

provided by Universiti Putra Malaysia Institutional Repository

UNIVERSITI PUTRA MALAYSIA

PRODUCTION OF SPECIALIZED TRANSFORMATION VECTORS FOR THE PRODUCTION OF BIODEGRADABLE PLASTICS IN TRANSGENIC ARABIDOPSIS AND OIL PALM

ABDUL MASANI MAT YUNUS

FBSB 2006 33

PRODUCTION OF SPECIALIZED TRANSFORMATION VECTORS FOR THE PRODUCTION OF BIODEGRADABLE PLASTICS IN TRANSGENIC ARABIDOPSIS AND OIL PALM

By

ABDUL MASANI MAT YUNUS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

October 2006

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PRODUCTION OF SPECIALIZED TRANSFORMATION VECTORS FOR THE PRODUCTION OF BIODEGRADABLE PLASTICS IN TRANSGENIC ARABIDOPSIS AND OIL PALM

By

ABDUL MASANI MAT YUNUS

October 2006

Chairman: Ho Chai Ling, PhD

Faculty: Biotechnology and Biomolecular Sciences

Polyhydroxyalkanoates (PHAs), such as polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-hydroxyvalerate (PHBV) are bacterial polyesters, which can be used to produce biodegradable products. Since the mass production of PHAs in bacteria via fermentation is expensive, the production of PHAs in plants may be an attractive alternative. The production of PHB in plants required genetic engineering of phbA, phbB and phbC genes of Ralstonia eutropha, whereas, the bktB, phbB, phbC genes of R. eutropha and tdcB gene of Escherichia coli were required for PHBV production. In this study, each of these gene was fused with the transit peptide (T_p) of oil palm acyl-carrier-protein (ACP), and driven by the oil palm leaf-specific promoter (LSP1), for targeting into the plastids of leaf cells. In total, four transformation vectors, pLSP15 (PHB) and pLSP20 (PHBV), pLSP13 (PHB) and pLSP23 (PHBV) were constructed for the transformation of Arabidopsis and oil palm, respectively. Each vector contained the phosphinothricin acetyltransferase gene (Bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23, as plant selectable marker. Matrix attachment

region of tobacco (RB7MAR) was also included, to stabilize the transgene expression and to minimize gene silencing due to positional effects. Restriction enzymes, polymerase chain reaction (PCR) and DNA sequencing were used to verify all the constructed vectors. *Arabidopsis* transformation produced T1 transgenic *Arabidopsis* plants with normal phenotypes at a transformation efficiency of 0.2%~1.0%. PCR and Southern analyses were used to confirm the insertion of the transgenes. Nile blue A staining of these T1 plants demonstrated the accumulation of PHB granules in the leaf. The initial screening of Basta-resistant oil palm embryogenic calli transformed with pLSP13 using PCR demonstrated the presence of *Bar* and PHB genes in transformed oil palm.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGHASILAN VEKTOR-VEKTOR TRANSFORMASI KHAS UNTUK PENGHASILAN PLASTIK BIOMUDAHURAI DI DALAM *ARABIDOPSIS* DAN SAWIT TRANSGENIK

