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June 2007 

 
Chairman :   Associate Professor Dr. Taufiq Yap Yun Hin, PhD 
 
Faculty :   Science 
 
 

Oxidation of n-butane to maleic anhydride catalyzed by vanadium phosphate catalyst 

is one of significant worldwide commercial interest since decades. Introductions of 

dopants and/or mechanochemical treatment are the most promising approach for the 

improvement of the catalytic performance of vanadium phosphate catalyst. 

Tellurium doped vanadium phosphate catalyst (VPDTe) was prepared via 

VOPO4·2H2O phase after calcinating the tellurium doped precursor, 

VOHPO4•0.5H2O at 733 K in a flowing of n-butane/air for 18 h. VPDTe catalyst 

gave very high for n-butane conversion, 80% compared to only 47% for the undoped 

catalytst. The crystallite size, morphology, surface reactivity and reducibility of the 

catalyst have been affected by the addition of tellurium.  

 

VPDTe catalyst has result a higher existence of V5+ phase in the catalyst bulk with 

having nearly the optimum amount  of V5+/V4+ ratio, 0.23. The SEM micrographs 

showed that the tellurium altered the arrangement of the platelets from “rose-like” 

clusters to layer with irregular shape. The sizes of platelets are even thicker and 
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bigger which led to lower surface area compared to undoped VPD catalyst. An 

addition of 1% tellurium has markedly lowered the reduction activation energies of 

the vanadium phosphate catalyst as revealed by TPR profiles. The amount of oxygen 

species removed from the peak associated with V4+ phase for VPDTe catalyst 

significantly higher. These phenomenon suggested that the O=V bond of the VPDTe 

catalyst are weaker with higher mobility and more reactive of the oxygen as 

compared to the undoped counter part.  

 

All mechanochemial treated VPD catalysts have shown an increased surface P/V 

ratio, reduced the crystallite size of the catalysts and displayed different degree of 

crystallinity. TPR results demonstrated that both reduction peaks for every 

mechanochemical treated catalyst shifted to lower temperature and improved the 

amount of oxygen removed from the catalysts. VPDM catalyst gave 57% of 

conversion, 10% higher from the untreated VPD catalyst. The presence of cobalt in 

mechanochemical treated vanadium phosphate catalyst has slightly lowered the n-

butane conversion to 54%. Meanwhile, treating the tellurium doped catalyst through 

mechanochemical treatment i.e. milling in stainless steel (VPDTeM) or agate 

(VPDTeM-ag) with ethanol as solvent has reduced the conversion from 80% to 58% 

and 50%, respectively. The selectivity of all catalysts prepared was almost retained 

in all cases (~ 33%) except for VPDCoM catalyst (19%).  
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Pengoksidaan n-butana kepada malik anhidrida oleh vanadium fosfat merupakan 

salah satu antara cabang tindak balas komersial yang diberi perhatian di seluruh 

dunia. Penambahan pelbagai dopan dan/atau rawatan kimia-mekanikal adalah 

pendekatan yang biasanya dilihat akan meningkatkan kadar prestasi pemangkinan 

bagi mangkin vanadium fosfat. Mangkin yang ditambah dengan tellurium ini 

disintesis melalui fasa VOPO4·2H2O setelah prekursor yang telah ditambah dengan 

tellurium, VOHPO4•0.5H2O diaktifkan pada 733 K dalam aliran n-butana/udara 

selama 18 jam. Mangkin VPDTe memberikan kadar penukaran n-butana 80% 

berbanding hanya 47% bagi mangkin yang tidak ditambah dengan tellurium. Saiz 

kristal, morfologi, kereaktifan permukaan and ciri penurunan mangkin tersebut 

dipengaruhi olah penambahan tellurium.    

 

Mangkin VPDTe menunjukkan kewujudan fasa V5+ yang lebih tinggi dengan hampir 

mencapai nisbah optimum V5+/V4+, 0.23. Mikrograf-mikrograf SEM menunjukkan 

tellurium telah mengubah susunan platlet-platlet dari gugusan seperti ros kepada 

lapisan dengan bentuk tidak tetap. Saiz platlet-platlet juga semakin tebal and besar 
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yang mana telah membawa kepada penurunan luas permukaan jika dibandingkan 

dengan mangkin VPD yang tidak ditambah dengan tellurium. Penambahan 1% 

tellurium telah menyebabkan penurunan ketara terhadap tenaga pengaktifan 

penurunan bagi mangkin vanadium fosfat seperti yang dinyatakan melalui profil 

TPR. Jumlah spesis oksigen yang disingkirkan dari puncak yang mewakili fasa V4+ 

bagi mangkin VPDTe adalah jauh lebih tinggi. Fenomena ini mencadangkan ikatan 

O=V bagi mangkin VPDTe adalah lebih lemah dengan pergerakan oksigen untuk 

mengaktifkan butana adalah lebih tinggi dan lebih reaktif berbanding mangkin yang 

tidak ditambah tellurium. 

 

Semua mangkin VPD yang dirawat dengan kimia-mekanikal telah menunjukkan 

peningkatan nisbah permukaan P/V, penurunan saiz kristal dan kepelbagaian darjah 

penghabluran. Keputusan TPR menunjukkan kedua-dua puncak penurunan bagi 

setiap mangkin yang dirawat dengan kimia-mekanikal bergerak ke arah suhu yang 

lebih rendah dengan jumlah oksigen yang disingkirkan dari mangkin turut 

meningkat. Mangkin VPDM menunjukkan kadar penukaran n-butana 57% iaitu 10% 

lebih tinggi berbanding mangkin VPD yang tidak ditambah dengan tellurium. 

