

## **UNIVERSITI PUTRA MALAYSIA**

## **BIOSURFACTANT PRODUCTION BY PSEUDOMONAS AERUGINOSA** 181

LAITH ISSA YASSIN AL-ARAJI

FBSB 2004 2



# BIOSURFACTANT PRODUCTION BY *PSEUDOMONAS AERUGINOSA* 181

LAITH ISSA YASSIN AL-ARAJI

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA 2004



## BIOSURFACTANT PRODUCTION BY *PSEUDOMONAS AERUGINOSA* 181

By

LAITH ISSA YASSIN AL-ARAJI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the degree of Doctor of Philosophy

October 2004



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

BIOSURFACTANT PRODUCTION BY PSEUDOMONAS AERUGINOSA

Bv

LAITH ISSA YASSIN AL-ARAJI

October 2004

Chairman : Professor Abu Bakar Salleh, Ph.D.

Faculty : Biotechnology and Biomolecular Sciences

This study involves the screening of biosurfactant producers that have been isolated from

crude oil bacteria degraders. The bacteria were isolated by qualitative screening on

cetyltrimethylammonium bromide (CTAB) agar plates and quantitative screening for

biosurfactant production in liquid media. A biosurfactant producer identified as

Pseudomonas aeruginosa 181 was selected for further analysis.

Maximum biosurfactant production by Pseudomonas aeruginosa 181 was achieved after

120 h incubation at pH 7.0 and 37°C. Static condition and 5.0% bacterial inoculum's gave

the optimum biosurfactant yield. Culture medium containing glucose as the carbon source;

and casamino acids as the organic nitrogen source gave the highest level of biosurfactant

production. Corn steep liquor and ammonium nitrate on the other hand inhibited

biosurfactant production. However, the addition of metal ions such as Fe, Mg and Mn

maximized biosurfactant synthesis.

UPM BR

2

The biosurfactant produced by *Pseudomonas aeruginosa* 181 was purified to homogeneity by acid precipitation and ammonium sulphate precipitation. Biosurfactant produced by *Pseudomonas aeruginosa* 181 was stable and had a broad range of pH from 3.0 to 12.0 with the maximum activity (Surface Tension reduction and Emulsification Index (E24)) exhibited at pH 7.0. The purified biosurfactant had a broad range of temperature and exhibited optimum activity at 30°C. This biosurfactant had high activity compared to many commercial surfactants with 0.1 mg critical micelle concentration (CMC). The purified biosurfactant had a maximum emulsification index (E24) of 86% with hexadecane, followed by 80% with nonane, dodecane, tridecane, pentadecane, octadecane and o-Xylene.

Response surface methodology (RSM) was then used to study interactive effects of the parameters (pH, stirring rate, casamino acid concentration and incubation period) on the production of biosurfactants. Generally, simultaneously increasing surface tension reduction and emulsification index (E24) improved yields. Production carried out at larger volumes of 1L using Bioreactor under RSM-optimized conditions yielded 350.22 mg of products after purification by acid precipitation. Identities of isolated products were verified by using TLC, high performance liquid chromatography (HPLC), liquid chromatography–Mass spectrometry (LC-MS), mass spectrometry (MS-MS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and infrared spectroscopy (FT-IR), from analysis carried out the rhamnolipids were monorhamnolipids and dirhamnolipids.



#### PENGHASILAN BIOSURFAKTAN OLEH PSEUDOMONAS AERUGINOSA 181

#### Oleh

#### LAITH ISSA YASSIN AL-ARAJI

#### Oktober 2004

Pengerusi : Profesor Abu Bakar Salleh, Ph.D

Fakulti : Bioteknologi and Sains Biomolekul

Kajian ini melibatkan pemencilan dan penyaringan penghasil biosurfaktan daripada bakteria yang mendegradasikan minyak mentah. Bakteria ini pada awalnya dipencilkan nengikut penyaringan kualitatif di atas agar cetiltrimetilammonium bromida (CTAB) dan penyaringan kuantitatif di atas media cecair. Penghasil biosurfaktan dikenalpasti sebagai *Pseudomonas aeruginosa* 181 dan dipilih untuk analisis selanjutnya. Penghasilan biosurfaktan yang maksimum oleh *Pseudomonas aeruginosa* 181 adalah pada suhu 37°C selepas 120 jam pengeraman pada pH 7.0 keadaan statik dan 5 peratus inokulum memberikan keadaan optimum penghasilan biosurfaktan. Penghasilan biosufaktan tertinggi adalah dalam media yang mengandungi sumber karbon glukosa dan asid kasamino sebagai sumber nitrogen. Aktiviti biosurfaktan direncatkan oleh 'corn steep liquor' dan ammonium nitrat. Walau bagaimanapun, penambahan ion metal seperti Fe, Mg dan Mn memberikan sintesis biosurfaktan maksimum.