Oleh

ABDUL MASANI MAT YUNUS

October 2006

Pengerusi: Ho Chai Ling, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Polihidroxialkanotes (PHAs) seperti polihidroxibutirat (PHB) dan polihidroxi-kohidroxivalerat (PHBV) merupakan poliester bakteria yang boleh digunakan untuk menghasilkan produk-produk biomudahurai. Oleh kerana penghasilan PHAs dalam kuantiti yang besar menggunakan bakteria melalui kaedah fermentasi adalah mahal, penghasilan PHAs di dalam tumbuhan mungkin alternatif yang menarik. Penghasilan PHB di dalam tumbuhan memerlukan kejuruteraan genetik keatas gen *phbA*, *phbB* dan *phbC* daripada *Ralstonia eutropha*, manakala gen *bktB*, *phbB*, dan *phbC* daripada *R. eutropha* dan *tdcB* daripada *Escherichia coli* diperlukan untuk menghasilkan PHBV. Melalui kajian ini, setiap gen disambung dengan peptid transit (*TP*) daripada proten-pembawa-asil sawit (*ACP*) dan dikawal oleh promoter khusus kepada daun (*LSP1*) untuk ditujukan ke dalam plastid sel daun. Sejumlah 4 vektor transformasi iaitu pLSP15 (PHB) dan pLSP20 (PHBV), pLSP13 (PHB) dan pLSP23 (PHBV) telah dibina, masing-masing ditransformasi ke dalam *Arabidopsis* dan sawit. Setiap vektor mengandungi gen pospinotirisin asetiltransferas (*Bar*) sebagai penanda pemilihan tumbuhan yang dikawal oleh promoter *CaMV35* di dalam pLSP15 dan

pLSP20 serta promoter *ubikuitin* di dalam pLSP13 dan pLSP23. Kawasan pelekatan matrik daripada tembakau (RB7MAR) turut dimasukkan untuk mengstabilkan pengungkap transgen dan meminimumkan penyeyapan gen hasil daripada kesan-kesan posisi. Enzim penyekatan, tindakbalas berantai polimeras (PCR) dan penjujukan DNA telah digunakan untuk mengesahkan vektor-vektor yang dibina. Transformasi *Arabidopsis* menghasilkan pokok *Arabidopsis* transgenik T1 yang normal dengan 0.2%~1.0% efisiensi transformasi. PCR dan pemblotan Southern telah digunakan bagi mengesahkan penyelitan gen. Perwarnaan biru A nile terhadap pokok-pokok T1 tersebut telah menunjukkan pengumpulan gumpalan-gumpalan PHB di dalam daun. Penyaringan awal menggunakan PCR keatas kalus embriogenik sawit yang ditransformasi menggunakan pLSP13 telah menunjukkan kehadiran gen *Bar* dan PHB dalam sawit yang ditransformasikan.

ACKNOWLEDGEMENTS

I sincerely thank my main supervisor, Dr. Ho Chai Ling, for her great support, encouragement, friendship, and insight throughout the course of my study at the Universiti Putra Malaysia. Without her thoughtful arrangements, instructions and help, it would be impossible for me to complete this study. My thanks also go to Assoc. Prof. Dr. Suhaimi Napis, for his advice, comments and guidance whenever sought. I want to express my great gratitude to Dr. Hj. Ahmad Parveez Hj. Ghulam Kadir, for his direct daily supervision and the helpful advices not only in science but also in different aspects of life, and also for his useful comments, kind advises and discussions during this study. I would like to present honest thanks to the Malaysian Palm Oil Board (MPOB) for offering me full scholarship and financial support. Special thanks to Dato' Dr. Mohd Basri Wahid (Director General), Dr Ahmad Kushairi (Director of Biology) and Dr Ravigadevi (Head of Unit, ABBC) for allowing me to completed my thesis. I would also like to thank Assoc. Prof. Datin Dr. Siti Nor Akmar and Madam Chan Pek Lan, for providing the oil palm leafspecific promoter, Prof. Anthony J. Sinskey of MIT for PHB genes. Special thanks extended to all staffs of Genetic Transformation Laboratory for their help and assistance. Finally, I wish to express my deepest gratitude and appreciation to my family, especially to my father (Mat Yunus Abas) and mother (Adiyah Hj Mokhtar), for their continuous long-distance encouragement and support from Kumai, Pahang. To my wife, Dayang Izawati, thank you for your love and encouragement during my study.

