
Pertanika J. Sci. & Techno!. 3(2): 241-259 (1995)
ISSN:0128-680

© Penerbit Universiti Pertanian Malaysia

Top-down Heuristic for Finding Optimal Grain
Size of Parallel Tasks

Md Yazid Mohd Saman and D.J. Evans l

Department of Computer Science
Faculty of Science and Environmental Studies

Universiti Pertanian Malaysia
UPM 43400 Serdang, Selangor, Malaysia

JParallel Algorithms Research Centre
Loughborough University of Technology

Loughborough,Leics, United Kingdom

Received 10 March 1994

ABSTRACT

In order to have an optimal execution time of a program running on a multi
processor system, the program has to be partitioned into concurrent tasks.
Partitioning of programs to grain size suitable for parallel execution is an NP
complete problem but near-optimal time can be derived. This paper discusses
a heuristic to determine the near-optimal grain size of parallel tasks that will
give the best execution time. The effects of communication overheads between
the different processors are examined. The heuristic developed is capable of
balancing between maximizing parallelism and minimizing overheads.

ABSTRAK

Untuk mendapatkan masa perlaksanaan yang optimum bagi satu aturcara yang
dilaksanakan di sistem multi-pemproses, aturcara tersebut mestilah dipetakan
menjadi tugas serentak. Pemetakan aturcara untuk mendapatkan saiz butir
yang sesuai untuk perlaksanaan serentak adalah satu masalah NP-complete
tetapi masa yang hampir-optimum boleh diperolehi. Kertas ini membincangkan
satu heuristik untuk menentukan saiz butir yang hampir-optimum untuk tugas
serentak yang akan memberikan masa perlaksanaan yang terbaik. Kesan overhed
komunikasi di antara pelbagai pemproses dikaji. Heuristik yang dibina
berkemampuan untuk mengimbang diantara keserentakan yang maksimum
dan overhed yang minimum.

Keywords: grain size, scheduling, shared-memory computers, Bernstein sets

INTRODUCTION
In a mUlti-processor computer, each processor can execute different parts
of a program in parallel; the task of programming in parallel has
increased. In writing programs for a parallel computer, the programmer
must be able to carry out analysis to identify any parallelizable parts and
to ensure that they are free from any data dependences. Task mapping or
scheduling is a process of assigning the concurrent tasks in a program to

Md Yazid Mohd Saman & D.J. Evans

a target parallel machine (Kruatrachue and Lewis 1988; Polychronopoulos
1988). Its main objective is to attain an optimal overall execution time for
the program. This depends on the size of the tasks, their communication
times, the number of processors and the strategy of task assignment to
processors.

This paper presents a description of a heuristic to identify automati
cally the size of task granularity that gives the optimal execution
performance of a sequential program. The main process is to partition
the program into parallel tasks that can be executed on an n-processor
shared-memory parallel machine such as the Sequent Symmetry (Osterhaug
1987). This is not an easy task because the boundaries for partitioning the
program are not well defined except in cases where they are predeter
mined to be of certain language constructs (such as the loop body or basic
blocks) .

DETERMINATION OF TASK GRANULARITY

The determination of task granularity is a partitioning problem. It is a
process of breaking down a program into a set of tasks suitable for parallel
execution (Girkar and Polychronopoulos 1988; Kruatrachue and Lewis
1988; Polychronopoulos 1988; McCreary and Gill 1989; Sarkar 1989; Kwan
et at. 1990). A grain is defined as a module containing one or more tasks
that has to be executed in a sequential manner by a single processor.
Polychronopoulos (1988) defines the size of a task derived entirely from
the syntax of the underlying language. For languages such as Pascal, C
and Fortran, the tasks are the loop body, procedure calls and basic
assignment blocks (BAS). Williams (1978) has limited the maximum size
of a task to be a group of statements with 15 variables; it is not necessarily
a BAS. This, however, does not ensure an optimal task size. In this paper,
a task can be a statement, a block of statements delimited by begin-end
block as in Pascal, a loop or a procedure call.

