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Current computational chemistry tools were used to solve the problem of screening for 

the best conformation of potential protein-ligand-metal complex in designing a novel 

semisynthetic metalloenzyme. The computational tools used were Computational Atlas 

Topography of Protein (CASTp), a sophisticated molecular modeling environment 

InsightII, a conventional drug-docking algorithm Autodock 3.05 and a schematic diagram 

for protein-ligand interactions for a given PDB file LIGPLOT. Overall 48 protein pockets 

on the thermolysin structure were measured using CASTp and the four biggest pockets 

based on their number of residues and surface area were identified to be suitables site for 

the modification. Ten different sizes and multifunctional groups of chemical ligands were 

studied for their thermodynamic valuation using the AutoDock 3.05 program.  
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For further modification, phosphoethanolamaine (PSE), phenylalanine (PHE), 

phenylacetic acid (PAC) and phenanthroline (PHN) were chosen as they possessed the 

lowest docking energy of -8.49, -8.34, -7.33 and -7.06 kcal/mol, respectively. Non-

covalent interactions included hydrogen bonding and hydrophobic interaction between 

the ligands and the thermolysin were determined using CASTp. The result showed that 

larger ligands with multifunctional groups such as PSE and PHE showed higher number 

interactions compared to the smaller ligands. In terms of specific pockets for the 

modification, different protein-ligand complexes showed different suitable pockets; 

complex of thermolysin and PSE ligand at pocket 45, complex of thermolysin and PAC 

ligand at pocket 48 and both complexes of thermolysin with PHE and PHN ligands at 

pocket 45, respectively. To verify the final metal ion orientation, three procedures were 

conducted to narrow down the number of possible conformations for the modification. 

From four tested metal ions (Ca2+, Mg2+, Fe2+ and Zn2+ ), Ca2+ was identified to be the 

most favorable metal ion for the modification. It had orientated within an allowed 

geometry in all tested protein ligand complexes. Meanwhile, both Mg2+ and Fe2+ were 

identified as favorable metal ions in KEI-PSE and KEI-PAC complexes, respectively. 

Zn2+ however, showed non favorable docking in all tested complexes due to improper 

parameterized file for zinc ion in AutoDock.   
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Perisian kimia pengkomputeran terkini digunakan untuk menyelesaikan masalah saringan 

bagi menentukan potensi kedudukan protin-ligand yang terbaik untuk mencipta 

semisintetik metaloenzim yang baru. Kajian ini melibatkan penggunaan beberapa perisian 

komputer termasuklah ‘Computational Atlas Topography of Protein’ atau CASTP, 

Insight II, AutoDock 3.05 dan LIGPLOT. Satu siri protin dari struktur thermolysin telah 

dikenalpasti melalui CASTp dan empat poket yang terbesar dan amino acid yang terlibat 

dipilih sebagai poket yang sesuai di dalam kajian ini. 10 ligand yang berbeza dari segi 

saiz dan kumpulan berfungsi telah di kaji melalui kajian termodinamik menggunakan 

program AutoDock 3.05.  
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Untuk modifikasi selanjutnya, phosphoethanolamine (PSE), phenylalanine (PHE), 

phenylacetic acid (PAC) dan phenanthroline (PHN) telah dipilih berdasarkan kepada nilai 

Edocked yang terendah yang dicatatkan iaitu -8.49, -8.34, -7.33 dan -7.06 kcal/mol.. 

Interaksi non-covalen seperti ikatan hidrogen dan  interaksi hidrophobik yang dinilai 

menggunakan program LIGPLOT menunjukan ligand yang lebih besar dan lebih 

fleksibel seperti PSE dan PHE menghasilkan lebih banyak interaksi sekaligus 

menyumbang kepada kestabilan percantuman. Kajian dari segi poket protein yang sesuai 

menunjukan hasil yang berlainan untuk setiap kompleks seperti berikut; kompleks protin 

dan ligand PSE di poket 45, komplex protin dan ligand PAC di poket 48 manakala kedua-

dua kompleks protein-ligand PHN dan PSE di poket 47. Untuk mengesahkan keputusan 

ion logam yang sesuai, tiga protokol pemilihan telah dijalankan untuk menyaring 

konformasi yang terbaik untuk modifikasi ini. Daripada empat ion logam yang dianalisis 

(Ca2+, Mg2+, Fe2+ and Zn2+), Ca2+ telah dikenalpasti sebagai ion logam yang paling sesuai. 

