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In the study a thermal wave resonant cavity technique (TWRC) was set up and was

used to measure thermal diffusivity of various types of liquids. In this technique the

thermal diffusivity was determined by scanning the cavity length, instead of

frequency, that has a high signal-to-noise ratio in thermally thick case.

By using metal foil that attached to a tube as the thermal wave (TW) generator the

calibration of the conventional TWRC set up was done on distilled water and the

thermal diffusivity value, i.e. 1.44×10-3 cm2/s, agrees with literature value. Further, a

few liquids thermal diffusivity, including crude palm (0.988×10-3 cm2/s), soy bean

(1.06×10-3 cm2/s), corn oil (0.934×10-3 cm2/s), were determine by using this set up.

In this set up the TW is enough to be regarded as rays reflecting and transmitting in

cavity.
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Later the metalized optical fiber tip was used to generate TW instead of metal foil

attached to a tube as in the case of conventional TWRC technique. A polymer optical

fiber tip or free end coated with silver conductive paint was used to generate TW, by

moving this tip with respect to detector and the liquid thermal diffusivity was

obtained in a thermally thick region. The thermal diffusivity of distilled water,

glycerol, and five different types of cooking oil used which are sunflower, soy bean,

olive, corn and palm oils were determined with four-significant-figure at room

temperature. These values are in good agreement to the values reported in literatures.

The TW field was calculated in a three-dimensional approach. The calculations show

that the dimensionality of the TW field in the cavity depends on the lateral (radial)

heat transfer boundary conditions and the relation between the laser beam spot size

and TW generator diameter. The three-dimensional treatment of the metalised fiber

tip was reduced to one-dimensional treatment by using a relatively bigger TW

generator diameter compared to laser beam spot size.

The set up using optical fiber end also was used to determine thermal diffusivity of a

two-layer which is normally difficult to achieve in the conventional large area metal

foil due to contact problem. In order to check the validity of the proposed model, the

method was experimentally tested for distilled water and glycerol; the values

obtained were close to the literature values. A good linear relation of the amplitude

with respect to cavity length in thermally thick region of both media was observed.

In other TWRC methods the thermal diffusivity values can be obtained by measuring

the relative distance of two adjacent extrema. The thermal diffusivity values were

obtained by this method compare with “fitting data” method.
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PEMBANGUNAN DAN PENGGUNAAN TEKNIK RONGGA RESONAN
GELOMBANG TERMA BERASASKAN GENTIAN OPTIK BAGI

PENGUKURAN RESAPAN TERMA CECAIR

Oleh

MONIR NOROOZI

Agust 2007

Pengerusi: Professor Madya Azmi Zakaria, phD

Fakulti: Sains

Dalam kajian ini susunan peralatan teknik rongga resonan gelombang terma (RRGT)

telah digunakan untuk mengukur resapan terma bagi beberapa jenis cecair.

Menggunakan teknik ini resapan terma telah ditentukan dengan mengimbas panjang

rongga, dan bukannya frekuensi, yang mempunyai nisbah isyarat-ke-hingar yang

tinggi dalam kes tebal secara terma.

Dengan menggunakan kerajang logam yang dilekatkan kepada suatu tiub sebagai

penjana gelombang terma (GT), penuntukuran dari susunan RRGT yang

konvensional telah dilakukan dengan menggunakan air suling dan nilai resapan

terma i.e. 1.44×10-3 cm2/s, adalah sesuai dengan nilai literatur. Seterusnya, resapan

terma beberapa cecair, termasuk minyak sawit mentah (0.988×10-3 cm2/s), minyak

kacang soya (1.06×10-3 cm2/s) dan minyak jagung (0.934×10-3 cm2/s), telah

ditentukan menggunakan susunan peralatan ini. Di dalam susunan ini adalah
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memadai untuk menganggapkan GT sebagai sinaran yang terpantul dan terpancar di

dalam rongga.

Seterusnya hujung gentian optik polimer bersalut logam telah digunakan untuk

menjana GT bagi menggantikan kerajang logam yang dihubungkan kepada tiub

seperti di dalam kes teknik RRGT konvensional. Hujung “bebas” gentian optik

polimer yang disalut dengan cat perak telah digunakan untuk menjana GT, dengan

menggerakkan hujung ini terhadap pengesan dan resapan terma cecair telah

diperoleh di dalam kawasan yang tebal secara terma. Resapan terma bagi air suling,

gliserol, dan lima jenis minyak masak yang berbeza digunakan iaitu minyak bunga

matahari, minyak kacang soya, minyak zaitun, minyak jagung dan minyak sawit

mentah, telah ditentukan dengan empat angka bererti pada suhu bilik. Nilai-nilai

yang diperoleh adalah bersesuaian dengan nilai-nilai yang telah dilaporkan dalam

literatur. Medan GT telah dikira dalam pendekatan tiga-dimensi. Hasil pengukuran

menunjukkan bahawa dimensi medan GT di dalam rongga bergantung kepada

keadaan-keadaan sempadan pemindahan haba pada sisi (jejari) dan hubungan di

antara saiz bintik pancaran laser dan diameter penjana GT. Pendekatan tiga-dimensi

bagi hujung gentian bersalut logam telah dikurangkan kepada pendekatan satu-

dimensi dengan menggunakan penjana GT dengan diameter lebih besar berbanding

dengan saiz bintik pancaran laser.

Susunan peralatan menggunakan hujung gentian optik telah digunakan untuk

menentukan resapan terma dwi-lapisan yang pada kebiasaannya sukar diperoleh

menggunakan kerajang logam luas konvensional disebabkan oleh masalah sentuhan.

Model ini mengambilkira pantulan GT dan transmisi pada dua antaramuka; iaitu
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udara-cecair dan cecair-transduser, dalam penghasilan isyarat fotopiroelektrik. Bagi

menyemak kesahihan model yang dikemukakan, kaedah ini diuji secara eksperimen

ke atas air suling dan gliserol; nilai yang diperoleh adalah hampir dengan nilai

literatur. Hubungan linear yang baik di antara amplitud dan panjang rongga dalam

kawasan yang tebal secara terma bagi kedua-dua medium telah diperhatikan.

Dalam kaedah-kaedah RRGT lain, nilai-nilai resapan terma boleh juga diperolehi

dengan mengukur jarak relatif dua ekstrema bersebelahan. Nilai-nilai resapan terma

telah diperolehi dari kaedah ini dibandingkan dengan kaedah “fitting”.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Thermal diffusivity is one of the most important specifications of material, which also

reflect thermal carrier behavior in the liquids. The thermal-wave resonator cavity

(TWRC) technique, one of photothermal (PT) techniques, which base on the generation

and detection of thermal waves (TW), in a given sample, is a result of heating due to

intensity modulated laser source. TWRC technique has a general applicability and

adaptability to many areas of research, as a result of its high resolution thermophysical

characterization of solid, liquid, and gaseous samples. Theoretical expressions, one-

dimensional (1-D) thermal wave field approach, are usually based on general PPE

detection theory and have a variety of modifications depending on the cavity

configuration applied in the experiments. However, the 1-D simplification become

unjustified, especially in cases of cavity lengths very large compared with the thermal

diffusion length and small diameter of laser beams and metal foil, the actual distribution

of the thermal-wave source and the TWRC length require a 3-D approach (Matvienko

and Mandelis, 2006).

In this work, thermal diffusivity of various liquid samples has been investigated by

using the conventional TWRC technique, i.e. by using metal foil as TW generator. This


