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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of requirement for the degree of Master of Science 

 
NUMERICAL EVALUATION OF CAUCHY TYPE SINGULAR INTEGRALS    

USING MODIFICATION OF DISCRETE VORTEX METHOD 
 

By 
 

MOHAMMAD ABDULKAWI MAHIUB 

March 2007 

Chairman: Nik Mohd Asri Nik Long, PhD 
 
Faculty     : Science  
 
 

In this thesis, characteristic singular integral equations of Cauchy type 

                                    ( )( ) ,
L

t dt f x x L
x t

,ϕ
= ∈

−∫                                              (1) 

where L is open or closed contour, are examined. 

 

The analytical solutions for equation (1) are described. Some examples of solution 

for certain functions f (x) are given. 

 

A quadrature formula for evaluation of Cauchy type singular integral (SI) of the form 

                                            
1

1

( ) , 1 1t dt x
x t
ϕ

−

,− < <
−∫                                             (2) 

is constructed with equal partitions of the interval [−1,1] using modification discrete 

vortex method (MMDV), where the singular point x is considered in the  middle of 

one of the intervals [tj, tj+1],  j=1,…, n. 

It is known that the bounded solution of equation (1) when L=[−1,1] is 

 iii



                  ( ) ( )
( )

12

2
1

1 , 1 1
1

f txx dt
t t x

ϕ
π −

−
=

− −
∫ .x− < <                                 (3) 

A quadrature formula is constructed to approximate the SI in (3) using MMDV and 

linear spline interpolation functions, where the singular point x is assumed to be at 

any point in the one of the intervals [tj,tj+1],  j=1,…, n. 

 

The estimation of errors of constructed quadrature formula are obtained in the classes 

of functions C1[−1,1] and Hα(A,[−1,1]) for SI (2) and Hα(A,[−1,1]) for (3). For SI (2), 

the rate of convergence is improved in the class C1[−1,1], whereas in the class 

Hα(A,[−1,1]), the rate of convergence of quadrature formula is the same of that of 

discrete vortex method (MDV). 

 

FORTRAN code is developed to obtain numerical results and they are presented and 

compared with MDV for different functions f(t). Numerical experiments assert the 

theoretical results. 

 

 

 

 

 

 

 
 
 
 
 
 

 iv



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

 
PENYELESAIAN BERANGKA KAMIRAN SINGULAR JENIS CAUCHY 
MENGGUNAKAN PENGUBAHSUAIAN KAEDAH DISKRIT VORTEKS 

 
Oleh 

 
MOHAMMAD ABDULKAWI MAHIUB 

March 2007 

Pengerusi: Nik Mohd Asri Nik Long, PhD 

Fakulti     : Sains 

 

Tesis ini mengkaji persamaan kamiran singular cirian jenis Cauchy iaitu 

                                    ( )( ) ,
L

t dt f x x L
x t

,ϕ
= ∈

−∫                                              (1) 

dengan L adalah  kontur  terbuka dan tertutup. 

 

Penyelesaian analisis untuk persamaan (1) dihuraikan. Beberapa contoh penyelesaian 

ditunjukkan untuk fungsi f (x) tertentu diberikan. 

 

Formula kuadratur untuk menilai kamiran singular (SI) jenis Cauchy  berbentuk 

                                            
1

1

( ) , 1 1t dt x
x t
ϕ

−

,− < <
−∫                                             (2) 

dibina dengan partisi sama bagi selang [−1,1] menggunakan kaedah pengubahsuaian 

diskrit vorteks (MMDV), dengan titik singular x dipertimbangkan berada di tengah 

adalah satu selang   [tj, tj+1],  j=1,…, n. 

Diketahui bahawa penyelesaian terbatas  bagi persamaan (1) dengan  L=[−1,1]  ialah 

 v



                             ( ) ( )
( )

12

2
1

1 , 1 1
1

f txx dt
t t x

ϕ
π −

−
=

− −
∫ .x− < <                            (3) 

Formula kuadratur dibina untuk menganggarkan  SI (3)  menggunakan MMDV dan 

fungsi interpolasi splin linear, dengan titik  singular  x diandaikan berada  pada 

sebarang titik  dalam adalah satu selang  [tj,tj+1],  j=1,…, n. 

 

Penganggaran ralat  bagi formula kuadratur yang terbina diperolehi  dalam kelas 

fungsi  C1[−1,1] dan Hα(A,[−1,1]) untuk SI (2) dan Hα(A,[−1,1]) untuk (3). Untuk SI 

(2), kadar penumpuan dipertingkatkan dalam kelas C1[−1,1], manakala untuk kelas 

Hα(A,[−1,1]), kadar penumpuan adalah sama dengan Kaedah Diskrit Vorteks 

(MDV). 

