

UNIVERSITI PUTRA MALAYSIA

Concentrations Of Heavy Metals In Sediment And Selected Organisms In Lukut River, Malaysia, And Their Toxicological Effects On *Penaeus Monodon* (Fabricius) Juveniles.

ALIREZA SAFAHIEH

FS 2007 38

Concentrations Of Heavy Metals In Sediment And Selected Organisms In Lukut River, Malaysia, And Their Toxicological Effects On *Penaeus Monodon* (Fabricius) Juveniles.

By

ALIREZA SAFAHIEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2007

DEDICATION

To:

my mother, my wife, and my children

Abstract of thesis presented to the Sanate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

Concentrations Of Heavy Metals In Sediment And Selected Organisms In Lukut River, Malaysia, And Their Toxicological Effects On *Penaeus Monodon* (Fabricius) Juveniles.

By

ALIREZA SAFAHIEH

April 2007

Chairman: Associate Professor Ahmad bin Ismail, PhD

Faculty: Science

The status of heavy metals contamination in Lukut River, Negeri Sembilan, Malaysia was studied in September 2003. In general, except for Pb in the water, the level of heavy metals in the water and sediment of Lukut River were found to be within the range of other Malaysian Rivers. The metals concentrations in *T. telescopium* and the prawns *P. monodon* and *P. merguiensis* was within the range of heavy metal measured in other gastropods or prawn species previously studied in Malaysia indicating no serious metal pollution exists in the study area. Heavy metal concentration in the muscle tissues of the prawns was found to be lower than maximum permissible levels recommended for human consumption.

High level of Pb was found in the water of Lukut River (390.10 μ g/l) which was found to be relatively higher than some Malaysian rivers. The pattern of Pb concentration in water samples and low Pb level in the sediment suggested that dissolved Pb was originated from the sea–based inputs.

The sublethal toxicity of the metals on growth, moulting and Ca content in exoskeleton of *P. monodon* juveniles were also investigated in 21 days period.

Results indicated that after 21 days the juveniles exposed to Cu concentration of 1000 μ g/l, Zn concentration of 1000 μ g/l, Cd concentration of 160 μ g/l and Pb concentration of 316 μ g/l or above grew slower than controls (P<0.05).

Among the metals studied, Cu and Zn were found to have an inhibition effect on exoskeleton calcification. The lowest concentration caused reduction in exoskeleton calcification was $100 \mu g/l$ and $1000 \mu g/l$ for Cu and Zn respectively.

Metals exposure was also affected the moulting of *P. monodon*. The period of molt cycle was increased significantly in the prawns exposed to 3160 μ g/l Cu, 1000 μ g/l Zn, 160 μ g/l Cd and 316 μ g/l Pb. However, low Cu and Zn concentrations were found in Lukut River do not affect the calcification of the prawn's exoskeleton or their molting.

Penaeus monodon does not regulate the level of metals in the body. It was found to accumulate heavy metals (Cu, Zn, Cd and Pb) in proportion of external metal concentrations. Meanwhile the metals accumulation in muscle, exoskeleton and remainder were found to perform in different rates. The highest accumulation rate for Zn and Cd was found in exoskeleton while the highest accumulation rate of Cu and Pb was found in remainder. In addition, the lowest accumulation rates for all of the studied metals were found in the muscle tissue. Among the metals studied Cu and Pb were accumulated faster than Cd and Zn.

Heavy metals depuration from muscle, exoskeleton and remainder of tissues were studied during one week duration. The fastest depuration of Zn, Cd and Pb was

found in exoskeleton, while Cu was mainly depurated from the remainder of tissues. Furthermore among the metals studied Cu and Pb depurated faster than Zn and Cd.

Moulting was found to cause no significant reduction in the Cu, Zn and Cd concentration in the moulted prawns. On the other hand it caused significant reduction of Pb content in the prawn's body. Comparison between exoskeleton of the exposed intermolts and the exuviae of the newly moulted prawns (post moults) indicated that Pb concentration in the moults was significantly higher than exoskeleton which indicates that molting could be a effective way to eliminate the accumulated Pb from the body.