The problem is to determine the best task size that will give the
shortest execution time. A large grain size will limit potential parallelism.
Small grain size, however, will result in greater communication overheads
and may cause execution time degradation. This needs a good automatic
merging (or packing) strategy to decide which tasks are best executed on
the same processor. Together with the scheduling process, they will have
to balance between the possible parallelism and the communication
overheads to achieve the best grain size. It has been shown that the
general solution to this granularity problem is NP-complete but a near
optimal solution to a subproblem can be determined (Garey and
Johnson 1979; Kruatrachue and Lewis 1988; Sarkar 1989). In this paper,
a heuristic is developed to determine this near-optimal task size.

242 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Top-down Heuristic for Finding Optimal Grain Size of Parallel Tasks

The way tasks are merged is crucial. Sometimes, merging produces
groups of tasks which give degrading execution time. This is illustrated in
Fig. 1. With a low communication time (such as 10 unit time in Fig. I),
merging will degrade the performance (as shown in Fig. 1(b)). On the other
hand, merging improves the performance if high communication time is
involved (Fig. 1(c)). It shows that the main factors governing this merging
operation are the task sizes, the communication times and the dependence
relations. It is essential to determine before merging, the effects of these
factors. If it proves to degrade the execution time, then the tasks should
be left unmerged. However, since the study described in this paper involves
heuristics, then improved solutions cannot always be guaranteed. This is

size=14 2 size=15

Comm

(a) A stanza with two predecessors

2

3

14
2

l---iL9

5

24

34

1 2
I----1

3

14

39

(i) unmerged (ii) merged

(b) Merging degrades the performance if Comm=10

2

2

14

r---iL9

4 3

39

5

1 2
- f---1

3

3

144

(i) unmerged (ii) merged

(e) Merging improves the performance if Comm=20

Fig. 1 Effects oj task and communication size on merging operation

Pertanika J. Sci. & Techno!. Vol. 3 No.2, 1995 243

Md Yazid Mohd Saman & DJ. Evans

because the merging operation restructures the dependence relations of
the new sets of tasks and this may create less parallelism.

Most of the work done by researchers assumes a parallel program in
the form of a task graph. Kwan et al. (1990) uses critical path analysis to
improve the performance of parallel programs. Aggregating tasks by
forming clans as grains has been proposed by McCreary and Gill (1989).
These clans can then be assigned to parallel processors to achieve an
optimal execution time. Sarkar (1989) proposes two models for
partitioning and scheduling task graphs, called the macro-dataflow
model (compile-time partitioning and run-time scheduling) and the com
pile-time scheduling model (partitioning and scheduling at compile-time).

Polychronopoulos (1988) also uses the task graphs to model the
program to be scheduled. A critical process size (CPS) is estimated for
each task and the size of processes are determined, based on this CPS.
The CPS is the minimum size of a process whose execution time is equal
to the overhead that it incurs during scheduling. Kruatrachue and Lewis
(1988) have developed a method to optimize parallel programs called
grain packing which reduces total parallel execution time by balancing
the sequential execution time and communication time. Their duplicating
scheduling heuristic duplicates tasks where necessary to reduce overall
communication delays and maximizes parallelism at the same time.
Bieler (1990) has studied the partitioning of parallel programs written in
UNITY by developing the d-graphs of the programs. These d-graphs are
then mapped on a parallel processor. D-graphs are graphs with two edges,
weak edges and solid edges. Statements connected by weak edges are
suitable for allocation in different processors.

THE TOP-DOWN MERGING HEURISTIC
In this paper, concurrent tasks are derived by partitioning a sequential
program targeted for execution for a shared-memory computer such as
the sequent symmetry (Osterhaug 1987). Therefore, any implicit parallel
ism that exists will be first determined. Williams (1978) has developed an
approach to detect implicit parallelism in a sequential program. The
technique is based on Bernstein sets (BSs) (Bernstein 1966). She develops
a set of conditions (termed Bernstein tests (BTs) in this paper) to
determine whether the tasks can be executed in parallel or not. In this
paper, the BTs are used to derive the predecessor tasks that another task
depends on for data during execution (i.e., the data dependence relations
of tasks). The definitions of tasks (called stanzas in Williams (1978)),
Bernstein sets and Bernstein tests are given in the Appendix. Detailed
discussions on this topics are given in Md Yazid (1993b).