Penghasilan biosurfaktan oleh *Pseudomonas aeruginosa* 181 di tulenkan sehingga homogeniti melalui presipitasi asid dan presipitasi ammonium sulfat. Penghasilan biosurfaktan adalah stabil pada pH optimum 3.0 hingga 12.0 dan aktiviti maksimum (pengurangan ketegangan permukaan indeks imulsifikasi (E24)) pada pH 7.0. Penghasil



tulen menunjukkan aktiviti optimum pada 30°C. Biosurfaktan ini mempunyai aktiviti yang sangat tinggi jika dibandingkan dengan kebanyakan surfaktan komersil dengan 0.1 mg kepekatan sel kritikal (CMC). Biosurfaktan tulen menunjukkan aktiviti indeks emulsifikasi (E24) maksimum pada 86% dengan heksadekana, diikuti 80% dengan nonana, dodekana, tridekana, pentadekana, oktadekana dan o-Xylena.

Seterusnya kaedah permukaan respon (RSM) digunakan untuk mengkaji kesan interaksi parameter untuk penghasil biosurfaktan (pH, kadar pengadukkan, kepekatan asid kasamino and masa pengeraman). Lazimnya, apabila pengurangan ketegangan permukaan dan indeks imulsifikasi (E24) meningkat menyebabkan penghasilan produktiviti meningkat. Penghasilan pada isipadu yang besar iaitu 1L menggunakan Bioreaktor dibawah keadaan optimum RSM menghasilkan 350.22 mg produk selepas ditulenkan menggunakan presipitasi asid. Identiti produk pencilan dipelbagaikan menggunakan TLC, kromatografi cecair tinggi (HPLC), spektrometri jisim-kromatografi cecair (LC-MS) spektrometri jisim (MS-MS), mikroskop elektron imbasan (SEM), mikroskop elektron transmisi (TEM) dan spektroskopi infra merah (FT-IR), hasil daripada analisis yang dijalankan rhamnolipid adalah monorhamnolipid and dirhamnolipid.



#### **ACKNOWLEDGEMENTS**

In the name of ALLAH the most benevolent and merciful, first and foremost all praise be to ALLAH for giving me the opportunity, patience, help and guidance for the completion of this thesis. To my dearest wife, sons, mother, father, brothers and sisters, thank you for bringing me up to be who I am today. My success symbolizes and reflects on the undivided support and love from all of you.

My heartiest gratitude goes to my supervisors: Prof. Dr. Abu Bakar Salleh for his willingness to help, listen and assist in every way, in the midst of his heavy responsibilities and duties. Above all, thank you for the advice, guidance, ideas, criticism and encouragement throughout the project. Not forgetting my supervisory committee members: Prof. Dr. Mahiran Basri and Asso. Prof. Dr. Raja Noor Zaliha Abdul Rahman and Asso. Prof. Dr. Mohammad Basyaruddin Bin Abdul Rahman for their constructive comments, constant support and invaluable guidance. In taking this text from the raw manuscript stage to the final ready thesis stage, I have received tremendous assistance from the meticulous checking of the text to numerous suggestions for modifications and special learning aids from all of you. Special recognition is addressed to all my lab mates and friends in Lab 139, 140 and 401(Department of Chemistry) thank you for your friendship. I am - also indebted to all the staff in Department of Microbiology and Department of Biochemistry.