In general, based on the results from field study (analysis of water, sediment and biological samples) it is concluded that Lukut River is not polluted by heavy metals. Except for Pb, the level of metals in the water of Lukut River is not high enough to cause any impact either on aquacultured or on wild prawns.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

Kepekatan Logam Berat Di Dalam Sedemen Dan Organisma Terpilih Di Sungai Lukut, Malaysia Dan Kesan Toksikologi Mereka Ke Atas Juvenal PENAEUS MONODON (FABRICIUS)

Oleh

ALIREZA SAFAHIEH

April 2007

Pengerusi: Profesor Madya Ahmad bin Ismail, PhD

Fakulti: Sains

Status pencemaran logam berat dalam Sungai Lukut, Negari Sembilan, Malaysia dikaji pada bulan September, 2003. Secara keseluruhan, semua logam berat kecuali Pb dalam air, didapati air dan sediment dari Sungai Lukut adalah dalam tahap taburan sungai Malaysia. Kepekatan logam dalam *T. telescopium* dan udang bagi *P. monodon* dan *P. merguiensis* adalah dalam taburan logam berat yang diukur dalam gastropod lain atau spesis udang yang dikaji dulu di Malaysia menunjukkan tiada pencemaran logam berat yang serius dalam kawasan kajian. Kepekatan logam berat dalam tisu otot udang didapati lebih rendah daripada cadangan tahap kebenaran maksimum bagi pemakananan manusia.

Kepekatan logam Pb didapati tinggi dalam air di Sungai Lukut (390.10 µg/l) yang mana lebih tinggi berbanding dengan sungai lain yang dikaji di Malaysia. Corak kepekatan Pb dalam sampel air dan tahap rendah Pb dalam sediment mencadangkan bahawa larutan Pb berasal dari kemasukan berasaskan laut.

Toksiksiti separa akut logam berat pada pertumbuhan, penyalinan kulit dan kandungan Ca dalam eksoskeleton juvenil *P. monodon* dikaji dalam tempoh 21 hari. Keputusan menunjukkan bahawa juvenil yang didedah selepas 21 hari kepada kepekatan Cu pada 1000 μ g/l, Zn pada 1000 μ g/l, Cd pada 160 μ g/l dan Pb pada 316 μ g/l atau lebih tinggi menunjukkan pertumbuhan yang lebih perlahan daripada kawalan (P<0.05).

Di kalangan logam berat yang dikaji, Cu dan Zn didapati mempunyai kesan rencatan pada kalsifikasi eksoskeleton. Kepekatan paling rendah pada 100 μ g/l dan 1000 μ g/l bagi Cu dan Zn masing-masing mengakibatkan pengurangan kalsifikasi eksoskeleton. Pendedahan kepada logam berat juga memberi kesan kepada penyalinan kulit *P. monodon*. Tempoh kitaran meningkat secara signifikan pada udang yang terdedah kepada 3160 μ g/l Cu, 1000 μ g/l Zn, 160 μ g/l Cd dan 316 μ g/l Pb. Akan tetapi, kepekatan Cu dan Zn yang rendah yang didapati dalam Sungai Lukut tidak memberi kesan kepada kalsifikasi ekoskeleton atau penyalinan kulit udang.

Penaus monodon tidak regulasi bagi tahap logam dalam badan. Ia didapati mengakumulasi logam berat (Cu, Zn, Cd dan Pb) dalam sebahagian kepekatan logam dari luaran. Selain itu, akumulasi logam dalam tisu otot, ekoskeleton dan sisa dijumpai mengakumulasi pada kadar yang berlainan. Kadar akumulasi yang tertinggi bagi logam Zn dan Cd adalah pada sisa. Tambahan pula, kadar akumulasi yang terendah bagi kesemua logam yang dikaji adalah pada tisu otot. Di antara logam berat yang dikaji, Cu dan Pb berakumulasi pada kadar yang lebih cepat daripada Cd dan Zn.