Another process involved in this heuristic is concurrent tasks schedul
ing which is a widely studied research topic (Sahni 1984; Bokhari 1988;

244 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Top-down Heuristic for Finding Optimal Grain Size of Parallel Tasks

Duda 1988; Kruatrachue and Lewis 1988; Polychronopoulos 1988; Sarkar
1989; Md Yazid 1994). Its main goal is to have an optimal execution
time, i.e., the shortest possible execution time for the program on a
certain parallel processor system. However, communication overheads
have become the main problem in performing this function.

In order to reduce communication overheads, some tasks have to
be merged so that they will be executed on the same processor. This is
performed by the Merger module which forms bigger tasks from the basic
ones. It is assumed that this process will add the execution times of the
tasks but still maintain the same communication time (Kruatrachue and
Lewis 1988).

The heuristic is called Top-down Merging Heuristic. It is based on
the following principles. Given a task S and its predecessors tasks PSs (as
shown in Fig. 2), starting from the top level tasks:
a. they will be merged if none of the PSs has been merged with other

tasks, because PSs could also be predecessors of other tasks.
b. let PSi be the largest of all PSs and comm(PSs) be the communica

tion times for PSs to transfer data to any other tasks. Then for all
PSj (where i;t:j) , they are merged with PSi if:

comm(PSj)) > (size(PSi)

Otherwise they are left unmerged. This is to ensure that the merge
operation does not give a new task whose execution time is higher than
that of the unmerged tasks.

Task S

~
Predecessor tasks PSs

Fig. 2. .\ task S and its predecessor
tasks PSs

Pertanika J. Sci. & Technol. Vol. 3 No.2, 1995 245

Md Yazid Mohd Saman & D.J. Evans

When the BSs of two tasks are merged, it produces new BSs whose
contents depend on which sets the variables are members of before
merging. For example, if a variable v is a member of the X set in BS1
and it is also a member in the W set in BS2, then it will be included in
the Z set of the resulting BSs. Fig. 3 shows the algorithm to merge any
two BSs of tasks i and j resulting in task k. It should be noted that
MERGE(Sl,S2) will. not necessarily give the same result as MERGE(S2,Sl).

TASK MERGING ALGORITHM

INPUT
OUTPUT
BEGIN

Tasks Si (with Wi,Xi,Yi,Zi sets) and Sj (with V\J,Xj,Yj,Zj sets)
Task Sk (with Wk,Xk.,Yk,Zk sets)

FOR each variable v in the Wi,Xi,Yi and Zi sets of Si, search for it in task Sj.
BEGIN

IF v is an element of Wi
IF van element of V\J or NOT found,

THEN v is an element of Wk
ELSE v is an element of Yk

IF v is an element of Xi
IF v an element of Xj or NOT found,
THEN v is an element of Xk
ELSE v is an element of Zk

IF v is an element of Yi
THEN v is an element of Yk
IF v is an element of Zi
THEN v is an element of Zk

END
FOR all variable v in task Sj NOT found in task Si
then v is an element of its original set of task Sk
END

Fig. 3. The merge algorithm

Once the merging process has been completed, an average granu
larity size of the new tasks and new dependence relations is determined.
Then, another process of scheduling is carried out to determine a new
schedule with another estimated parallel execution time and speed-up
factor. This process of merging and scheduling is repeated until no more
merging operations are carried out. A schedule with the best execution
time is taken as the near-optimal execution time and its average task size
is the near-optimal average grain size. The description of the scheduling
heuristic is given in Md Yazid (1994). Fig. 4 shows the whole process of
repeated scheduling/merging to find the near-optimal task granularity.