I certify that an Examination Committee met on 19<sup>th</sup> October 2004 to conduct the final examination of Laith Issa Yassin Al-Araji on his Doctor of Philosophy thesis entitled "Biosurfactant Production by *Pseudomonas aeruginosa* 181" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

#### JOHARI RAMLI, Ph.D.

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

#### NORHANI ABDULLAH, Ph.D.

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

#### MOHD ARIF SYED, Ph.D.

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

#### NOR MUHAMMAD MAHADI, Ph.D.

Professor
The National Institute for Genomics
and Molecular Biology
UKM-MTDC Smart Technology Centre
(Independent Examiner)

#### GULAM RUSUL RAHMAT ALI, Ph.D.

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:



This thesis submitted to the Senate of the Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as followed:

#### ABU BAKAR SALLEH, Ph.D.

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

#### RAJA NOOR ZAL1HA ABDUL RAHMAN, Ph.D.

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

#### MAHIRAN BASRI, Ph.D.

Professor Faculty of Science Universiti Putra Malaysia (Member)

AINI IDERIS, Ph.D.

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:



## **DECLARATION**

| I hereby declare that the thesis is based on my<br>citations which have been duly acknowledged. I<br>or concurrently submitted for any other degree as | also declare that it has not been previously |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                                                                                                                                        |                                              |
|                                                                                                                                                        |                                              |
|                                                                                                                                                        |                                              |
|                                                                                                                                                        |                                              |
|                                                                                                                                                        | LAITH ISSA YASSIN AL-ARAJI                   |
|                                                                                                                                                        | Date:                                        |



#### **TABLE OF CONTENTS**

|                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page                                                                                                     |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ABSTRACT<br>ABSTRAK<br>ACKNOLEG<br>APPROVAL<br>DECLARAT<br>LIST OF TA<br>LIST OF FIG<br>LIST OF AE | GMENT<br>TION<br>BLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>4<br>6<br>7<br>9<br>15<br>17<br>20                                                                  |
| CHAPTER                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |
| Ι                                                                                                  | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                       |
| I                                                                                                  | LITERATURE REVIEW Microbial Biosurfactant Classification and Chemical Nature of Biosurfactants Glycolipids Trehalose lipids Sophorolipids Rhamnolipids Fatty acids Phospholipids Surfactin Polymeric Microbial Surfactants  Acinetobacter calcoaceticus RAG-1 (ATCC 31012) Emulsan The Polysaccharide Protein Complex of Acinetobacter calcoaceticus BD4 Other Acinetobacter Emulsifiers Emulsifying Protein From Pseudomonas aeruginosa Surfactants From Pseudomonas PG-1 Particulate Surfactants Extracellular Vesicles From Acinetobacter sp. HO1-N Microbial Cells with High Cell Surface Hydrophobicities Physiology Role Biosynthesis | 25<br>25<br>26<br>28<br>29<br>30<br>31<br>31<br>31<br>32<br>32<br>32<br>33<br>33<br>33<br>33<br>33<br>33 |
|                                                                                                    | Regulation Factors Affecting Biosurfactant Production Carbon Source Nitrogen Source Environmental Factors Recovery of Biosurfactant Potential Commercial Applications Applications of Biosurfactants in Pollution Control Microbial Enhanced Oil Recovery                                                                                                                                                                                                                                                                                                                                                                                   | 37<br>39<br>41<br>42<br>43<br>45<br>47<br>48                                                             |