Depurasi logam berat daripada tisu otot, eksoskeleton dan remainder dikaji. Selepaas 1 minggu, kadar depurasi yang tertinggi bagi Zn, Cd and Pb didapati pada eksoskeleton manakala Cu hanya didepurasi daripada tisu remainder. Tambahan pula, di kalangan logam berat yang dikaji,kadar depurasi bagi Cu dan Pb adalah lebih cepat berbanding Zn dan Cd.

Penyalinan kulit didapati mengakibatkan tiada signifikasi dalam pengurangan kepekatan Cu, Zn dan Cd dalam udang yang telah menyalin kulit. Akan tetapi, penyalinan kulit mengakibatkan signifikasi pengurangan kandaungan Pb dalam badan udang. Perbandingan antara eksoskeleton bagi intermolt udang yang terdedah dan 'exuviae' udang yang baru salin kulit ('post molt') mennunjukkan kepekatan Pb dalam kulit yang disalin ('molt') adalah signifikan lebih tinggi daripada ekoskeleton yang membuktikan penyalinan kulit adalah cara yang terbaik dalam menyingkirkan Pb daripada badan.

Secara keseluruhannya, keputusan yang didapati daripada kajian lapangan (analisis air, sedimen dan sampel biologi) menyimpulkan bahawa Sungai Lukut tidak tercerma oleh logam berat. Logam berat dalam kajian kecuali Pb dalam air Sungai Lukut adalah tidak tinggi untuk mengakibatkan kesan pada udang akuakultur atau udang liar.

ACKNOWLEDGEMENTS

Glory and praise to be Allah (SWT), the omnipotent, omniscient and omnipresent, for opening doors of opportunity to me throughout my life and for giving me the strength and health to achieve what I have achieved so far. I hope and pray that it dose not end here.

I would like to express my greatest appreciation and thanks to the members of my supervisory committee, Assoc. Prof. Dr. Ahmad Ismail, Assoc. Prof. Dr. Aziz Arshad and Assoc. Prof. Dr. Che Roos Saad for their invaluable help, guidance, and encouragement.

My study in Malaysia was financially supported by the Ministry of Science, Research, and Technology (MSRT) of Islamic Republic of Iran. I would like to appreciate and acknowledge for their support. I would like to sincerely thank Prof. Dr. Farhoudi and Prof. Dr. Kohian, the MSRT Representative Counsellors, for their advice and guidance during my study in Malaysia.

My special thanks to, Dr. Hishamuddin Omar, Dr Siti Shapoor head Department of Biology, Dr Siti Khalijah, Dr. Shamarina, Dr Misri Kusnan and Dr Yap Chee Kong for their kind helps and support.

My great appreciations to all my colleagues in Shahid Chamran University and Khorramshahr University of Marine Sciences and Technology especially Assoc. Prof. Dr. Ahmad Savari, Dr. Roayaei, Mr. Mohammad Taghi Ronagh, Dr.

Bahram Alizadeh, Dr. Vahid Yavari, and Dr. Kochinian.

My deepest thanks due to Mr Chiu Poon Keun for his valueable helps during my study.

Special thanks to Dr. Peymon Roostaeian, Dr. Hamid Rezaei, Mr. Hoseinali sasan, Mr. Habibollah Naderi, Mr. Yousef Rostami, Mr. Kimon, Mr. Jasni, Mr. Prumal, Mr. Amin bin Bintal, Mr. Mohammad Ikram, and all of my lab mates in ecology laboratory.

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follow:

Ahmad Ismail, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Aziz Arshad, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Che Roos Saad, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 June 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ALIREZA SAFAHIEH

Date: 10 May 2007

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	111
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	xi
DCLEARATION	xiii
LISTOF TABLES	xvi
LIST OF FIGURES	XX
LIST OF ABBREVIATIONS	xxvii