 

Kod FORTRAN dibangunkan untuk mendapatkan keputusan berangka dan ianya 

dipersembahkan dan dibandingkan dengan MDV untuk fungsi f(t) yang berbeza. 

Eksperimen berangka mengukuhkan keputusan yang diperolehi secara teori. 
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CHAPTER I 

 

INTRODUCTION 

 

Historical introduction 

Integral equation containing integrals, in the sense of the Cauchy principle value, 

with integrands having a singularity in the domain of integration is called singular 

integral equations. Singular integral equation was introduced in the first decade of 

the 20th century in connection with two quite different problems: 

1) Hilbert encountered singular integral equations in a certain boundary problem 

of the theory of analytic functions. 

2) Poincare encountered singular integral equations in the general theory of 

tides. 

 

The theory of singular integral equations was systematically developed in the third 

and fourth decade of 20th century due to French mathematician, Giraud and Soviet 

mathematicians, Muskhelishvili, Gakhov and Vekua. 

 

The investigations of Muskhelishvili and Vekua, based on the properties of Cauchy 

type integral and Riemann-Hilbert's problems, brought a number of interesting and 

important results in the theory of analytic function, and partial differential equations, 

as well as in problem of aerodynamics and the theory of elasticity. These 

investigations are presented in an excellent monograph of Muskhelishvili (1953). 



Definition 1.1: L is said to be a smooth open-ended contour, if L can be defined by 

the parametric relations: 

                            x = x(s),           y = y(s),            sa ≤ s ≤ sb                                       (1.1)    

where sa and sb are finite constant; x(s), y(s) are continuously differentiable functions 

on [sa,sb]; the derivatives ( ) ( ),x s y s′ ′

( )

 cannot be both equal to zero at the same point; 

and assume that different values of the parameter s correspond to different points of 

the curve L. The relation ( ) ( )iy st s x s= +  for the point s of the curve L establishes 

a one-to-one correspondence between t0∈L and s∈[sa,sb], and we have 

. ( ) ( ) ( )t s x s iy s′ ′ ′= +

Definition 1.2: L is said to be a smooth closed contour, if L is a smooth contour such 

that  

                                         ( ) ( ) ( ) ( ),a b a ,bx s x s y s y s= =                                 (1.2) 

                            ( ) ( ) ( ) ( )0 0 , 0a b a bx s x s y s y s′ ′ ′ ′+ = − + = − 0 .                   (1.3) 

Definition 1.3: A curve is said to be piecewise smooth (Figure 1.1) if it consists of 

finitely many smooth open–ended-curves having no points in common except, end-

points. Such a curve is said to have only angular nodes if the angle between any two 

curves entering each node is different from zero, i.e., the node cannot be a cuspidal 

point (Lifanov et al., 2004). 

a

b

t0 

α 
 

 

 

 Figure 1.1: Piecewise smooth curve 

 



 

Definition 1.4: A function φ(t) defined on a set D is said to satisfy the Hölder 

condition with exponent α, if for any t1, t2∈D, the inequality 

                                                  2 1 2( ) ( )t t A t t1
αϕ ϕ− ≤ −                                       (1.4) 

holds with constant A≥0 and 0<α≤1. These constants are respectively called the 

coefficient and the exponent in the Hölder condition. We simply say that the function 

φ(t) satisfies the H-condition or belongs to the class H on the set D. Such a function 

φ is also said to be Hölder continuous (Kanwal, 1997). 

We write φ(t)∈H(α) or φ(t)∈Hα(A, D). 

Note that the inclusion φ(t)∈Hα(A, D) implies that │φ(t)│∈Hα(A, D). 

Definition 1.5: A function φ(t1,…,tn) defined for (t1, …,tn)∈D is said to be of class 

H(α1,…,α n) on the set D, if for any points (t"1, …,t"n), (t'1, …,t'n)∈D, the inequality 

                         1

1 1 1 1 1( ,..., ) ( ,..., ) ... ,n

n n n nt t t t A t t A t tαϕ ϕ′′ ′′ ′ ′ ′′ ′ ′′ ′− ≤ − + + − n
α                  (1.5) 

holds with constants Aj ≥0, 0< α ≤1,  j=1, 2,…,n. 

Definition 1.6: A function φ(t) belongs to the class H∗ on a piecewise smooth 

contour L if 

                                       
1

( )( ) , ( )
( )

k
p

VV
LV

kL

tt P t t
P t
ϕϕ

∗

=

= =∏ kc−                             (1.6) 

where φ*(t)∈H0 on L , i.e., it belongs to the class H on every smooth piece of the 

contour L; 0≤ νk <1; and ck, k=1,2,…,P, are nodes of the contour L. 