I certify that an Examination Committee has met on 17th October, 2006 to conduct the final examination of Abdul Masani Mat Yunus on his Master of Science thesis entitled " Production of Specialized Transformation Vectors for the Production of Biodegradable Plastics in Transgenic *Arabidopsis* and Oil Palm " in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Datin Siti Nor Akmar Abdullah, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Janna Ong Abdullah, PhD

Lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Raha Abdul Rahim, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Ismanizan Hj. Ismail, PhD

Associate Professor Faculty of Sciences and Technology Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean, School of Graduate Studies Universiti Putra Malaysia

Date: 21 DECEMBER 2006

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Ho Chai Ling, PhD

Lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Hj. Ahmad Parveez Hj. Ghulam Kadir, PhD

Advanced Biotechnology and Breeding Centre Malaysian Palm Oil Board (Member)

Suhaimi Napis, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor/Deputy Dean, School of Graduate Studies

Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ABDUL MASANI MAT YUNUS

Date: 23 SEPTEMBER 2006

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii

CHAPTER

1	INT	RODUCTION	1
2	LITI	ERATURE REVIEW	4
	2.1	Polyhydroxyalkanoates (PHAs)	4
		2.1.1 Polyhydroxybutyrate (PHB)	4
		2.1.2 Biosynthesis of PHB	6
		2.1.3 Polyhydroxybutyrate-co-hydroxyvalerate	
		(PHBV)	7
		2.1.4 Biosynthesis of PHBV	9
		2.1.5 Commercialization of PHBV by Bacterial	
		Fermentation	9
	2.2	Plant Transformation	10
		2.2.1 Arabidopsis thaliana	11
		2.2.2 Elaeis guineensis and E. oleifera (Oil palms)	12
	2.3	Production of PHAs in Plants	14
		2.3.1 Arabidopsis thaliana	15
		2.3.2 Nicotiana tabacum (Tobacco)	21
		2.3.3 Brassica napus (Rapeseed)	22
		2.3.4 Gossypium hirsutum (Cotton)	24
		2.3.5 Zea mays (Maize)	24
		2.3.6 <i>Medicago sativa</i> (Alfalfa)	25
		2.3.7 Linum usitatissimum (Flax)	26
	2.4	Analysis of Transgenic Plant Producing PHB	27
	2.5	Future Prospective	29
3	MAT	FERIALS AND METHODS	33
	3.1	DNA Manipulation	33
		3.1.1 Determination of DNA Concentration	33
		3.1.2 Phenol Extraction of DNA	33
		3.1.3 Precipitation of DNA	34
		3.1.4 Large Scale Preparation of Plasmid DNA	34
		3.1.5 Small Scale Preparation of Plasmid DNA	35
		3.1.6 Agarose Gel Electrophoresis	37
		3.1.7 Isolation of DNA Fragments from Agarose	