CHAPTER

2	LITR 2.1 2.2	ATURE REVIEW	7
	22	The status of heavy metal pollution in Malaysia	7
	4.4	Biology and ecology of Penaeus monodon	11
		2.2.1 Taxonomy	11
		2.2.2 Distribution	12
		2.2.3 Life cycle	13
		2.2.4 Feeding biology and behaviour	19
		2.2.5 Growth pattern and moulting	22
	2.4	Regulation of metals by crustaceans	36
	2.5	Physiology of Metal uptake by crustaceans	38
	2.6	Metal metabolism in crustaceans	39
	2.7	Heavy metal accumulation in Crustaceans	41
	2.8	The role of exoskeleton in metals accumulation	42
	2.9	Toxicity of metals in crustaceans	44
3	МАТ	ERIALS AND METHODS	48
	3.1	Study Area	48
	3.2	Sampling Procedure	53
		3.2.1 Water	53
		3.2.2 Sediment	55
		3.2.3 Biological samples	55
	3.3	Physico-chemical Parameters	57
	3.4	Heavy metals analysis	57
	3.5	Quality Assurance and assessment	61
	3.6	Toxicity of dissolved metals on Penaeus monodon	63
		3.6.1 Sea water and animals	63
		3.6.2 Acute toxicity tests	63
		3.6.3 Chronic toxicity of heavy metals on growth, moulting and calcium content of exoskeleton	66
		3.6.4 Effect of metals on feeding	68
	3.7	Heavy metals accumulation and depuration by Penaeus monodon	69
		3.7.1 Dose dependent accumulation	70
		3.7.2 Time dependent accumulation	71
		3.7.3 Metals Depuration	71
	3.8	Effect of moulting on metal depuration in the body	72
		Statistical analysis	75

4 RESULTS AND DISCUSSION

79

xiv

	4.1	Physic	co-chemical parameters for Lukut River	79
	4.2	Metal	concentrations in water	88
	4.3	Metal	concentrations in the sediment	98
	4.4	Metals	s Speciation in the Sediment	106
	4.5	Heavy	metals in biological samples of Lukut River	125
		4.5.1	Metals concentrations in gastropod T. telescopium	125
		4.5.2	Metal concentrations in prawn samples	150
	4.6	Metal	occurrence in different tissues of prawns	168
	4.7	Toxici	ity of metals exposure on	176
		4.7.1		176
		4.7.2	Heavy metals toxicity on growth	185
		4.7.3	Effect of heavy metals exposure on calcium content of exoskeleton	207
		4.7.4	Effect of heavy metals exposure on moulting	216
		4.7.5	Effect of Heavy metals on feed intake	226
	4.8	Heavy	metals accumulation and depuration by <i>Penaeus monodon</i>	232
		4.8.1	Heavy metals accumulation in <i>Penaeus monodon</i> : effect of dose	232
		4.8.2	Heavy metal concentration in the moults released by the <i>Penaeus monodon</i>	254
		4.8.3	Heavy metals accumulation in <i>Penaeus monodon</i> : Effect of time	259
		4.8.4	Heavy metal depuration by <i>Penaeus monodon</i>	275
	4.9	Effect	of moulting on the body heavy metal concentrations	287
5	GENE	ERAL D	DISCUSSION AND CONCLUSION	295
RE	FEREN	ICES		308
BIC	BIODATA OF AUTHOR		334 335	

LIST OF TABLES

Table		Page
1	Life history of the <i>P. monodon</i> (Motoh, 1981)	14
2	Percentage of frequency of occurrence of three food categories in <i>Penaeus monodon</i>	21
3	Main stages of penaeid shrimp's moulting	28
4	Criteria for moult staging of Penaeids. Times are based on a 20-day moulting cycle	30
5	Toxic effects of heavy metals on some decapod crustaceans	47
6	Position of sampling station and the main human activities around each station	54
7	Comparison of the analytical results of the Certified Reference Material for soil with the corresponding certified concentrations of the metals	62
8	Correlation coefficient and comparative results of metals analysis by direct aqua-regia and sequential extraction technique in sediment samples ($n=51$) based on mean concentrations (μ g/g dry weight) of Cu, Zn, Cd and Pb	63
9	Comparison of physico-chemical parameters in Lukut River with other Malaysian Rivers	82
10	Total metal concentrations $(\mu g/l)$ in water samples from Lukut River compared with other rivers and natural levels	97
11	Concentration of heavy metals in sediments of Lukut River and different Malaysian rivers compared to US NOAA guide line and average shale values ($\mu g/g$)	104
12	Pearson correlation (R) between metals concentrations in the sediment	106
13	Geochemical fractions of Cu in the sediment of Lukut River	108
14	Geochemical fractions of Zn in the sediment of Lukut River	110
15	Geochemical fractions of Cd in the sediment of Lukut River	114
16	Geochemical fractions of Pb in the sediment of Lukut River	117
17	Summary of metals distribution in different tissues of <i>T. telescopium</i>	136
18	Pattern of metal concentrations in the different soft tissues of <i>T</i> . <i>telescopium</i>	137