 

 

 



Cauchy type singular integral and Cauchy principal value 

Definition 1.7: Let t0 be a point on contour L outside its nodes. Consider a circle 

with center t0 and small radius ε >0 that intersects L at two points t1 and t2 

(Figure1.2). Denote by λ the arc t t . If the integral �
1 2 L⊂

                                                     
/

0

( ) ,
L

t dt
t t
ϕ
−∫ l

                                        (1.7) 

 

t0
t2

t1 

 t0 
o ε

a

b

 Figure 1.2: Cauchy principal value of the singular integral 

has a finite limit Φ(t0) as ε →0, this limit is called the Cauchy principal value of the 

singular integral, 

                                                   0 \0
0

( )( ) lim
L

tt
t tε

dtϕ
→

Φ =
−∫ l

,                                        (1.8) 

and it is denoted by (Kanwal, 1997) 

                                                               
*

0

( ) .
L

t dt
t t
ϕ
−∫                                                   (1.9) 

Consider the special case of a singular integral on the segment L=[a, b] of the real 

axis OX. Then, formula (1.8) reads 

 

 



                      0

0
0 \0 0

0 0

( ) ( ) ( )( ) lim lim
t b

L a t

t tt dt dt
t t t t t t

ε

εε ε

ϕ ϕ−

+→ →
0

t dtϕ⎡ ⎤
Φ = = +⎢ ⎥− − −⎣ ⎦

∫ ∫ ∫l
 

                                                           
*

0
0

( ) ,
b

a

t dt a t b
t t
ϕ

= < <
−∫                             (1.10) 

The general formula for changing the order of two Cauchy principal integrals can be 

written as 

                    
( )( )

* * * *
21 1

1 1
1 1

( , ) ( , ) ( , ).
L L L L

K Kd d d d K t
t t

τ τ τ ττ τ τ τ π
τ τ τ τ τ τ

=
− − − −∫ ∫ ∫ ∫ t−             (1.11) 

This is called Poincare-Bertrand formula (Andrei and Alexander, 1998). 

We commence the investigation of the problem of existence of the singular integral 

with the simplest case 

                                                        
*

0

.
L

dt
t t−∫                                                           (1.12) 

Denote by λ the part of the contour L cut out by the circle with center at t0 whose 

radius ε >0 and take the integral over the remaining arc (Figure 1.3). 

Then 

                             ( )1

20 0/0 0
0

lim lim ln( ) | ln( ) |t b
a tL

dt t t t t
t tε ε→ →

= − + −
−∫ l

 

                                                 0 1

0
0 2

ln lim lnb t t t
a t t tε→

0

0

− −
= +

− −
                                     (1.13) 

where a and b are the end points of the contour L (Zabreyko et al.,1975). Note that  

                                   [ ]1 0 1 0
1 0 2 0

2 0 2 0

ln ln arg( ) arg( ) ,t t t t i t t t t
t t t t
− −

= + − − −
− −

              (1.14) 

and 

 



                                                         1 0 2 0 .t t t t− = −                                             (1.15) 

Due to (1.14) and (1.15) yields 

                                                         1 0

0
2 0

lim ln t t i
t tε

π
→

−
=

−
                                         (1.16) 

t2  

 

 α 

t0  

 
t1 

 

Figure 1.3: The angel between t1 t0 and t2 t0  

and consequently 

                                            
*

0

0 0

ln .
L

b tdt i
t t a t

π−
= +

− −∫                                     (1.17) 

The later integral can also be represented in the form 

                                                
*

0

0 0

ln .
L

b tdt
t t t a

−
=

− −∫                                                   (1.18) 

If the contour L is closed, then 

                                                      
*

0

.
L

dt i
t t

π=
−∫                                                     (1.19) 

 

Now consider the more general integral  

 



                                                      
*

0

( ) ,
b

a

t dt
t t
ϕ
−∫                                                        (1.20) 

where ϕ(t) satisfies the Hölder condition and a and b are the end points of contour L. 

In this case the integral (1.20) can easily be reduced to (1.12) by representing it in the 

form 

                                   
* * *

0
0

0 0

( ) ( )( ) ( ) .
b b b

a a a

t tt ddt dt t
t t t t t t

ϕ ϕϕ ϕ−
= +

− −∫ ∫ ∫
0

t
−

                     (1.21) 

Substituting (1.18) into (1.21) yields 

                                 
* *

0
0

0 0

( ) ( )( ) ( ) ln .
b b

a a

t t b tt dt dt t
t t t t t a

ϕ ϕϕ ϕ 0

0

− −
= +

− −∫ ∫ −
                       (1.22) 

It can be shown that the singular integral (1.20) exists if ϕ(t) satisfies the Hölder 

condition (Davis and Rabinowitz, 1984). 