246 Pertanika J. Sci. & Technol. Vol. 3 No.2, 1995

Top-down Heuristic for Finding Optimal Grain Size of Parallel Tasks

set of tasks
CHEDULE I--,.---~

schedule
table

MERGE
exit when

no merging

new set of tasks

Fig. 4. Repeated processes of scheduling and merging to determine granularity size

EXAMPLE OUTPUT

In this section, examples of the output of the scheduling and merging
heuristic are presented. Fig. 5 shows a simple program that performs
L (ai*bj) and its graphical representation in the form of a task graph
depicting the inter-dependence of the statements.

program SUM;
begin

nl := al*bl;
n2 := a2*b2;
n3 := a3*b3;
n4 := a2*b4;
n5 := a5*b5;
n6 := a6*b6;
n7 := a7*b7;

n8 := a8*b8;
n9 := nl+n2;
nlO := n3+n4;
nIl := n5+n6;
n12 := n7+n8;
n13 := n9+nlO;
n14 := nIl+n12;
n15 := n13+n14;
end.

(a) A simple program SUM

~9 ~r~r ~r
9 10 11 12

(b) The task graph

Fig. 5. SUM and its task graph

Pertanika J. Sci. & Techno!. Va!. 3 No.2, 1995 247

Md Yazid Mohd Saman & DJ. Evans

Fig. 6 shows information for the Bernstein sets (BSs) of each task,
derived from each statement in the program. Note that the communica
tion time for each task has been fixed as 10 units during execution. This
can be changed to other values. The Bernstein tests (BTs) are applied on
the BSs to produce the dependence table and the contemporary table as
shown in Fig. 7. The derivation ofBSs and the implementation of the BTs
have been described in Md Yazid (1993a).

w X Y Z Exec Comm
Task sets sets sets sets Time Time

1 a1 n1 11 10
b1

2 a2 n2 11 10
b2

3 a3 n3 11 10
b3

4 a2 n4 11 10
b4

5 as n5 11 10
b5

6 a6 n6 11 10
a7 n7 11 10
b7

8 a8 n8 11 10
b8

9 n1 n9 2 10
n2

10 n3 n10 2 10
n4

11 n5 nIl 2 10
n6

12 n7 n12 2 10
n8

13 n9 n13 2 10
n10

14 nIl nl4 2 10
n12

15 n13 n15 2 10
n14

Total sequential time= 102

Fig. 6. Bernstein sets of the SUM program

248 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Top-down Heuristic for Finding Optimal Grain Size of Parallel Tasks

Task no. { Predecessor tasks I task { concurrent tasks I

1 - 0 1 - { 2 3 4 5 6 7 8 13 141
2 - 0 2 - { 3 4 5 6 7 8 13 141
3 - 0 3 - [4 5 6 7 8 9 14 I
4 - 0 4 - { 5 6 7 8 9 14 I
5 - 0 5 - [6 7 8 9 10 14 I
6 - 0 6 - { 7 8 9 10 14 I
7 - 0 7 - [8 9 10 11 15 I
8 - 0 8 - { 9 10 11 151
9 - { 1 2 I 9 -{101112 15 I

10 - { 3 4 I 10 - { 11 12 15 I
11 - [5 6 I 11 - { 12 13 I
l2 - { 7 8 I 12 - { 13 I
13 - { 9 10 I 13 - { 14 I
14 - {ll 12 I 14 - 0

15 - {13 14 I 15 - 0

(a) Dependence Table (b) Contemporary Table

Fig. 7. Dependence table and contemporary table generated l7y the Bernstein tests (BTs)

The diagrams in Fig. 8 show the first merging operation of tasks 9, 10
and 13 to form a new task 9 and tasks 11, 12 and 14 to form a new task
10. They are merged after considering the effects of their sizes and the
communication overheads. Tasks 1, 2 and 9 or tasks 3, 4 and 10 or tasks
5,6 and 11 or tasks 7, 8 and 12 have not been merged because merging
will degrade their execution times.

Fig. 9 shows a new set of tasks produced after the first merging
operation. Note that tasks 1 to 8 are the same as previous tasks and task
11 is the same as task 15. Task 9 and 10 are the new merged tasks. Task
9 in this table comes from tasks 9, 10 and 13 and task 10 from 11, 12 and
14. The new dependence table and the contemporary table after the first
merging process are shown in Fig. 10.

In the second merging operation, tasks 9, 10 and 11 are merged. Fig. 11
gives an illustration of their merging. The new set of tasks after the second
merging is shown in Fig. 12. In Fig. 13 are the revised dependence table and
contemporary table after the second merging.