|     | Biosurfactants in Oil Storage Tank Clean-up                   | 49       |
|-----|---------------------------------------------------------------|----------|
|     | Hydrocarbon Degradation                                       | 49       |
|     | Hydrocarbon Degradation in the Soil Environment               | 50       |
|     | Hydrocarbon Degradation in Aquatic Environment                | 50       |
|     | Biosurfactant and Hexa-chlorocyclohexane                      | 51       |
|     | Biosurfactants Applications in Food Industry                  | 51       |
|     | Biosurfactants Effects on Freshwater and Marine               | 50       |
|     | Inhabitants                                                   | 52       |
|     | Microbial Biosurfactants and Enzyme-Synthesised               |          |
|     | Surfactants                                                   | 52       |
|     | Other Biosurfactants Applications                             | 53       |
|     | Response Surface Methodology  The Four Step Proceeding in DSM | 54       |
|     | The Four Step Procedure in RSM                                | 56       |
|     | Step 1. Identification of Factors                             | 56       |
|     | Step 2. Definition of Factor Levels                           | 56       |
|     | Step 3. Experimental Design and Selection of Test             | 57       |
|     | Samples                                                       |          |
|     | Step 4. Statistical Analysis Uses of RSM                      | 57       |
|     |                                                               | 59<br>50 |
|     | Applications of RSM                                           | 59       |
| III | MATERIAL AND METHODS                                          | 63       |
|     | Materials                                                     | 63       |
|     | General Methods                                               | 68       |
|     | Statistical Analyses                                          | 68       |
|     | Source of Microorganism                                       | 68       |
|     | Preliminary Screening Studies                                 | 69       |
|     | Preparation of Selective Media                                | 69       |
|     | Mineral media                                                 | 69       |
|     | Selective Media                                               | 69       |
|     | Basal Medium (BM)                                             | 69       |
|     | Growth Media                                                  | 70       |
|     | Cultivation of Bacteria                                       | 70       |
|     | Preparation of Bacterial Inoculation                          | 70       |
|     | Growth Conditions                                             | 70       |
|     | Cultivation Monitoring                                        | 71       |
|     | Cultivation Analyses                                          | 71       |
|     | Physical Parameters                                           | 71       |
|     | Biomass                                                       | 71       |
|     | Protein Assay                                                 | 71       |
|     | Bradford Reagent                                              | 72       |
|     | Standard Curve                                                | 72       |
|     | Emulsification Index (E24) Measurement                        | 73       |
|     | Surface Tension Measurement                                   | 73       |
|     | Maintenance of Bacteria                                       | 74       |
|     | Preparation of Future Stock Culture                           | 74       |
|     | Preparation of Working Stock Culture                          | 74       |
|     | Nutritional and Physical Factors Affecting the Biosurfactant  |          |
|     | Production by <i>Pseudomonas aeruginosa</i> 181               | 74       |
|     | Effect of Carbon Sources on the Growth and Biosurfactant      |          |
|     | Production                                                    | 75       |



|    | Effect of Nitrogen Sources on the Growth and Biosurfactant Production  Effect of Different Concentrations of Casamino acid on the Growth and Biosurfactant Production  Effect of Metal Ions on the Growth and Biosurfactant Production  Effect of Temperatures on the Growth and Biosurfactant Production  Effect of Inoculums Size on the Growth and Biosurfactant |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Production 76 Effect of Agitation Rate on the Growth and Biosurfactant                                                                                                                                                                                                                                                                                              |
|    | Production 77 Effect of Initial pH on the Growth and Biosurfactant Production 77                                                                                                                                                                                                                                                                                    |
|    | Growth Curve and Biosurfactant Production of Pseudomonas  aeruginosa 181 in Optimized Growth Medium  Recovery and Quantification of Biosurfactant  Analysis of Biosurfactants  Preparation of the Samples Prior to Thin Layer  Chromatography (TLC)  Thin Layer Chromatography (TLC)  Ultraviolet-Visible Light Spectrometry  81                                    |
|    | Fourier Transform Infrared (FT-IR)  Analytical High Performance Liquid Chromatography (HPLC)  Liquid Chromatography-Mass Spectrometry (LC-MS)  Mass Spectrometry (MS-MS)  Scanning Electron Microscopy  82  83  84  85  86  87  88  88  88  88  88  88  88  88                                                                                                      |
|    | Transmission Electron Microscopy  Characterization of the Biosurfactant  Stability Studies  Effect of pH on Biosurfactant Stability  Effect of Temperatures on Biosurfactant Stability  Emulsification Index (E24) of Different Hydrocarbons and  Oil  Comparison with Commercials Surfactant  86                                                                   |
|    | Critical Micelle Concentration (CMC)  Study on Interactive Effects of Enzymatic Reaction Parameters and their Optimization using RSM  Experimental Design  Statistical and Graphical Analyses  Optimization of production and Model Validation  89                                                                                                                  |
| IV | RESULTS AND DISCUSSIONS Isolation Pseudomonas aeruginosa 181 Producing Biosurfactant 90 Identification of Bacteria 90 Preliminary Screening Studies 92 Optimization Studies 96 Effect of Nutrients Supplements on Biosurfactants Production 97                                                                                                                      |