 

Analytical Solution of the Cauchy type singular integral equation 
 in a complex plane 

 
In this section we attempt to solve the integral equation of the second kind  

                                
* ( )( ) ( )
L

b ta x f x dt
i t x

ϕϕ
π

= −
−∫                                                 (1.23) 

where a and b are constants, ϕ(t) satisfy the Hölder condition, and L is a regular 

closed contour (Kanwal, 1997). 

To find the solution for the closed contour, let us write (1.23) in the operator form  

                                
* ( )( ) ( )x
L

b tL a x dt f
i t x

ϕϕ ϕ
π

= + =
−∫ x                                         (1.24) 

and define the adjoint operator 

 



                                  
* ( )( ) .x
L

b g tMg ag x d
i t xπ

= −
−∫ t                                                  (1.25) 

From (1.24) and (1.25) we obtain  

                                   
* ( )( )
L

b tML a a x dt
i t x

ϕϕ ϕ
π

⎛ ⎞
= +⎜ ⎟

−⎝ ⎠
∫   

                
* * ( )( )
L L

b dt ba t d
i t x i t

ϕ τϕ τ
π π τ

⎛ ⎞
− +⎜ ⎟

− −⎝ ⎠
∫ ∫  

                                            
* ( )( )
L

b f taf x dt Mf
i t xπ

= − =
−∫                                       (1.26) 

Due to formula (1.11) and using (1.19) we obtain 

                  ( ) ( )
( )( ) ( )

* * * *
2

L L L L

dtdt d d
t x t t x t

ϕ τ ϕ τ
τ τ π ϕ

τ τ
= −

− − − −∫ ∫ ∫ ∫ x  

                                            
( ) ( )

* * *
2

L L L

d dt dt x
x t x t

ϕ τ τ
π ϕ

τ τ
⎛ ⎞

= + −⎜ ⎟
− − −⎝ ⎠

∫ ∫ ∫  

                                            ( )2 .xπ ϕ= −                                                              (1.27) 

Substituting (1.27) into (1.26) yields 

*
2 2 ( )( ) ( ) ( ) .

L

b f ta x b x af x dt
i t x

ϕ ϕ
π

− = −
−∫  

Thus the solution of equation (1.23) is 

                                   
( )

*

2 2 2 2

( )( ) ( ) ,
L

a b f tx f x dt
a b t xa b i

ϕ
π

= −
− −− ∫                     (1.28) 

where it is assumed that a2− b2≠ 0. 

The solution of the Cauchy-type singular integral equation of the first kind  

 



                                             
*1 ( )( ) t ,
L

f x dt
i t x

ϕ
π

=
−∫                      (1.29) 

) 

                             

follows by setting a=0 and b=1 in (1.28

                                              
*1 ( )( ) .
L

f tx dt
i t x

ϕ
π

=
−∫                                                  (1.30) 

For the unclosed contour the Poincare-Bertrand formula (1.11) is not applicable. 

o as 

                                            

Then to solve such problems, supplement the contour L with other contour L', s

to form a close contour L+L' where ϕ(t)=0, t∈L' , so that the interior and exterior of 

this closed contour stand for the positive and negative direction (Pogorzelski, 1966). 

Thus we have 

*

*

1 1 ( )( ) ( )
2 2

,
1 1 ( )( ) ( )
2 2

L

L

tx x dt
i t x

tx x d
i t x

ϕϕ
π

ϕϕ
π

+

−

⎫
Φ = +

t

⎪− ⎪
⎬
⎪Φ = − + ⎪− ⎭

∫

∫
                           (1.31) 

which is called Sokhotski formulas (Gakhov, 1966). 

                                          

These formulas can also be rewritten as 

*

( ) ( ) ( )

1 ( ) ( ) ( )
L

x x x

t dt x x
i t x

ϕ

ϕ
π

+ −

+ −

⎫= Φ −Φ
⎪
⎬

= Φ +Φ ⎪− ⎭
∫

                                   (1.32) 

By substituting (1.32) into equation (1.23) then the solution of (1.23) is reduced to 

                            (1.33) 

of the form(Kanwal, 1997) 

solving the Riemann-Hilbert problem, 

                                          ( ) ( )a b x++ Φ ( ) ( ) ( )a b x f x−− − Φ =

where the solution will be 

 


