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DIAMETER OF CARBON NANOTUBES PRODUCED VIA PULSED LASER 
ABLATION DEPOSITION TECHNIQUE 

 
By 

 
SAMAILA BAWA WAJE 

March 2007 

 
Chairman:         Associate Professor Noorhana Yahya, PhD 

Faculty:        Science 

 

In this research work, bismuth oxide (Bi2O3) and nickel oxide (NiO) nanoparticles 

were synthesized through precipitation method, while iron oxide (Fe2O3) 

nanoparticles were synthesized via citrate pyrolysis. All the as-prepared metal oxide 

nanoparticles were used as catalysts for the growth of carbon nanotubes via pulsed 

laser ablation deposition (PLAD) technique. 

 

Pellets were first prepared from a mixture of 90 wt% graphite and 10 wt% catalysts 

in each case, and used as a target. An Nd: YAG laser with wavelength of 532nm and 

power of 10.24W was used to ablate the target materials, using a frequency of 5 kHz 

and current of 25A. The target materials were evaporated and transported to the 

substrate under the influence of argon. The expelled carbon precipitated and diffuses 

through the metal oxide catalysts and condensed on the substrate as carbon 

nanotubes. The effect of each of the catalyst on the diameter of the as-grown carbon 

nanotubes was investigated and the correlation between the type and the particle size 

of the catalysts and the diameter of the grown CNTs were studied.  
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The results show that, there is a strong correlation between the diameter of the 

starting catalyst, with the diameter of the resulting carbon nanotubes for both Bi2O3 

and Fe2O3, indicating that both catalysts serve as the nucleation point for the CNTs 

growth. However, the case of NiO shows a significant difference, as the diameter of 

the as-grown CNTs was eight times bigger than the size of the starting catalyst. This 

can be attributed to the aggregation of the as-prepared NiO particles to form bigger 

clusters, consequent to the ablation process. 

 

Bamboo-like CNTs were observed for Fe2O3 and NiO, which is attributed to the 

high cooling rate of the reaction chamber. Further contribution to this structure is the 

large pulse-to-pulse width of the system (140ns). However CNTs catalyzed by Bi2O3 

were defect free tubes which can be attributed to the lower melting point of Bi2O3 

compare to other catalysts used, thus forming CNTs at a lower eutectic temperature. 

From the results, it can be concluded that, for applications that requires a short tube 

with relatively large diameter Bi2O3 is the best catalyst. For long CNTs with 

relatively large diameter for encapsulation purposes, NiO is the best catalyst, while 

Fe2O3 was seen to be the best catalyst for catalyzing CNTs with a narrow diameter. 
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KESAN OKSIDA LOGAM PARTIKEL NANO BAGI MANGKIN PADA 

DIAMETER TIUB NANO KARBON TERHASIL MELALUI CARA 
PEMENDAPAN ABLASI DENYUTAN LASER 

 
Oleh 

 
SAMAILA BAWA WAJE 

 
Mac 2007 

 
Pengerusi: Profesor Madya Noorhana Yahya, PhD 
 
Fakulti: Sains 
 
 
Dalam kajian penyelidikan ini partikel nano bismuth oksida (Bi2O3) dan nikel oksida 

(NiO) disediakan melalui kaedah mendakan, sementara partikel nano ferum oksida 

(Fe2O3) disintesiskan melalui pirolisis sitrat. Semua partikel nano logam oksida yang 

telah disintesis, digunakan sebagai mangkin bagi pertumbuhan tiub nano karbon 

melalui cara pemendapan ablasi denyutan laser. 

 

Pelet telah disediakan daripada campuran 90% berat grafit dan 10% berat mangkin 

dalam setiap kes, telah digunakan sebagai sasaran. Pemendapan ablasi denyutan 

laser (PLAD) menggunakan laser Nd:YAG dengan jarak gelombang 532nm dan 

kuasa 10.24W digunakan untuk menyinarkan karbon dari sasaran, dengan frekuensi 

yang ditetapkan pada 5kHz dan arus 25A. Ia mengewapkan karbon dan produk di 

bawah pengaruh gas argon. Karbon yang dipercik telah termendak dan meresap 

melalui mangkin logam oksida dan mendap pada substrat sebagai tiub nano karbon. 

Kesan bagi setiap mangkin terhadap diameter tiub nano karbon dikaji dan hubungan 

antara saiz partikel mangkin dan diameter bagi pertumbuhan CNTs terhasil diselidik.  
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Hasil kajian menunjukkan, terdapat hubungan yang kuat antara diameter bagi 

mangkin dengan diameter bagi tiub nano karbon yang terhasil bagi kedua-dua 

mangkin bismuth oksida dan ferum oksida yang menunjukkan kedua-duanya 

bertindak sabagai titik nukleasi bagi pertumbuhan tiub nano karbon. Namun begitu 

nikel oksida menunjukkan perbezaan ketara, iaitu diameter yang tuhasil bagi CNTs 

adalah lapan kali lebih besar daripada saiz awal mangkin tersebut. Ini disebabkan 

oleh gumpalan partikel NiO yang membentuk kluster lebih besar akibat dari 

pertumbuhan pada suhu tinggi di mana laser menghentam sasaran. 