Ianya telah menunjukan orientasi yang sesuai terhadap kesemua protein kompleks yang 

diuji. Sementara itu, Mg2+ dan Fe2+ menunjukan orientasi yang sesuai di kompleks KEI-

PSE dan KEI-PAC sahaja. Manakala Zn2+, tidak menunjukan orientasi yang sesuai untuk 

semua protein kompleks yang diuji dan ini berkemungkinan disebabkan parameter untuk 

ion logam ini tidak tepat di dalam AutoDock.  
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CHAPTER I 

INTRODUCTION 

  

Enzymes are mainly biomolecular proteins which are able to catalyse chemical 

reactions. For many years, researchers have been planning to utilise the diverse 

chemical reactions driven by enzymes in biotechnological industries. One such 

industrial application known as bioprocessing, aims to exploit enzymes rather than 

chemicals as the catalysts that are part of many industrial processes. The 

development of such enzymatic tools, however, requires a detailed structural and 

chemical understanding of the enzyme (Haki and Rakshit, 2004).  

 

Enzymes perform chemical reactions with high specificity and rate enhancement in 

aqueous media at ambient temperature and neutral pH. These features have made 

these biocatalysts attractive for a variety of purposes in pharmaceuticals, fine 

chemicals, cosmetics and bio-related industries. However, the usage of natural 

enzymes are restricted by their inherent specificity. To circumvent this limitation, the 

development of artificial enzymes has received considerable attention. One approach 

for the design of new enzymes is to modify a known enzyme at a defined site with a 

cofactor or new functional group to create a new generation of catalyst enzymes 

(Davies and Distefano, 1997). 
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Metalloenzymes are proteins that function as enzymes and contain metals that are 

tightly attached and always isolated with the protein (Davies et al., 1999). The  metal 

main function is to serve in electron transfer as electrophiles and nucleophiles. The 

electrostatic environment in the active sites is the major factor that guides the 

substrate to the binding site in the correct position. Metal ions can contribute to a 

positive result in this process, often binding groups in a stereochemically rigid 

manner, thereby helping to control and enhance the activity of the enzyme. The 

importance of metallobiomolecules in biological systems to the environmental, 

medical, pharmaceutical, agricultural and biotechnological industries is widespread 

and still rapidly growing especially over the past decade. 

 

Understanding the structural and functional significance of these metal sites requires 

a specialised array of sophisticated instrumentation and techniques, as well as the 

expertise to use them. It is only through a detailed understanding of structure and 

function that enzymes can be selected or redesigned to perform industrially relevant 

catalysis (Kazlauskas, 2000). By determining the biomolecular structure of these 

enzymes at atomic resolution, we can try to understand the fundamental basis of the 

protein’s enzymatic activity and its stability under various solution conditions e.g. 

high temperature, high salt concentration, extreme pH and with organic solvents.  
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Our research is to develop a new type of enzymatic catalyst that is based on the 

binding of ligand and metal on the enzyme to produce a semisynthetic 

metalloenzyme. We are endeavouring to understand the nature of specific protein-

ligand interactions through a structural prediction by combinatorial computational 

chemistry, and molecular modelling. Consequently we are exploring protein-ligand-

metal interactions at an atomic level and endeavour to design novel protein-ligand-

metal complexes in order to improve their novel properties for be use in bio-based 

and biotechnology related industries. 
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Objectives 

 

1. To develop a new method for designing a semisynthetic metalloezyme with 

novel characteristic by using current computational modeling tools.  

 
2. To screen for favorable pockets in thermolysin and intermediate ligands for 

modification.  

 
3. To study the non-covalent interactions within the semisynthetic   

metalloenzyme complex through computer-aided molecular modeling. 