19	Comparisons of reported concentrations $(\mu g/g)$ of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in <i>T. telescopium</i> and some Mollusc species from other studies done in Malaysia	141
20	The Pearson's correlation coefficients of Cu concentrations in <i>T. telescopium</i> with Cu concentrations in water, and sediment of Lukut River based on the results of the log (mean $+ 1$)	144
21	The Pearson's correlation coefficients of Zn concentrations in <i>T</i> . <i>telescopium</i> with Zn concentrations in water, and sediment of Lukut River based on the results of the log (mean $+ 1$)	145
22	The Pearson's correlation coefficients of Cd concentrations in <i>T</i> . <i>telescopium</i> with Cd concentrations in water, and sediment of Lukut River based on the results of the log (mean $+ 1$)	146
23	The Pearson's correlation coefficients of Pb concentrations in <i>T. telescopium</i> with Pb concentrations in water, and sediment of Lukut River based on the results of the log (mean $+ 1$)	147
24	Comparison of metals concentrations in muscle tissues of prawns from different area of the world and maximum permissible level of metals in ea food for human consumption	161
25	Comparison of metals bioaccumulation in different tissues of different prawn samples collected in Lukut River	165
26	Order of metals occurrence in selected tissues of prawns from Lukut River	169
27	Patterns of the heavy metals occurrence in the muscle of several shrimp species belonging to the genus <i>Penaeus</i>	170
28	96 hr LC ₅₀ (μ g/l) values for different metals upon <i>P. monodon</i>	177
29	Comparison between 95 h LC_{50} of heavy metals for <i>P. monodon</i> and other prawn or shrimp species	184
30	Mean body weight (\pm S.E) of <i>P. monodon</i> juveniles versus time of exposure to different concentrations of Cu	186
31	Mean total length (\pm S.E) of <i>P. monodon</i> juveniles versus time of exposure to different concentrations of Cu.)	187
32	The linear regression of various Cu concentrations (μ g/l) versus weight gain and length increase and corresponding EC50 values	189
33	Mean body weight (\pm S.E) of <i>P. monodon</i> juveniles versus time of exposure to different concentrations of Zn	192
34	Mean total length (\pm S.E) of <i>P. monodon</i> juveniles versus time of exposure to different concentrations of Zn	193

35	The linear regression of various Zn concentrations (μ g/l) versus weight gain and length increase and corresponding EC50 values	195
36	Mean body weight (\pm S.E) of <i>P. monodon</i> juveniles versus time of exposure to different concentrations of Cd	197
37	Mean total length (\pm S.E) of <i>P. monodon</i> juveniles versus time of exposure to different concentrations of Cd	198
38	The linear regression of various Cd concentrations (μ g/l) versus weight gain and length increase and corresponding EC50 values	200
39	Mean body weight (\pm S.E) of <i>P. monodon</i> juveniles versus time of exposure to different concentrations of Pb	202
40	Mean total length (\pm S.E) of <i>P. monodon</i> juveniles versus time of exposure to different concentrations of Pb.	203
41	The linear regression of various Pb concentrations $(\mu g/l)$ versus weight gain and length increase and corresponding EC50 values. Pb concentrations converted to Log (Pb+1)	206
42	Spearmans correlation (R) coefficient between metal concentrations and Ca content of exoskeleton	211
43	Number of <i>P. monodon</i> juveniles moulting and mean moulting frequency of prawns exposed to different concentrations of Cu for 21 days	218
44	Number of <i>P. monodon</i> juveniles moulting and mean moulting frequency of prawns exposed to different concentrations of Zn for 21 days	220
45	Number of <i>P. monodon</i> juveniles moulting and mean moulting frequency of Prawns exposed to different concentrations of Cd for 21 days	223
46	Number of <i>P. monodon</i> juveniles moulting and mean moulting frequency of Prawns exposed to different concentrations of Pb for 21 days	226
47	Feed intake (mean \pm S.E) and feeding rate (%) of the prawn exposed to different Cu concentrations for 96 h	227
48	Feed intake (mean \pm S.E) and feeding rate (%) of the prawn exposed to different Zn concentrations for 96 h	228
49	Feed intake (mean \pm S.E) and feeding rate (%) of the prawn exposed to different Cd concentrations for 96 h	229
50	Feed intake (Mean \pm S.E) and feeding rate (%) of the prawn exposed to different Pb concentrations for 96 h	229