 

CNTs berbentuk buluh diperolehi bagi Fe2O3 dan NiO, di mana dapat dikaitkan 

dengan kadar penyejukan tinggi bagi kebuk tindak balas, akibat daripada ketiadaan 

elemen pemanasan untuk mengekalkan suhu seragam dalam kebuk tindak balas, 

sebagai tambahan kepada struktur ini jarak denyutan yang besar dalam sistem ini 

(140ns). Walaubagaimanapun, CNTs yang dimangkinkan oleh Bi2O3 adalah tiub 

yang sempurna mungkin disebabkan oleh takat lebur mangkin yang rendah maka 

membentuk suatu suhu eutektik pada suhu yang rendah berbanding dengan 

pemangkin lain. Dari pada hasil kajian, boleh disimpulkan bahawa bagi aplikasi 

yang memarlukan tiub yang pendek dengan diameter yang besar, Bi2O3 adalah 

pemangkin terbaik untuk CNTs dengan tiub yang panjang dan diameter yang besar 

untuk tuijuan pengurungan, NiO adalah pemangkin yang terbaik, manakala Fe2O3 

dilihat sebagai pemangkin terbaik untuk memangkinkan CNTs dengan diameter 

yang kecil. 
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LIST OF ABBREVIATIONS 

Laser   Light of amplification stimulation emission radiation  

Nd:YAG Neodymium: Yittrium Aluminium Garnet 

PLAD   Pulsed Laser Ablation Deposition 

CNTs  Carbon nanotubes 

SWNT  Single Walled Carbon Nanotubes 

MWNT Multiwalled Carbon Nanotubes 

XRD   x-ray diffraction 

SEM   Scanning Electron Microscopy 

CVD  Chemical Vapor Deposition 

EDX  Energy Dispersive X-ray 

wt %   Weight percent 

Ar  Argon 

hkl  Miller indices 

MSDS  Materials Safety Data Sheet 

JCPDS  Joint Committee on Power Diffraction Standard 

a.u  Arbitrary unit 

HR-TEM         High resolution transmission electron microscopy 
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CHAPTER 1 

INTRODUCTION  

 

1.1 Background 

Carbon nanotubes (CNTs) are fullerene-related structures, consisting of graphene 

cylinders, closed at either end with caps containing pentagonal rings (Ijima, 1991). 

They were discovered in 1991 by the Japanese electron microscopist Sumio Iijima who 

was studying the material deposited on the cathode during the arc-evaporation synthesis 

of fullerenes. He found that the central core of the cathodic deposit contained a variety 

of closed graphitic structures including nanoparticles and nanotubes, of a type, which 

had never been previously observed (Ijima, 1991). Thomas Ebbesen and Pulickel 

Ajayan later from Iijima's laboratory showed how nanotubes could be produced in bulk 

quantities by varying the arc-evaporation conditions (Iijima and Ichihashi, 1993). These 

paved the way to an explosion of research into their physical and chemical properties in 

laboratories all over the world (Ebbesen, 1994). 

 

Literally called the building blocks of matter, nanotubes exhibits several potentials 

which includes high strength, light weight, high electrical conductivity, excellent 

fatigue and corrosion resistance, high conductivity to mention but just a few. Another 

important development was the synthesis of single-wall nanotubes in 1993 (Iijima and 

Ichihashi 1993). The standard arc-evaporation method which initially produced only 

multiwall tubes was found that addition of metals such as cobalt to the graphite 
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electrodes resulted in extremely fine tube with single-layer walls. The availability of 

these structures enabled scientists to test some of the theoretical predictions, which have 

been made about nanotubes properties (Ebbesen, 1994).  

 

Mostly, the growth of CNT requires the use of a catalyst as shown in Figure 1.1, and the 

commonly used catalysts are transition metals, metal oxides or their alloys in the form 

of thin films or nanoparticles (Ruo et al., 2002). The role of catalysts has and is still 

being studied in the growth of carbon nanotubes. This is due to the complexity of the 

processes, involving a wide range of time and length scales. However, it is 

acknowledged to be very important component in the CNTs growth. This is because; 

the form of the resulting carbon tubules is seen closely to relate to the physical 

dimensions of the metal catalyst particles. When the diameter of the catalyst particle is 

in the range of tenths of a micron, the resulting tubules are carbon filaments of similar 

diameter (Sinnott et al. 1999). As the size of the catalyst particle reduces, the filament 

curvature increases leading eventually to the formation of multi-walled carbon 

nanotubes (MWNTs). If the particle size reduces still further, single-walled carbon 

nanotubes (SWNTs) are formed (Kong et al., 1998 and Sinnott et al., 1999).  