Pertanika J. Sci. & Technol. Vol. 3 No.2. 1995 249

Md Yazid Mohd Saman & DJ. Evans

Fig. 8. First merging process of SUM (communication time = 10 units)

DISCUSSION

AB a conclusion of the merging process, the heuristic arrives at the final
result after performing two operations. The third merging does not
produce any new tasks and hence it stops. Table 1 shows the performances
produced by the schedules generated before and after the two merging
operations. It indicates that the best execution time of 2.91 speed-up value
comes with a schedule for a 8-processor parallel machine after the second
merging operation (column 4 row 7). The average granularity size is 11.33
which has nearly doubled from the original size of 6.80. Fig. 14 shows the
grains of tasks that give the best schedule. The performances shown in Table 1
are for the program wiht a communication time of 10 units. The diagrams in
Fig. 15 show the effects of a higher communication time on the merging
operation. In this case, 20 units is fixed as the communication time, resulting
in different groups of tasks being merged.

In the first merging operation, four groups of tasks are merged. If this
is compared with the diagrams in Fig. 7 and 10, different groups are being
merged. In the second merging operation, only one group is merged.

250 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Top-down Heuristic for Finding Optimal Grain Size of Parallel Tasks

Task

1

2

3

4

5

6

7

8

9

10

11

w X
sets sets

a1 n1
b1
a2 n2
b2
a3 n3
b3
a2 n4
b4
a5 n5
b5
a6 n6
b6
a7 n7
b7
a8 n8
b8
n1 n13
n2
n3
n4
n5 n14
n6
n7
n8
n13 n15
n14

y Z
sets sets

n9
n10

n11
n12

Exec
Time

11

11

11

11

11

11

11

11

6

6

2

Comm
Time

10

10

10

10

10

10

10

10

10

10

10

Total sequential time = 102

Fig. 9. A new set of tasks after the first merging

Table 2 shows its performances where the best schedule has a speed-up
value of 2.04 on a 4-processor machine. Fig. 16 illustrates the grains of tasks
for this particular schedule. The speed-up is lower than with 10 units of
communication time (see Fig. 14(b)) and it is achieved after the second
merging. However, the average task size (that is 20.40) is about three times
bigger than the original size (that is 6.80) as shown in Table 2.

Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995 251

Md Yazid Mohd Saman & DJ. Evans

Task no. (Predecessor tasks } task { concurrent tasks }

1 -0 1 (2 3 4 5 6 7 8 11)
2 -0 2 (3 4 5 6 7 8 11)
3 -0 3 (4 5 6 7 8 11)
4 -0 4 (5 6 7 8 11)
5 -0 5 { 6 7 8 9 }
6 -0 6 (7 8 9)
7 -0 7 (8 9)
8 -0 8 (9)
9 - (1 2 3 4) 9 (10)
10 - { 5 6 7 8 } 10 0
11 - { 9 10 } 11 0

(a) Dependence Table (b) Contemporary Table

Fig. 10. New dependence table and contemporary table after the first merging

Fig. 11. Second merging operation of SUM
(communication time ~ 10 units)

252 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Top-down Heuristic for Finding Optimal Grain Size of Parallel Tasks

W X Y Z Exec Comm
Task sets sets sets sets Time Time

1 a1 n1 11 10
b1

2 a2 n2 11 10
b2

3 a3 n3 11 10
b3

4 a2 n4 11 10
b4

S as nS 11 10
bS

6 a6 n6 11 10
b6

7 a7 n7 11 10
b7

8 a8 n8 11 10
b8

9 n1 n1S n13 14 10
n2 n14
n3 n9
n4 n10
nS n11
n6 n12
n7
n8
Total sequential time = 102

Fig. 12. The new set of tasks after second merging

CONCLUSION
This paper has discussed the problem of finding the optimal grain size for
parallel tasks. It is known to be an NP-complete problem but near-optimal
solutions can be derived as this paper has shown. The process of merging
of tasks to form tasks with bigger granularity has been used in order
to find a faster execution time. This needs to be performed carefully due
to the presence of inter-processor communication overheads. An im
proved execution time is only possible if the communication time that
exists after merging is shorter with respect to the task size and the
program still has adequate parallelism. This, however, is not always the