51	Linear regression between external Cu concentration [log (Cu+1)] and Cu accumulation in different parts of <i>P. monodon</i>	236
52	Linear regression between external Zn concentration and Zn accumulation in different parts of <i>P. monodon</i>	240
53	Linear regression between external Cd concentration and Cd accumulation in different parts of <i>P. monodon</i>	243
54	Linear regression between external Pb concentration and Pb accumulation in different parts of <i>P. monodon</i>	247
55	Order of tissues heavy metals accumulation indifferent tissues	254
56	Results for linear regression analysis of metal accumulation in different tissues of <i>P. monodon</i> against time (Days)	274
57	Results for linear regression analysis of metal depuration in different tissues of <i>P. monodon</i> against time (Days)	286

LIST OF FIGURES

Figures		Page
1	Penaeus monodon, different parts of the body	16
2	Life cycle of Penaeus monodon	18
3	Discontinuous growth of crustaceans	23
4	Summary of cuticular-degradation and -regeneration throughout the rom thmoulting cycle	25
5	Semi-diagrammatic representations of sections of abdominal cuticle and epidermis	29
6	Map showing the study area	48
7	Lukut River estuary	50
8	Lukut River: Vehicles and boats could be possible source of metals input in Station 7.	51
9	Tanah Merah River: Agriculture gate located in Station 12	51
10	Penaeus monodon farms located in Lukut River (Stations 8-10).	52
11	Fishermen catching prawn from Lukut River during low tide (Station 8)	52
12	<i>Telescopium telescopium</i> on surface sediment of Lukut River during low tide.	56
13	Flowchart showing sequential extraction procedure	60
14	Penaeus monodon during acute and sublethal toxicity experiments	65
15	Separation of the <i>P. monodon</i> individuals using cages made by plastic net.	65
16	Penaeus monodon during toxicity experiments on feed intake.	69
17	Collecting the moults during experiments	73
18	Water temperature (mean \pm S.E) in different sampling stations	80
19	Water salinity (mean \pm S.E) in different sampling stations	81
20	Water pH (mean \pm S.E) in different sampling stations	85
21	Dissolved oxygen (mean \pm S.E) in different sampling stations	85
22	Cu concentration (μ g/l) in water samples of Lukut River	89