		Gel	37
	3.1.8	Restriction Enzyme Digestion	39
	3.1.9	Formation of DNA with Blunt Ends	39
	3.1.10	Dephosphorylation	40
	3.1.11	Ligation	40
	3.1.12	Transformation of DNA into Compentent	
		Cells	41
	3.1.13	Polymerase Chain Reaction (PCR)	43
3.2	Constr	ruction of Transformation Vectors	47
	3.2.1	Plasmids	47
	3.2.2	Construction of pLSP3	47
	3.2.3	Construction of pLSP4, pLSP5, pLSP6 and	
		pLSP7	52
	3.2.4	Construction of pLSP8	52
	3.2.5	Construction of pLSP9, pLSP10 and pLSP11	58
	3.2.6	Construction of pMB30	61
	3.2.7	Construction of pLSP17 and pLSP18	61
	3.2.8	Construction of pLSP13 and pLSP15	61
	3.2.9	Construction of pLSP20 and pLSP23	64
3.3	Plant 7	Fransformation	64
	3.3.1	Transformation of Arabidopsis thaliana	64
	3.3.2	Transformation of Oil Palm	70
3.4	Analys	sis of Transgenic Plant	73
	3.4.1	Extraction of Genomic Plant DNA	73
	3.4.2	Screening of Transgenic Plant by PCR	
		Analysis	74
	3.4.3	Screening of Transgenic Plant by Southern	
		Blot Analysis	74
	3.4.4	Nile Blue A Staining Method	/8
RESU	JLTS		79
4.1	Constr	ruction of PHB and PHBV Transformation	
	Vector	rs	79
	4.1.1	Construction of pLSP3 Vector	82
	4.1.2	Construction of pLSP4, pLSP5, pLSP6,	
		pLSP7 and pLSP8 Single-gene Intermediate	
		Vectors	84
	4.1.3	Construction of pLSP9, pLSP10 and pLSP11	
		Multiple-gene Intermediate Vectors	91
	4.1.4	Construction of pMB30 Backbone Vector	95
	4.1.5	Construction of pLSP17 and pLSP18 Single-	
		gene Transformation Vectors	95
	4.1.6	Construction of pLSP13, pLSP15, pLSP20	
		and pLSP23 Transformation Vectors	98
4.2	Introdu	uction of PHB and PHBV Transformation	
	Vector	rs into Arabidopsis thaliana	103
	4.2.1	Transformation of pLSP15 and pLSP20	-
		Transformation Vectors into Agrobacterium	
		tumefaciens strain LBA4404	103

4

		4.2.2	Agrobacterium-mediated Transformation	
			(Floral-dip) of Arabidopsis thaliana	105
		4.2.3	Screening of Transgenic Arabidopsis Plants	
			by PCR Analysis	108
		4.2.4	Characterization of Transgenic Arabidopsis	
			Plants by Genomic Southern Analysis	117
		4.2.5	Visualization of PHB Granules in Transgenic	
			Arabidopsis Plants	124
	4.3	Biolist	tics Transformation of Oil Palm with PHB	
		and PI	HBV Transformation Vectors	127
_	DIGG	uggio		100
5	DISC	USSIO	N	130
	5.1	Devel	opment of PHB and PHBV Transformation	100
	- 0	Vector		130
	5.2	Produ	ction of PHB and PHBV Transgenic Plants	135
C	CON	T LIGI	ONE	140
0	CON	LUSI	UND	140
			1/13	
		7S		145
			160	
DIODATA OF AUTIION		107		

LIST OF TABLES

Table		Page
1	Properties of SCL-PHAs	5
2	PHB production in transgenic plants	30
3	List of transgenic plants accumulating PHBV	31
4	Strains used in this study	42
5	Primers used in this study	45
6	Plasmids used in this study	48
7	Primers used for PCR screening	75
8	List of constructed vectors in this study	81
9	Selection of Basta-resistant Arabidopsis plants	110

LIST OF FIGURES

Figure	9	Page
1	The general structure and formula of SCL-PHAs and MCL-PHAs	5
2	Pathway of PHB and PHBV synthesis in <i>R. eutropha</i>	8
3	The structure of plant cell	16
4	Accumulation of PHB inclusions in the cytoplasm of transgenic Arabidopsis plant	16
5	PHB granules in the plastid of transgenic A. thaliana	18
6	Construction of pLSP1	49
7	Construction of pLSP2	50
8	Construction of pLSP3	51
9	Construction of pLSP4	53
10	Construction of pLSP5	54
11	Construction of pLSP6	55
12	Construction of pLSP7	56
13	Construction of pLSP8	57
14	Construction of pLSP9	59
15	Construction of pLSP10 and pLSP11	60
16	Construction of pMB30	62
17	Construction of pLSP17 and pLSP18	63
18	Construction of pLSP13	65
19	Construction of pLSP15	66
20	Construction of pLSP20	67
21	Construction of pLSP23	68
22	The overall cloning strategy for the construction of PHB and PHBV transformation vectors	80