Kehadiran kobalt dalam mangkin yang dirawat dengan kimia-mekanikal telah 

mengakibatkan sedikit penurunan kadar penukaran n-butana kepada 54%. Dalam 

pada itu, rawatan kimia-mekanikal yang dilakukan terhadap mangkin yang ditambah 

dengan tellurium sama ada di dalam peralatan besi tahan karat atau silika dengan 

etanol sebagai pelarut telah menyebabkan kadar penukaran butana menurun dari 

80% kepada 58% dan 50%. Kadar pemilihan bagi malik anhidrida kesemua mangkin  
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hampir dikekalkan pada kadar yang sama (~ 33%) bagi semua kes kecuali bagi 

mangkin VPDCoM (19%). 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 An Outlook in Catalytic Oxidation Process 

 

Oxidation reaction has vastly contributed to the science of catalysis and also to the 

development of modern society (Taufiq-Yap, 1997). More than 60% of the chemicals 

and intermediates synthesized via catalytic processes are products of oxidation.  Today, 

catalytic oxidation is the basis for the synthesis of a large percentage of the monomers or 

modifier used for the production of synthetic fibers and plastics and include large 

volume products such as ethylene oxides, acrylonitrile, vinyl chloride, maleic and 

phthalic anhydride (Centi et al., 2000).  

 

In organic chemistry and technology, oxidation processes are defined as conversions of 

compounds under the influence of various oxidizing agent. A distinction is made 

between complete and partial oxidation. Complete oxidation is an undesirable side 

process in organic synthesis which leads to the formation of CO, CO2 and H2O. It is 

partial oxidation which is important. This reaction leads to a special product in which 

the rate of production of the desired product is being formed over others (Taufiq-Yap, 

1997). 
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Partial oxidation processes using air or oxygen are used to manufacture a variety of 

chemicals, and complete catalytic oxidation is a practicable method for elimination of 

organic pollutants in gaseous streams. In the manufacture of chemicals, oxygen may be 

incorporated into the final products, as in the oxidation propylene to acrolein or o-xylene 

to pthalic anhydride: or the reaction may be an oxidative dehydrogenation in which 

oxygen does not appear in the desired product, as in the conversion of butene to 

butadiene.  The desired reaction may or may not involve C-C bond scission (Taufiq-

Yap, 1997). The role of oxidation catalysis in industry in which examples are given of 

its application in different branches of industry is illustrated in Table 1.1.  

 

Table 1.1: Oxidation catalysis in industry (Taufiq-Yap, 1997). 

 Industrial Catalyst(s) 
   

1. Inorganic Industry  
 Nitric acid oxidation of ammonia Pt, Rh 
 Sulphuric acid by oxidation of SO2 V2O5 
   

2. Synthetic Rubber  
 Butadiene by oxydehydrogenation of C4 (Co, Ni)3(PO4)2 
 Styrene by oxydehydrogenation of ethylbenzene Fe2O3 
   

3. Plastics  
 Formaldehyde by oxidation of methanol Fe2(MoO4)3 
 Phthalic anhydride from o-xylene V2O5/TiO2 
   

4. Synthetic Fibers   
 Ethylene oxide Ag/Al2O3 
 Acrylonitrile by ammoxidation of propene Bi2(MoO4)3 
 Maleic anhydride from C4 (VO)2P2O7 
   

5. Pollution Control and Environmental Protection  
 Catalytic car mufflers Pt/Al2O3 
 Combustion of hydrocarbons in flue gases CuCo2O4 
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Although rough estimates place the worth of the world products that have undergone a 

catalytic oxidation step at $ 20 to $ 40 billion, there are some important limitations in 

catalytic oxidation, which can be summarized as follows (Centi et al., 2000): 

 

i) Because of the formation of undesired by-products, none of the 

reactions runs at maximum selectivity, and few reactions attain total or 

close-to-total conversion 

ii) Processes can generate co-products that are not always of economic 

interest 

iii) Some raw materials and products are suspected or proven carcinogens 

iv)     Some processes require expensive oxidizing agents. 

 

 

1.2 General Requirements of the Catalysts for Industrial Processes 

 

The criteria for industrially successful catalysts are very stringent. First, the catalyst 

must be able to affect the desired reaction at an acceptable rate under conditions of 

temperature and pressure that are practicable (Taufiq-Yap, 1997). Chemical technology 

has advanced to the point where temperatures as high as 1600 K and pressure up to 350 

atm. If however good yields can be obtained at low temperatures and pressures, then 

there is every incentive to find a catalyst that will operate under the mildest possible 

conditions, since the use of extreme conditions is very costly. It is concurrently 
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important that side-reactions are minimal, especially those leading to poisoning or 

deactivation through carbon deposition on catalyst. 

 

Second, the catalyst must be able to sustain the desired reaction over prolonged periods: 

in some processes, a catalyst life of several years is not uncommon, and is economically 

necessary. Clearly the longer it lasts, the smaller will be the contribution that its initial 

cost makes the overall cost of the process. Initial cost is rarely of over-riding 

importance: it is usually cheaper in the long run to use an expensive catalyst that will 

last a long time than a cheap one that has to be replaced frequently.  

 

 

1.3 Catalytic Selective Oxidation Process 

 

A large segment of the modern chemical industry is based on catalytic selective 

oxidation processes. Therefore, research in the area of selective oxidation is rapidly 

changing.  In fact, the economic potential of any improvements in this area is enormous. 

It may be recalled, for example, that the economic impact deriving from the expected 

selectivity improvements in the largest scale petrochemical oxidation processes, is about 

US$ 1.4 billion, worldwide (Centi et al., 2000).  

 

In brief, selectivity is the key aspect in the industrial development of oxidation 

processes, usually more than activity itself. The selectivity of a reaction is the fraction of 

the starting material that is converted to the desired product. It facilitates maximum 
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