| Effect of Carbon Sources on the Growth and                      |     |
|-----------------------------------------------------------------|-----|
| Biosurfactant Production                                        | 97  |
| Effect of Nitrogen Sources on the Growth and                    |     |
| Biosurfactant Production                                        | 106 |
| Effect of Different Concentrations of Casamino acid on          |     |
| the Growth and Biosurfactant Production                         | 110 |
| Effect of Metal Ions on the Growth and Biosurfactant            |     |
| Production                                                      | 113 |
| Effect of Different Concentrations of Ferric                    |     |
| Chloride on the Growth and Biosurfactant                        |     |
| Production                                                      | 113 |
| Effect of Different Concentrations of Magnesium                 |     |
| Sulphate on the Growth and Biosurfactant                        |     |
| Production                                                      | 115 |
| Effect of Different Concentrations of Calcium                   |     |
| Chloride on the Growth and Biosurfactant                        |     |
| Production                                                      | 117 |
| Effect of Different Concentrations of Zinc Sulphate             |     |
| and Manganese Sulphate on the Growth and                        |     |
| Biosurfactant Production                                        | 120 |
| Effect of Temperature on the Growth and Biosurfactant           |     |
| Production                                                      | 124 |
| Effect of Inoculums Size on the Growth and Biosurfactant        |     |
| Production                                                      | 126 |
| Effect of Agitation Rate on the Growth and Biosurfactant        |     |
| Production                                                      | 128 |
| Effect of Initial pH on the Growth and Biosurfactant            |     |
| Production                                                      | 131 |
| Growth Curve and Biosurfactant Production of <i>Pseudomonas</i> |     |
| aeruginosa 181 in Optimized Growth Medium                       | 133 |
| Recovery and Quantification of Biosurfactant                    | 136 |
| Analysis of Biosurfactant                                       | 138 |
| Thin Layer Chromatography                                       | 138 |
| Ultraviolet-Visible Light Spectrometry                          | 140 |
| Fourier Transform Infrared (FT-IR)                              | 140 |
| High Performance Liquid Chromatography (HPLC)                   | 142 |
| Method 1                                                        | 142 |
| Method 2                                                        | 143 |
| Method 3                                                        | 145 |
| Liquid Chromatography-Mass Spectrometry (LC-MS)                 | 147 |
| Mass Spectrometry (MS-MS)                                       | 149 |
| Scanning Electron Microscopy (SEM)                              | 153 |
| Transmission Electron Microscopy (TEM)                          | 155 |
| Characterization of the Biosurfactant                           | 156 |
| Stability Studies                                               | 156 |
| Effect of pH on Biosurfactant Stability                         | 156 |
| Effect of Temperatures on Biosurfactant Stability               | 160 |
| Emulsification Index (E24) with different Hydrocarbons          |     |
| and Oil                                                         | 162 |
| Comparison with Commercials Surfactants                         | 165 |
| Critical Micelle Concentration (CMC)                            | 167 |



|            | Study on Interactive Effects of Biosurfactant Production |      |
|------------|----------------------------------------------------------|------|
|            | Parameters and their Optimization using RSM              | 171  |
|            | Analysis of Variance (ANOVA)                             | 171  |
|            | Regression Analysis                                      | 176  |
|            | Response Surfaces                                        | 180  |
|            | Interactive Effects of pH, Stirring rate, Casamino       |      |
|            | Concentration and Incubation period                      | 181  |
|            | (i) pH versus Stirring rate (AB)                         | 185  |
|            | (ii) pH versus Casamino acid Concentration (AC)          | 186  |
|            | (iii) pH versus Incubation period (AD)                   | 187  |
|            | Interactive Effects of Stirring rate, Casamino acid      |      |
|            | Concentration and Incubation period                      | 187  |
|            | (i) Stirring rate versus Casamino acid Concentration     | 190  |
|            | (BC)                                                     |      |
|            | (ii) Stirring rate versus Incubation period (BD)         | 190  |
|            | Interactive Effects of Casamino acid Concentration and   |      |
|            | Incubation period                                        | 191  |
|            | Optimization of Biosurfactant and Model Validation       | 193  |
|            | 1                                                        |      |
| V          | CONCLUSION AND RECOMMENDATIONS                           | 195  |
|            | Conclusion                                               | 195  |
|            | Recommendations                                          | 198  |
|            |                                                          | -, 0 |
| REFERENC   | CES                                                      | 199  |
| APPENDIC   | EES                                                      | 218  |
| LIST OF PU | IST OF PUBLICATION 27                                    |      |
| BIODATA    | OF THE AUTHOR                                            | 277  |