23	Selection of pLSP1 vector	83
24	Selection of pLSP3 vector	83
25	Restriction endonuclease analysis of pLSP1, pLSP2 and pLSP3	85
26	The use of cloning sites in pLSP3	86
27	Selection of pLSP4	87
28	Selection of pLSP5	87
29	Selection of pLSP6	88
30	Selection of pLSP7	88
31	Selection of pLSP8	89
32	Confirmation of sense orientation of inserted genes in pLSP4, pLSP5 and pLSP7 by PCR analysis	89
33	Confirmation of sense orientation of inserted genes in pLSP6 and pLSP8 by PCR analysis	90
34	Restriction endonuclease analysis of pLSP4, pLSP5 and pLSP6	92
35	Restriction endonuclease analysis of pLSP7 and pLSP8	92
36	Selection of pLSP9	93
37	Selection of pLSP10	93
38	Selection of pLSP11	94
39	Restriction endonuclease analysis of pLSP9, pLSP10 and pLSP11	94
40	Restriction endonuclease analysis of pMB35-46 and pMB30	96
41	Selection of pLSP17 and pLSP18	96
42	Restriction endonuclease analysis of pLSP17 and pLSP18	97
43	Restriction endonuclease analysis of pLSP13 and pLSP15	99
44	Restriction endonuclease analysis of pLSP20 and pLSP23	99
45	Confirmation of inserted genes in pLSP13, pLSP15, pLSP20 and pLSP23 transformation vectors by PCR analysis	101
46	Physical map of pLSP13 transformation vector	101

47	Physical maps of pLSP15, pLSP20 and pLSP23 transformation vectors	102
48	Selection of A. tumefaciens LBA4404 carrying pLSP15 and pLSP20	104
49	Digestion of plasmid DNA from <i>A. tumefaciens</i> LBA4404 carrying pLSP15 and pLSP20	104
50	Arabidopsis plants of two-leaf stage of on Basta-wet compost	106
51	Basta selection on Arabidopsis plants	106
52	Phenotypes of T1 plants	107
53	Leaf phenotype's of Arabidopsis plant	109
54	Genomic DNA of T1 transgenic Arabidopsis plants	111
55	PCR analysis of T1PHB plants by using primers BAR2-F and BAR2-R	113
56	PCR analysis of T1PHBV plants by using primers BAR2-F and BAR2-R	114
57	Screening of <i>phbA</i> gene in T1PHB plants by using primers PCRphbA2-F and PCRphbA2-R	114
58	Detection of <i>phbB</i> gene in T1PHB plants by using primers PCRphbB2-F and PCRphbB2-R	114
59	PCR screening of T1PHB plants for <i>phbC</i> gene by using primers PCRphbC2-F and PCRphbC2-R	115
60	PCR analysis of T1PHBV plants for the detection of $bktB$ (A) and $phbB$ (B) genes	115
61	PCR analysis of T1PHBV plants for the detection of $tdcB$ (A) and $phbC$ (B) genes	116
62	Dot blot hybridization of genomic DNA from T1PHB and T1PHBV plants	118
63	Southern blot analysis of T1PHB plants	119
64	Southern blot analysis of T1PHBV plants	120
65	Integration of <i>phbA</i> gene in T1PHB plants by Southern analysis	122
66	Integration of <i>bktB</i> gene in T1PHBV plants by southern analysis	123

67	Epifluorescence microscopy of PHB granules in the leaf of plants stained with Nile Blue A	125
68	Nile Blue A staining for 16 weeks old of T1PHB plant	126
69	PCR analysis of Basta-resistant oil palm embryogenic calli using primers POR12 and POR38	128
70	PCR analysis of <i>Bar</i> gene in Basta-resistant oil palm embryogenic calli	128
71	PCR analysis of <i>phbA</i> , <i>phbB</i> and <i>phbC</i> genes in Basta-resistant oil palm embryogenic calli	129