23	Zn concentration (μ g/l) in water samples of Lukut River	91
24	Cd concentration ($\mu g/l$) in water samples of Lukut River	91
25	Pb concentration ($\mu g/l$) in water samples of Lukut River	93
26	Cu concentration in sediment $(\mu g/g)$ of Lukut River	99
27	Zn concentration in sediment ($\mu g/g$) of Lukut River	100
28	Cd concentration in sediment $(\mu g/g)$ of Lukut River	101
29	Pb concentration in sediment ($\mu g/g$) of Lukut River	102
30	Fractionation of Cu in the sediments of the Lukut River	109
31	Cu concentrations ($\mu g/g$) in 'resistant' and 'non-resistant' phase in the sediment of Lukut River.	109
32	Fractionation of Zn in the sediments of the Lukut River	112
33	Zn concentrations ($\mu g/g$) in 'resistant' and 'non-resistant' phase in the sediment of Lukut River	112
34	Fractionation of Cd in the sediments of the Lukut River	115
35	Cd concentrations ($\mu g/g$) in 'resistant' and 'non-resistant' phase in the sediment of Lukut River	115
36	Fractionation of Pb in the sediments of the Lukut River	118
37	Pb concentrations ($\mu g/g$) in 'resistant' and 'non-resistant' phase in the sediment of Lukut River.	119
38	Cu concentration (μ g/g) in foot tissue of <i>T. telescopium</i>	126
39	Cu concentration (μ g/g) in muscle tissue of <i>T. telescopium</i>	126
40	Cu concentration (μ g/g) in mantle tissue of <i>T. telescopium</i>	127
41	Cu concentration (μ g/g) in operculum tissue of <i>T. telescopium</i>	127
42	Cu concentration (μ g/g) in GVM tissue of <i>T. telescopium</i>	127
43	Cu concentration (μ g/g) in whole body of <i>T. telescopium</i>	128
44	Zn concentration (μ g/g) in foot tissue of <i>T. telescopium</i>	129
45	Zn concentration (μ g/g) in muscle tissue of <i>T. telescopium</i>	129
46	Zn concentration (μ g/g) in mantle tissue of <i>T. telescopium</i>	130
47	Zn concentration (μ g/g) in operculum tissue of <i>T. telescopium</i>	130

48	Zn concentration ($\mu g/g$) in GVM tissue of <i>T. telescopium</i>	130
49	Zn concentration (μ g/g) in whole body of <i>T. telescopium</i>	131
50	Cd concentration (μ g/g) in foot tissue of <i>T. telescopium</i>	132
51	Cd concentration (μ g/g) in muscle tissue of <i>T. telescopium</i>	132
52	Cd concentration (μ g/g) in mantle tissue of <i>T. telescopium</i>	132
53	Cd concentration (μ g/g) in operculum tissue of <i>T. telescopium</i>	133
54	Cd concentration (μ g/g) in GVM tissue of <i>T. telescopium</i>	133
55	Cd concentration (μ g/g) in whole body of <i>T. telescopium</i>	133
56	Pb concentration (μ g/g) in foot tissue of <i>T. telescopium</i>	134
57	Pb concentration (μ g/g) in muscle tissue of <i>T. telescopium</i>	134
58	Pb concentration (μ g/g) in mantle of <i>T. telescopium</i>	135
59	Pb concentration (μ g/g) in operculum tissue of <i>T. telescopium</i>	135
60	Pb concentration (μ g/g) in GVM tissue of <i>T. telescopium</i>	135
61	Pb concentration (μ g/g) in whole body of <i>T. telescopium</i>	136
62	Comparison of Cu concentrations ($\mu g/g$ dry weight) in different tissues of the adolescent prawns	152
63	Cu concentrations (μ g/g dry weight) in different tissues of <i>P. monodon</i> juveniles were collected in Lukut Besar River	153
64	Comparison of Zn concentrations ($\mu g/g$ dry weight) in different tissues of the adolescent prawns	155
65	Zn concentrations (μ g/g dry weight) in different tissues of <i>P. monodon</i> juveniles were collected in Lukut Besar River	155
66	Comparison of Cd concentrations ($\mu g/g$ dry weight) in different tissues of the adolescent prawns	157
67	Cd concentrations (μ g/g dry weight) in different tissues of <i>P. monodon</i> juveniles were collected in Lukut Besar River	158
68	Comparison of Pb concentrations ($\mu g/g$ dry weight) in different tissues of the adolescent prawns	159
69	Pb cocentrations (μ g/g dry weight) in different tissues of <i>P. monodon</i> juveniles were collected in Lukut Besar River	159