## LIST OF TABLES

| Γable |                                                                                                                                                                | Pag |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1     | Structural Types of Microbial Surfactants                                                                                                                      | 27  |
| 2     | Classification of Biosurfactant                                                                                                                                | 28  |
| 3     | Preparation of Albumin Bovine Standard Curve                                                                                                                   | 72  |
| 4     | Coded and Actual Levels of Variables for Design of Experiment                                                                                                  | 88  |
| 5     | Coded and Actual Level Combinations for a Five-level, Four-variable Fractional Factorial Design                                                                | 88  |
| 6     | The Amount of Purified Rhamnolipids Produced by <i>Pseudomonas aeruginosa</i> 181 from Five Different methods                                                  | 136 |
| 7     | The X-Ray Analysis of The Biosurfactant Production by <i>Pseudomonas aeruginosa</i> 181 as generated by SEM program                                            | 155 |
| 8     | Emulsification Index (E24) of Rhamnolipid Purified from <i>Pseudomonas aeruginosa</i> 181 with Various Chemical Compound                                       | 162 |
| 9     | Emulsification Index (E24) of Rhamnolipid Purified from <i>Pseudomonas aeruginosa</i> 181 with Various Oils                                                    | 164 |
| 10    | The Surface Tension activity and Emulsification Index (E24) of Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181 and Various Commercials Surfactants | 166 |
| 11    | The Critical Micelle Concentration (CMC) of Different <i>Pseudomonas aeruginosa</i> strains                                                                    | 171 |
| 12a   | 2 <sup>5-1</sup> Factorial Design Matrix (Coded) for Study and Optimization of Biosurfactant Production Indicated From Surface Tension                         | 172 |
| 12b   | 2 <sup>5-1</sup> Factorial Design Matrix (Coded) for Study and Optimization of Biosurfactant Production Indicated From Emulsification Index (E24)              | 173 |
| 12c   | 2 <sup>5-1</sup> Factorial Design Matrix (Coded) for Study and Optimization of Biosurfactant Production Indicated From Whole Cell Protein                      | 174 |
| 12d   | 2 <sup>5-1</sup> Factorial Design Matrix (Coded) for Study and Optimization of Biosurfactant Production Indicated From Rhamnolipid                             | 175 |
| 13a   | ANOVA for Response Surface of Surface Tension Quadratic Model                                                                                                  | 177 |



| 13b | ANOVA for Response Surface of Emulsification Index (E24) Quadratic Model             | 177 |
|-----|--------------------------------------------------------------------------------------|-----|
| 13c | ANOVA for Response Surface of Whole Cell Protein Quadratic Model                     | 177 |
| 13d | ANOVA for Response Surface of Rhamnolipids Production Quadratic Model                | 177 |
| 14a | Values and Significance of Regression Coefficients for Surface Tension               | 178 |
| 14b | Values and Significance of Regression Coefficients for Emulsification Activity (E24) | 178 |
| 14c | Values and Significance of Regression Coefficients for Whole Cell Protein            | 179 |
| 14d | Values and Significance of Regression Coefficients for Rhamnolipid                   | 179 |
| 15  | Optimal Conditions Derived by RSM for Biosurfactant Production by                    | 194 |