LIST OF ABBREVIATIONS

ACP	acyl carrier protein
btkB	gene coding for 3-ketothiolase
Bar	gene coding for phosphinothricin acetyltransferase
CaCl ₂	calsium chloride
CaMV35S	cauliflower mosaic virus 35S
CoA	coenzyme A
СТАВ	cetyltrimethylammonium bromide
2,4-D	2,4-dichlorophenoxyacetic acid
DIG	digoxigenin
DMSO	dimetyl sulfoxide
dNTP	deoxynicotinamide triphosphate
dwt	dry weight
EDTA	ethylenediaminetetra acetic acid
fwt	fresh weight
3HB	3-hydroxybutyrate
HCL	hydrochloric acid
3HV	3-hydroxyvalerate
IBA	indole-3-butyric acid
ilvA	gene coding for threonine deaminase
KCL	potassium chloride
КОН	potassium hydroxide
LB	left border
LSP1	leaf-specific promoter
MCL	medium-chain-length

MgC1 ₂	magnesium chloride
MgSO ₄	magnesium sulfate
MPOB	Malaysian Palm Oil Board
MS	murashige and skoog
NAA	α -naphthaleneacetic acid
NaCl	sodium chloride
NaOH	sodium hydroxide
Nos	gene coding for nopaline syntase
PCR	polymerase chain reaction
PDC	puruvate dehydrogenase complex
РНА	polyhydroxyalkanoate
phbA	gene coding for 3-ketothiolase
phbB	gene coding for acetoacetyl-CoA reductase
phbC	gene coding for PHA synthase
РНВ	polyhydroxybutyrate
PHBV	polyhydroxybutyrate-co-hydroxyvalerate
PRP	pathogen-related protein
RB	right border
RB7MAR	RB7 matrix attachment region
RbCl ₂	rubidium chloride
SCL	short-chain-length
SDS	sodium dedocyl sulfate
TAG	triacylglycerols
TCA	tricarboxylic acid
tdcB	gene coding for threonine dehydratase

T-DNA transferable-DNA

Tp transit peptide

CHAPTER 1

INTRODUCTION

Palm oil is the second largest source of edible oil after soy oil in the world, which contributes 23.18 million tonnes (19.8%) of the total world's production of oils and fats (Pushparajah, 2001). Since 1990, Malaysia is the largest producer of palm oil, contributing about 11.8 million tonnes or 50.9% of the total production, while Indonesia produced about 7.5 million tonnes or 32.3%. Malaysia is also the world's largest exporter of palm oil, accounting for about 61.1% or 10.62 million tonnes of the total exports of 17.37 million tonnes in 2001. Palm oil has a wide range of applications, about 80% are used for food industries such as cooking oil, shortenings, margarines, ice creams and cookies while the rest are used as feedstock for a number of non-food applications such a diesel fuel substitute, drilling mud, soaps and epoxidised palm oil products, polyols, polyurethanes and polyacrylates (Salmiah, 2000). In addition to the cost benefit and its multiuse, palm oil was also proven to be nutritious. Studies have indicated that palm oil lowers serum cholesterol levels to the same degree as sunflower oil which is rich in unsaturated fatty acid (Manorama and Rukmini, 1992). Palm oil does not increase the plasma cholesterol or low-density lipoprotein (LDL), where increased level could be harmful but on the other hand, it increases the high-density lipoprotein (HDL), which protects against heart disease (Sundram et al., 1992). Furthermore, palm oil has anti-tumor effects especially with the presence of high levels of vitamin E, tocopherols and tocotrienols (Nesretnam et al., 1992).