 
4. To identify the most favorable metal ions for the modification. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER II 

 4



LITERATURE REVIEW 

 
Enzymes 
 
Enzymes are one example of natural polymers functioning as biological catalysts. They 

speed up chemical reactions, often very dramatically. In nature, enzymes evolved to be 

extremely specific catalysts. They have special catalytic sites which are specifically 

designed for single reactant. They also operate within defined temperature and pH 

ranges and are often easily destroyed by chemical reactions and heat. The reactant 

substances upon which an enzyme acts are termed the substrates (Figure 1). The 

substances produced as a result of the reaction are the products. Enzyme-controlled 

reactions are mostly reversible and involve the formation of an intermediate enzyme-

substrate complex. 

(http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/E/Enzymes.html  /Enzymes) 

Figure 1:  Visualization of enzymatic catalysis reaction (http://users.rcn.com). 
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Enzyme Classifications 
 
Traditionally, enzymes were simply assigned names by the investigator who discovered 

the enzyme. As knowledge expanded, systems of enzyme classification became more 

comprehensive and complex. As summarized in Table 1 enzymes are grouped into six 

functional classes by the International Union of Biochemists (I.U.B.). (Medical 

Biochemistry Page: mking@medicine.indstate.edu) 

                     
       

  Table 1: Enzyme classification and biochemical properties.         

 

Numbers 
 

Classification 
 

 
Biochemical Properties 
 

1 
 
 
 

Oxidoreductases 
 
 
 

Act on many chemical groupings to add or remove 
hydrogen atoms.  
e.g.- Glucose oxides. 
 

2 
 
 
 
 
 

Transferases 
 
 
 
 
 

Transfer functional groups between donor and acceptor 
molecules. Kinases are specialized transferases that 
regulate metabolism by transferring phosphate from 
ATP to other molecules.  
e.g.- Glucokinase. 
 

3 
 
 

Hydrolases 
 
 

Add water across a bond, hydrolyzing it. 
e.g.- Alpha-amylase. 
 

4 
 
 
 
 

Lyases 
 
 
 
 

Add water, ammonia or carbon dioxide across double 
bonds, or remove these elements to produce double 
bonds. 
e.g.- Pectate lyase. 
 

5 
 
 
 
 

Isomerases 
 
 
 
 

Carry out many kinds of isomerization: L to D 
isomerizations, mutase reactions (shifts of chemical 
groups) and others. 
e.g.- Glucose (xylose) isomerase. 
 

6 
 
 

Ligases 
 
 

Catalyze reactions in which two chemical groups are 
joined (or ligated) with the use of energy from ATP. 
e.g.- DNA ligase. 
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Proteases 
 
Proteases refer to a group of enzymes whose catalytic function is to hydrolyze (break 

down) peptide bonds of proteins. They are also called proteolytic enzymes or 

proteinases. They differ in their ability to hydrolyze various peptide bonds. Each type of 

protease break specific kind of peptide bond. Based on the functional group present at 

the active site, proteases are further classified into four prominent groups, e.g., serine 

proteases, aspartic proteases, cysteine proteases, and metalloproteases (Hartley, 1960). 

 
 

Serine proteases  

Serine proteases are characterized by the presence of a serine group in their active sites. 

They are numerous and widespread among viruses and bacteria. Serine proteases are 

generally active at neutral and alkaline pH, with optimal pH between 7 and 11. They 

have broad substrate specificity including esterolytic and amidase activity. Their 

molecular masses range between 18-35 kDa. The isoelectric points for serine protease 

are generally between pH 4 and 6. (Rao et al., 1998)  

 

Cysteine Proteases 

Cysteine proteases are widely distributed in all living organisms. Cysteine proteases are 

small proteins with molecular weight range from 20 000-35 000 KDa and most of them 

have neutral pH optima. They occur in both prokaryotes and eukaryotes such as bacteria, 

parasites, plants (papain is one of the well-characterized cysteine proteases from the 

latex of carica papaya), invertebrates, and vertebrates (Berti and Store, 1995). In 

mammals, the major cysteine proteinases are the lysosomal cathepsins. They are 

involved in many physiological processes such as protein degradation (Kirschke et al., 
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