70	Regression line representing the relationship between mortality (probit values) and Cu concentrations in juveniles of <i>P. monodon</i>	177
71	Regression line representing the relationship between mortaliy (probit values) and Zn concentrations in juveniles of <i>P. monodon</i>	180
72	Regression line representing the relationship between mortality (probit values) and Cd concentrations in juveniles of <i>P. monodon</i>	181
73	Regression line representing the relationship between mortality (probit values) and Pb concentrations in juveniles of <i>P. monodon</i>	182
74	Mean body weight of <i>P. monodon</i> versus time of exposure to different Cu concentrations	188
75	Mean body length of <i>P. monodon</i> versus time of exposure to different Cu concentrations	188
76	Mean body weight of <i>P. monodon</i> versus time of exposure to different Zn concentrations	194
77	Mean body length of <i>P. monodon</i> versus time of exposure to different Zn concentrations	194
78	Mean body weight of <i>P. monodon</i> versus time of exposure to different Cd concentrations	199
79	Mean body length of <i>P. monodon</i> versus time of exposure to different Cd concentrations	199
80	Mean body weight of <i>P. monodon</i> versus time of exposure to different Pb concentrations	204
81	Mean body length of <i>P. monodon</i> versus time of exposure to different Pb concentrations	204
82	Ca Concentrations in exoskeleton of <i>P. monodon</i> exposed to various Cu concentrations	207
83	Ca Concentrations in exoskeleton of <i>P. monodon</i> exposed to various Zn concentrations	208
84	Ca Concentrations in exoskeleton of <i>P. monodon</i> exposed to various Cd concentrations	209
85	Ca Concentrations in exoskeleton of <i>P. monodon</i> exposed to various Pb concentrations	210
86	Effect of different Cu concentrations (μ g/l) on the time to the first moulting of <i>P. monodon</i> .	216
87	Time to complete the first moult cycle by <i>P. monodon</i> exposed to different Cu concentrations	217

88	Effect of different Zn concentrations $(\mu g/l)$ on the time to the first moulting of <i>P. monodon</i>	219
89	Time to complete the first moult cycle by <i>P. monodon</i> exposed to different Zn concentrations	220
90	The time to the first moulting of <i>P. monodon</i> exposed to different Cd concentrations (μ g/l)	222
91	Time to complete the first moult cycle by <i>P. monodon</i> exposed to different Cd concentrations	222
92	The time to the first moulting of <i>P. monodon</i> exposed to different Pb concentrations (μ g/l)	225
93	Time to complete the first moult cycle by <i>P. monodon</i> exposed to different Cd concentrations	225
94	Cu accumulation (mean \pm S. E) in the muscle of <i>P. monodon</i> , after 14 days of exposure to different Cu concentrations	234
95	Cu accumulation (mean \pm S. E) in the exoskeleton of <i>P. monodon</i> after 14 days of exposure to different Cu concentrations	234
96	Cu accumulation (mean \pm S. E) in remainder tissues of <i>P. monodon</i> , after 14 days of exposure to different Cu concentrations	235
97	Cu accumulation (mean \pm S. E) in whole body of <i>P. monodon</i> , after 14 days of exposure to different Cu concentrations	236
98	Zn accumulation (mean \pm S. E) in muscle of <i>P. monodon</i> , after 14 days of exposure to different Zn concentrations	237
99	Zn accumulation (mean \pm S. E) in exoskeleton of <i>P. monodon</i> , after 14 days of exposure to different Zn concentrations	238
100	Zn accumulation (mean \pm S. E) in remainder of <i>P. monodon</i> , after 14 days of exposure to different Zn concentrations	239
101	Zn accumulation (mean \pm S. E) in whole body of <i>P. monodon</i> , after 14 days of exposure to different Zn concentrations	239
102	Cd accumulation (mean \pm S. E) in muscle of <i>P. monodon</i> , after 14 days of exposure to different Zn concentrations	241
103	Cd accumulation (mean \pm S. E) in exoskeleton of <i>P. monodon</i> , after 14 days of exposure to different Cd concentrations	241
104	Cd accumulation (mean \pm S. E) in remainder of <i>P. monodon</i> , after 14 days of exposure to different Cd concentrations	242
105	Cd accumulation (mean \pm S. E) in whole body of <i>P. monodon</i> , after 14 days of exposure to different Cd concentrations	243