## LIST OF FIGURES

| Figure |                                                                                                                                                                       | Page |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | Structures of Rhamnolipids                                                                                                                                            | 30   |
| 2      | Colonies of <i>Pseudomonas aeruginosa</i> 181 on a Nutrient Agar Plate.                                                                                               | 91   |
| 3      | Gram Staining of Pseudomonas aeruginosa 181                                                                                                                           | 91   |
| 4      | Screening of <i>Pseudomonas aeruginosa</i> 181 for the Biosurfactant Production on CTAB Plate                                                                         | 94   |
| 5      | Screening of <i>Pseudomonas aeruginosa</i> 181 for the Biosurfactant Production on medium containing (v/v): 1% Hexadecane, 1% Ethanol and 1% Hexadecane + 1% Ethanol. | 95   |
| 6      | Effect of Carbon Sources on Bacterial Growth and Biosurfactant produced by <i>Pseudomonas aeruginosa</i> 181                                                          | 98   |
| 7      | Effect of Nitrogen Sources on Bacterial Growth and Biosurfactant produced by <i>Pseudomonas aeruginosa</i> 181                                                        | 107  |
| 8      | Effect of Different Casamino acids Concentrations on Bacterial Growth and Biosurfactant produced by <i>Pseudomonas aeruginosa</i> 181                                 | 111  |
| 9      | Effect of Different Ferric Chloride Concentrations on Bacterial Growth and Biosurfactant produced by <i>Pseudomonas aeruginosa</i> 181                                | 114  |
| 10     | Effect of Different Magnesium Sulphate Concentrations on Bacterial Growth and Biosurfactant produced by <i>Pseudomonas aeruginosa</i> 181                             | 116  |
| 11     | Effect of Different Calcium Chloride Concentrations on Bacterial Growth and Biosurfactant produced by <i>Pseudomonas aeruginosa</i> 181                               | 118  |
| 12     | Effect of Different Zinc Sulphate Concentrations on Bacterial Growth and Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181                                  | 121  |
| 13     | Effect of Different Manganese Sulphate Concentrations on Bacterial Growth and Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181                             | 122  |
| 14     | Effect of Temperature on the Growth and Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181                                                                   | 125  |
| 15     | Effect of Inoculum Size on the Growth and Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181                                                                 | 127  |



| 16 | Effect of Agitation Rate on the Growth and Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181                                       | 129 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 17 | Effect of Initial pH on the Growth and Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181                                           | 132 |
| 18 | Growth Curve and Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181 in Optimized Medium.                                            | 134 |
| 19 | Thin Layer Chromatogram of Purified Products                                                                                                 | 139 |
| 20 | The Absorbance of the Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181 Dissolved in Acetonitrile at Wavelength rang (190-900) nm. | 141 |
| 21 | FT-IR Spectra for Purified Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> .                                                         | 141 |
| 22 | HPLC Chromatogram of 10mg/mL Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181 at Flow Rate of 1mL/min                             | 143 |
| 23 | HPLC Chromatogram of 10mg/mL Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181 at Flow Rate of 0.6 mL/min                          | 144 |
| 24 | HPLC chromatogram of 10mg/mL Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181 at Flow Rate 0.4 mL/min                             | 146 |
| 25 | LC-MC Chromatogram of the Biosurfactant Produced by <i>Pseudomonas</i> aeruginosa 181                                                        | 148 |
| 26 | MS-MS Chromatogram of the Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181 at Rotation Time 18.53 min.                            | 150 |
| 27 | MS-MS Chromatogram of the Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181 Biosurfactant at Rotation Time 19.78 min               | 151 |
| 28 | Scanning Micrograph of Biosurfactant Produced by <i>Pseudomonas</i> aeruginosa 181                                                           | 154 |
| 29 | Transmission Electron Micrograph the Morphology of Biosurfactant produced by <i>Pseudomonas aeruginosa</i> 181                               | 156 |
| 30 | Effect of pH on the Surface Tension of Biosurfactant Solution Produced by <i>Pseudomonas aeruginosa</i> 181                                  | 157 |
| 31 | Effect of pH on the Emulsification Index (E24) of Biosurfactant Solution Produced by <i>Pseudomonas aeruginosa</i> 181                       | 157 |



| 32 | Effect of Temperature on the Surface Tension activity of Biosurfactant Solution Produced by <i>Pseudomonas aeruginosa</i> 181 with incubation at the various temperatures   | 161 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 33 | Effect of Temperature on the Emulsification Index (E24) of Biosurfactant Solution Produced by <i>Pseudomonas aeruginosa</i> 181 with incubation at the various temperatures | 161 |
| 34 | Surface Tension versus Concentration of The Purified Biosurfactant Produced by <i>Pseudomonas aeruginosa</i> 181                                                            | 168 |
| 35 | Response Surface Plots of pH versus Stirring rate (AB) for Surface Tension, E24, Whole Cell Protein and Rhamnolipid                                                         | 182 |
| 36 | Response Surface Plots of pH versus Casamino Acid Concentration (AC) for Surface Tension, E24, Whole Cell Protein and Rhamnolipid                                           | 183 |
| 37 | Response Surface Plots of pH versus Incubation Period (AD) for Surface Tension, E24, Whole Cell Protein and Rhamnolipid                                                     | 184 |
| 38 | Response Surface Plots of Stirring rate versus Casamino acid Concentration (BC) for Surface Tension, E24, Whole Cell Protein and Rhamnolipid                                | 188 |
| 39 | Response Surface Plots of Stirring rate versus Incubation Period (BD) for Surface Tension, E24, Whole Cell Protein and Rhamnolipid                                          | 189 |
| 40 | Response Surface Plots of Casamino Acid Concentration versus Incubation Period (CD) for Surface Tension, E24, Whole Cell Protein and Rhampolinid                            | 192 |