Pertanika J. Sci. & Techno!. Vol. 3 No.2, 1995 253

Md Yazid Mohd Saman & DJ. Evans

Task no. I Predecessor tasks } task { concurrent tasks}

1 - 0 1 - { 2 3 4 5 6 7 8 }
2 - 0 2 - { 3 4 5 6 7 8 }
3 - 0 3 - { 4 5 6 7 8]
4 - 0 4 - { 5 6 7 8]
5 - 0 5 - { 6 7 8 }
6 - 0 6 - { 7 8 }
7 - 0 7 - { 8 }
8 - 0 8 - 0

9 -{1234567 8 } 9 - 0

(a) Dependence Table (b) Contemporary Table

Fig. 13. New dependence table and contemporary table after the second merging

TABLE 1
Performances of SUM with 10 units of communication time

Number of
processors Before merging First merging Second merging

2 1.65 1.65 1.50
3 2.00 2.00 1.79
4 2.12 2.55 2.22
5 2.17 2.55 2.22
6 2.55 2.55 2.22
7 2.17 2.62 2.83
8 2.17 2.62 2.91

average
granularity 6.80 9.27 11.33

case. Merging can also cause execution time degradation. Thus, the
heuristic proposed in this paper only merges tasks if it proves to give
better results.

ACKNOWLEDGEMENT
Financial assistance to carry out the above project was provided by Universiti
Pertanian Malaysia.

254 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Top-down Heuristic for Finding Optimal Grain Size of Parallel Tasks

(a) 9 grams of stanzas "0-

10-

P1 P2 P3 P4 P5 P6 P7 PB
0-

1 2 3 4 5 6 7 B 20-

'0-

'0-

10-

: : : : : : : : : : : : : : : : : 50-

: : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : :

'0-: : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : '0-

20- : : : : : : : : : : : : : : : : :
I- : : : : : : : : : : : : : :

9 : : : : : : : : : : : : : :
'0-: : : : : : : : : : : : : :

10 : : : : : : : : : : : : : :
: : : : : : : : : : : : : :

11 : : : : : : : : : : : : '0- •: : : : : : : : : : : : : : : : : :
1012 :

: 11

30- 13 lOG-: 12: :
14 : 1)

: 16
15 :

1535-
102-

(b) Schedule for the grains (speed-up=2.91)

Fig. 14. Schedules for SUM

Pertanika J. Sci. & Technol. Vol. 3No. 2, 1995 255

Md Yazid Mohd Saman & DJ. Evans

First merging ~

Second merging ~

Fig. 15. Merging oj tasks Jrom SUM with 20 units oj communication time

TABLE 2
Performances of SUM with 20 units of communication time

Number of
processors
2
3
4
5
6
7
8

average
granularity

Before merging
1.42
1.50
1.50
1.32
1.73
1.32
1.32

6.80

First merging
1.42
1.50
1.50

14.57

Second merging
1.38
1.89
2.04

20.40

256 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Top-down Heuristic for Finding Optimal Grain Size of Parallel Tasks

(a) grains of stanzas

P1 P2 PJ P4

5

6

10- 9 10 11 12

20-

: : : : : : : : : : : :
: : : : : : : : : : : :

J 0- : : : : : : : : : : : :
: : : : : : : : : : : :
: : : : : : : : : : : :
: : : : : : : : : : : :
: : : : : : : : : : : :

4 0- : : : : : : : : : : : :
: : : : : : : : : : : :
f-- : : : : : : : : :

1) : : : : : : : : :
14 : : : : : : : : :
15 : : : : : : : : :

50- '-----'-_-'--J_-'

(b) best schedule (speed-up = 2.04)

Fig. 16. Grains of tasks far sum with the communication time = 20 units

REFERENCES
BERNSTEIN, AJ. 1966. Analysis of programs for parallel processing. lEE Trans. onElec. Camp.

1 EC-15: 757-763.

BIELER, F. 1990. Partitioning programs into processes. In: Proceedings of Joint International
Conference on Vectar and Parallel Processing, CONPAR 90-VAPP IV. p. 513-524. Springer
Verlag.

