to be affected by the 

solution pH and the nature of the photocatalyst. This is obvious based on the effect of pH for 
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MO and MB removal, in which the obtained data cannot fit nicely into the kinetic model or 

its linearized form. 

 

Although Total Organic Carbon (TOC) and Gas Chromatography-Mass Spectrometry 

(GS/MS) coupled with Direct Insertion-Mass Spectrometry (DI/MS) analyses had confirmed 

the successful break up of methyl orange and methylene blue ‘parent molecule’, successful 

destruction of methylene blue aromatic rings is quite difficult to achieve. Nevertheless, the 

combined photodegradation-adsorption system still appears to be an efficient accelerated 

removal process of organic pollutants from waste water. 
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Gabungan kesan fotodegradasi-jerapan menggunakan TiO2 dan kitosan terdokong di atas 

kepingan kaca (TiO2-Kitosan/Kaca) di bawah penyinaran cahaya dengan tenaga yang sesuai 

(hυ > Ebg) sebagai satu kaedah baru perawatan dan pra-perawatan air tercemar yang 

mengandungi bahan pewarna telah dikaji. Pencirian bahan pemangkin yang disediakan 

dilakukan melalui mikroskopi pengimbasan elektron, mikroanalisis sinar-X, analisis 

pembelauan sinar-X, spektroskopi inframerah transformasi Fourier, analisis luas permukaan 

dan keliangan dan analisis termogravimetri.   

 

Penyingkiran metil jingga (sejenis pewarna anion daripada siri monoazo) telah diselidiki 

berdasarkan kepada kesan nisbah TiO2:Kitosan, jumlah bahan pemangkin yang didokongkan, 

kepekatan larutan, keamatan cahaya, sumber cahaya yang berbeza, suhu larutan, dan pH. 

Perbandingan juga dilakukan dengan pewarna yang mempunyai sifat yang berbeza, iaitu 

metilina biru (pewarna kation) dan pewarna campuran (campuran metil jingga dan metilina 

biru). Penyingkiran optimum metil jingga dicapai apabila eksperimen dijalankan dengan 

menggunakan 5 keping pemangkin TiO2-Kitosan/Kaca (45 mm X 80 mm X 2 mm) yang 
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dicelupkan sebanyak 4 kali dengan kepekatan larutan awal metil jingga 20 ppm pada suhu  40 

°C di bawah sinaran cahaya hampir UV 230 V selama 6 jam.  

 

Lebih kurang 87.0 % daripada 20 ppm metil jingga berjaya disingkirkan dengan sejumlah 9.2 

% kesan penyingkiran dihasilkan oleh proses fotodegradasi, manakala 77.8 % adalah 

sumbangan daripada proses jerapan. Secara perbandingannya, lebih kurang 93.8 % atau 18.51 

ppm metilina biru juga boleh disingkirkan dengan menggunakan kaedah yang sama dengan 

sejumlah 43.7 % kesan penyingkiran dihasilkan oleh proses fotodegradasi, manakala 50.1 % 

yang lain disumbangkan oleh proses jerapan.. 

 

Keadaan pH larutan telah dikenalpasti mempunyai kesan yang ketara dan kompleks. Larutan 

dengan pH 4.0 – 6.0 dan 10.0 – 12.0 telah dikenalpasti sebagai julat pH optimum untuk metil 

jingga dan metilina biru. Berlandaskan kepada teori tarikan elektrostatik yang wujud di antara 

pemangkin dan substrat, sifat ionik bahan pewarna dicadangkan berkemungkinan memainkan 

peranan pilihan yang penting dalam kedua-dua proses fotodegradasi dan jerapan. Jerapan 

bahan subtrat di atas permukaan bahan fotomangkin TiO2-Kitosan akan membawa kepada 

proses fotodegradasi yang berkesan. 

 

Kadar penyingkiran metil jingga dan metilina biru telah dikaji berdasarkan kepada persamaan 

kinetik Langmuir-Hinshelwood terubahsuai. Penyingkiran melalui fotodegradasi-jerapan 

didapati mematuhi kinetik tertib pertama untuk 60 minit yang pertama. Selepas tempoh itu, 

besar kemungkinan ia akan dipengaruhi oleh pH larutan dan tabii fotomangkin yang 

digunakan. Keadaan ini jelas ditunjukkan berdasarkan kepada kajian kesan pH terhadap 
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penyingkiran metil jingga dan metilina biru, di mana data yang diperoleh tidak dapat 

dipadankan kepada model kinetik atau bentuknya yang terubahsuai.  

 

Sungguhpun analisis Jumlah Karbon Organik (TOC) dan Kromatografi Gas-Spektrometri 

Jisim (GC/MS) yang dilengkapkan dengan Selitan Terus-Spektrometri Jisim (DI/MS) telah 

mengesahkan pemecahan ‘molekul sumber’ metil jingga dan metilina biru, akan tetapi 

pemecahan gelang aromatik metilina biru adalah sukar dicapai. Walau bagaimanapun, 

gabungan sistem fotodegradasi-jerapan ini masih merupakan proses penyingkiran pantas 

bahan pencemar organik dalam air yang berkesan. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