### LIST OF ABBREVIATIONS

CaCI<sub>2</sub> Calcium chloride

cm Centimetre

CMC Critical micelle concentration

d Day

dH<sub>2</sub>O Distilled water

DNA Deoxyribonucleic acid

EDTA Ethylenediaminetetraacetic Acid

g Gram

g/L Gram per liter

HCI Hydrochloric acid

HPLC High Performance Liquid Chromatography

h Hour

IR Infrared

L Liter

M Molar

mg Milligram

mL Millilitre

mM Millimolar

mM Millimolar

mm Minute

NaC1 Sodium chloride

Na<sub>2</sub>HPO<sub>4</sub> Disodium hydrogen orthophosphate

NaOH Sodium hydroxide



SDS Sodium dodecyl sulphate

PAHs Polycyclic-Aromatic-Hydrocarbons

R<sup>2</sup> Coefficient of determination

rpm Revolutions per minute

RSM Response surface methodology

TLC Thin layer chromatography

TSB Trypticase Soy Broth

 $\mu g \hspace{1cm} \text{Microgram}$ 

μL Microlitre

μm Micrometer

v/v Volume per volume

w/v Weight per volume



#### **CHAPTER I**

#### INTRODUCTION

Biosurfactants, with both hydrophilic and hydrophobic structural moieties, seem to facilitate the uptake of hydrocarbons into cells. Wide spectra of microbial compounds, including glycolipids, lipopeptides, fatty acids, and polymeric biosurfactants, have been found to have surface activity. Such compounds are able to reduce the surface tension and interfacial tension between water and hydrocarbon phases (Morikawa *et al.*, 2000).

Biosurfactants have important advantages, such as biodegradability, low toxicity, and various possible structures, relative to chemically synthesized surfactants (Benincasa *et al.*, 2002). With environmental compatibility becoming an increasingly important factor in the selection of industrial chemicals, the use of biosurfactants in environmental applications, such as in bioremediation and the dispersion of oil spills, is increasing (Banat 1995a).

In addition, biosurfactants have other uses in the petroleum industry, such as in enhanced oil recovery (Kim *et al.*, 2000) and the transportation of crude oil. Other possible application fields are in the food, cosmetics, and pharmaceutical industries. In these industries, most biosurfactants are used as emulsifiers (Desai and Banat 1997). However, biosurfactants have not yet been employed extensively in industry because of the relatively high production and recovery costs involved.



Considerable attention has been given in the past to the production of the surface-active molecules of biological origin because of their potential utilization in food processing (Mata-Sandoval *et al.*, 1999) pharmacology, and oil industry. Although the type and amount of the microbial surfactants produced depend primary on the producer organism, factors like carbon and nitrogen, trace elements, temperature, and aeration also affected their production by the organism. Hydrophobic pollutants present in petroleum hydrocarbons and soil and water environment require solubilization before being degraded by microbial cells. Mineralization is governed by adsorptions of hydrocarbons from soil. Surfactants can increase the surface area of hydrophobic materials, such as pesticides in soil and water environment, thereby increasing their water solubility. Hence, the presence of surfactants may increase microbial degradation of pollutants. Use of biosurfactants for degradation of pesticides in soil and water environment has become important recently (Jennings and Tanner 2000). The worldwide surfactant market totals approximately 9.4 billion US\$ per annum, and the demand for surfactants is expected to increase at a rate of 35% per annum (Desai and Banat 1997).

According to Karanth *et al.*, (1999), the type, quality and quantity of biosurfactant production is dependent on the culture conditions such as pH, temperature, agitation, dilution rate in continuous culture, the concentration of metal ions and the nature of the carbon source and nitrogen source in the medium. Moreover, the efforts were based on conventional optimisation methods where only one parameter is varied at any one time with the others being kept constant. As such, the interactions amongst these parameters are neglected, resulting in only an 'apparent' set of optimal conditions.