Pertanika J. Sci. & Techno!. Va!. 3 No.2, 1995 257

Md Yazid Mohd Saman & DJ. Evans

BOKHARI, S.H. 1988. Partitioning problems in parallel, pipelined, and distributed comput
ing. IEEE Trans. on Computers 37(1): 48-57.

DUDA, A. 1988. On the tradeoff between parallelism and communication. In: Proceedings of
the 4th International Conference on Modeling Techniques and Toolsfor Computer Performance
Evaluation. p. 323-334.

GAREY, M.R. and D.S.JOHNSON. 1979. Computers and Interactability: A Guide to the Theory ofNP
completeness. San Fransisco: WH Freeman.

GIRKAR, M.B. and C.D. POLYCHRONOPOULOS. 1988. Partitioning programs for parallel
execution In: Supercomputing ACM Proceedings of International Conference, St. Malo,
France, p. 216-229.

KRUATRACHUE, B. and T. LEWIS. 1988. Grain Size Determination for Parallel Processing. IEEE
Software. p: 23-32.

KWAN, A.W., L. BIC and D.D. GAJSKI. 1990. Improving parallel program performance using
critical path analysis. In: Languages and Compilers for Parallel Computing ed. D.
Gelernter, A. Nicolau and D Padua. London: Pitman. p. 358-373.

MCCREARY, C. and H. GILL. 1989. Automatic determination ofgrain size for efficient parallel
processing. CACM 32-9: 1073-1078.

MD YAZID MOHD SAMAN. 1993a. Automatic paralleization ofprograms. PhD thesis, Loughbor
ough University of Technology, UK.

MD YAZIZ MOHD SA.>.1AN. 1993b. The Bernstein method for data dependence analysis.
Technical report no. 3, Dept. of Computer Science, UPM.

MD YAZID MOHD SAMAN. 1994. A scheduling heuristic for a shared-memory computer.
Technical report, Department of Computer Science, UPM [in preparation]

OSTERHAUG, A. 1987. Guide to Parallel Programming. 2nd edn. Sequent Computer Systems.

POLYCHRONOPOULOS, C.D. 1988. Parallel Programming and Compilers. Bosten Mass: Kluwer.

SAHNI, S. 1984. Scheduling multi-pipeline and multi-processor computers. IEEE Trans. on
Computers. C-33. 7: 637-645.

SARKAR, V. 1989. Partitioning and Scheduling Parallel Programs for Multiprocessors. London:
Pitman.

WILLIAMS, SA. 1978. Approaches to the determination for parallelism for computer
programs. PhD thesis, Loughborough University of Technology, UK..

258 Pertanika J. Sci. & Techno!. Vol. 3 No.2, 1995

Top-down Heuristic for Finding Optimal Grain Size of Parallel Tasks

APPENDIX

BERNSTEIN SETS AND BERNSTEIN TESTS

The Bernstein method is based on the set formation containing variables
in programs. The sets, called the Bbernstein sets (BSs), show how the
variables are being used, i.e., fetched and stored. The BSs consist of W,
X, Y and Z sets.

DEFINITION 1.

(i) A task is either a single program statement or a group of statements
appearing adjacently in a computer program and intended to be
executed one after the other.

(ii) Bernstein sets (BSs) consist of four sets defined as follows:

a. W set - set of variables fetched during execution of task
b. X set - set of variables stored during execution of task
c. Y set - set of variables which involves a fetch and one of the

succeeding operations is a store
d. Z set - set of variables which involves a store and one of the

succeeding operations is a fetch

DEFINITION 2.

Bernstein tests (BTs) between two tasks i and j, are tests to determine
whether they can be run concurrently or not, i.e., if they satisfy all of the
following three conditions:

(XiuYiuZi) n(V\Ju1)uZj) =0

(WiuYiuZi) n (Xju1)uZj) =0

(XiuYiuZi) n (Xju1)uZj) =0

The BTs are for shared-memory computers only. The operators"u" and" n"
are set operators for 'union' and 'intersection' respectively. The symbol" 0"

denotes an empty or null set.

Pertanika J. Sci. & Techno!. Va!. 3 No.2, 1995 259