The challenge that the oil palm industry will face in the 21st century is the ability to maintain profitability in the face of labor shortage and limited land resources. World production of palm oil was projected to double from the year 2000 to year 2020 with a total production exceeding 40 million tones and it is expected that nearly 26% of the world's oil and fat demand will be obtained from palm oil (Oil World, 2020: www.mpob.gov.my). Due to this projected demand, it is important to increase the yield of oil palm as well as to improve the palm oil quality at a better rate than that has been achieved by conventional breeding. Accordingly, in early 1990s, the genetic engineering programme has been initiated at Malaysian Palm Oil Board (MPOB), then Palm Oil Research Institute of Malaysia (PORIM), to fulfill this demand (Cheah et al., 1995). The primary strategy of this programme is to produce transgenic oil palm with high oleic oil content (Cheah et al., 1995). Besides increasing oleic acid, modification of oil quality and production of novel high value products have also been targeted. These targets include increasing stearic acid, synthesizing palmitoleic acid, synthesizing ricinoleic acid and producing biodegradable plastics (Parveez et al., 1999). Currently, biodegradable plastics such as polyhydroxyalkanoates (PHAs) are being produced under the trade name Biopol[™] by Monsanto in a two-stage glucose / propionate fed batch fermentation process using Ralstonia eutropha (Kessler et al., 2001). The economics of the manufacturing process is still a major barrier to the widespread use of PHAs. An alternative strategy for lowering production costs which has been proposed is to develop transgenic plants that produce PHAs. This strategy could lead to considerably cheaper production of PHAs because production from plants does not require expensive fermentation equipments and substrates (Poirier et al., 1992).

In the last 10 years, MPOB has made significant progress on the production of PHAs [polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-hydroxyvalerate (PHBV)] in transgenic oil palm, such as development of a transformation system using biolistic-mediated method (Parveez, 1998), isolation of tissue-specific promoters such as mesocarp and leaf specific promoters (Siti Nor Akmar *et al.*, 2001), construction of PHB and PHBV transformation vectors driven by constitutives and mesocarp-specific promoters (Masani *et al.*, 2001; Masani and Parveez, 2003), transformation and production of transgenic oil palm (Parveez, 2003).

In this study, transformation of oil palm and *Arabidopsis* with the PHB and PHBV genes with the goal of accumulating bioplastics in the leaves was initiated. The objectives of this study are:

- 1. To construct PHB and PHBV transformation vectors driven by oil palm leafspecific promoter (*LSP1*).
- To transform PHB and PHBV transformation vectors into *Arabidopsis* and oil palm.
- 3. To confirm integration of PHB and PHBV genes in transgenic *Arabidopsis* and oil palm by molecular analysis.

CHAPTER 2

LITERATURE REVIEW

2.1 Polyhydroxyalkanoates (PHAs)

Polyesters like polyhydroxyalkanoates (PHAs) are a large group of polymers of 3-(R)-hydroxy fatty acids linked by an ester bond between the hydroxyl group and the carboxy group of an adjacent monomer (Sudesh *et al.*, 2000). PHAs are divided into two groups, i.e. short-chain-length PHAs (SCL-PHAs) that is comprised of PHB and the copolymer PHBV; and medium-chain-length PHAs (MCL-PHAs) that consists of 3-(R)-hydroxyhexanoate / 3-(R)-hydroxytetradecanoate monomers (Figure 1). PHAs are osmotically inert compounds and they are optically active, biocompatible, biodegradable and hydrophobic. The properties of PHAs vary with their compositions (Table 1). PHAs are mainly composed of R-(-)-3-hydroxyalkanoic acid monomers. Each type of PHA generally consists of 1000-10000 monomers, but most are synthesized by SCL monomers. There are many different types of PHAs that are characterized by chain length, type of functional group and degree of unsaturated bonds. A higher degree of unsaturation increases the rubber qualities of a polymer, and different functional groups change the physical and chemical properties of a polymer (Madison and Huisman, 1999).

2.1.1 Polyhydroxybutyrate (PHB)

Most of the knowledge on bacterial production of PHB is generated from *Ralstonia eutropha* (formerly known as *Alcaligenes eutrophus*) because it naturally produces PHB and can produce up to 85% of its dry weight (dwt) when grown in media containing excess glucose.

