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ABSTRAK
Keadaan kestabilan kekisi bertindan di dalam ruang dan masa telah dirumuskan.
Grid yang sedang dirujuk ini, dikenali sebagai grid Eliassen (Eliassen 1956).
Telah ditunjukkan bahawa keadaan kestabilan di dalam persamaan gelombang
perairan cetek unruk kekisi jenis ini adalah keadaan kestabilan yang serupa
untuk grid tidak bertindak kekisi Arakawa's B dan C. Bila melaksanakan skim
'leapfrog' di dalam grid bertindan mengikut ruang dan masa, didapati tiada
mempunyai mod pengiraan. Tiada pengiraan purata diperlukan untuk mengira
istilah Coriolis (gelombang graviti) sebagaimana yang diperlukan di dalam grid
Arakawa's B dan C. Di samping itu, penggunaan grid Eliassen menjimatkan
separuh masa pengiraan yang diperlukan dalam grid Arakawa's B atau C
(Mesinger and Arakawa 1976). Oleh itu, adalah lebih menguntungkan dengan
mengguna grid silih berganti di dalam ruang dan masa.

ABSTRACT
The stability conditions of a staggered lattice in space and time are derived.
The grid used is known as the Eliassen grid (Eliassen 1956). It is shown that the
stability conditions of the shallow water wave equations, for this type of lattice,
have essentially the same stability condition as the unstaggered grid and
Arakawa's B and C lattice. Upon implementation of a leapfrog scheme in a
staggered grid in space and time, there will be no computational modes. No
smoothing is needed to compute the Coriolis (gravity wave) terms as required
in Arakawa's C (B) grid. Furthermore, the usage of an Eliassen grid halves the
computation time required in Arawaka's B or C grid (Mesinger and Arakawa
1976). Therefore, there are fundamental advantages for the usage of an
alternated grid in space and time.
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INTRODUCTION

Camerlengo and 0' Brien (1980), using a staggered grid in space and time
(Fig. 1), tested different sets of open boundary conditions for rotating
(geophysical) fluids. In computing (with this type of grid) the Coriolis
terms, quite an amount of averaging is avoided compared to the compu­
tation of these same terms by the widely-used Arakawa's C lattice.
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Fig. J. The analysed staggered lattice in space and time

x

Upon using a leapfrog scheme, two solutions per time step are
obtained. The first one (the physical mode) resembles the true (real)
solution. The second one (the computational mode) is a spurious one. It
travels in an opposite direction to the physical mode. Furthermore, its
amplitude changes sign at every time level (Haltiner and Williams 1980).

To eliminate the computational mode, a forward (or backward) time
scheme is usually implemented (in the numerical integration) at every N
(odd) time step. The time differencing scheme most commonly used in
meteorology and physical oceanography modelling is the Matsuno scheme
(Matsuno 1966). However, (due to the fact that the computational mode
will reappear as soon as the leapfrog scheme is used) the implementation
of the first order time differencing scheme does not seem to be the ideal
solution. A more radical approach needs to be taken.

In using a staggered grid in time and space, the computational mode
is avoided, as the variables at alternate time levels are missing.

The aim of this study is to gain some understanding of the numerical
stability of the Eliassen grid. Following O'Brien (1986), stability analysis of
a sequence of problems, for the Eliassen grid, leading to the linear shallow
water wave equations, is considered. A series of analytical studies is
conducted. The linear stability technique developed by von Neumann is
used (Charney et al. 1950).
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NUMERICAL STABILITY PROBLEM

The linear stability condition of the finite difference schemes is deter­
mined by the phase speed of the gravity waves, C, i.e., by the velocity of the
fastest travelling waves. The general stability condition is :

C !J..t :s:; 0 (1)
~

Stability Analysis for One-dimensional Gravity Wave
Let us consider the following set of partial differential equations:

Ju Db
- =-g-
dt Jx

(1)

Db Ju
- =-H-
dt Jx

where g represents the earth's gravity; H, the mean sea-level depth; u and
v, the velocity components in the x (east-west) and y (north-south)
directions, respectively; and h, the free surface elevation.

A second order, centred, in space and time finite difference scheme,
is considered (Fig. 2). Primed quantities represent variables at odd time
levels. We obtain:

U'~~/ =U'~~/ -gyx (h~=!,,-h~_l,I)

h "'+! h,n-l H ( n n)
m,l+! = m,l+! -Yx Um+1,1=1 -um-l,l+!

(2)

where "Ix is equal to /),t/ /),x; the superscript n, denotes the time level; the
subscripts (m,T), the mesh of discrete points in the x and y directions,

respectively; /),x and /),y, the grid size between grid points in the x and y

directions, respectively; and /),t, the time step increment.

We define:

C2 =gH,

e =Il/),x,

(J = v/),Y,
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Fig. 2. Space representation of the altemated grid in space and time.
Primed quantities represent variables at odd time levels

where J-L and v are the latitudinal and longitudinal wave numbers, respec­
tively. Let us assume that:

P~,l = Pn exp (i J1 mLix) exp (i v ILiy) (3)

where P = (u, h). It is convenient to drop the primes. If we substitute
equation (3) in (2), we obtain:

Un+ 1 =Un- 1-gYx(2isin8)hn

hn+ 1 =hn-1-Hyx (2isin8)u n
(4)

If an amplification factor, Z, exists such that

P
Il
+2 = Z Pn

(5)

equation (4) can be rewritten as:

L, un + L 2 h n =0

L1 hn + L3 Un =0
(6)
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The operators Lt , L
2

, and L
3

are defined as:

Zl/2 _ Z-1/2

2 g Yx

2 H Yx

sin e
sin e

For the system (6) to have a determinate solution:

=0

The second order equation for Z is:

(7)

(8)

If the term [1- (1- 2C
2 Y; sin2e) 2] is positive, then the amplification

factor will be equal to one. Thus, the stability analysis shows that the
chosen finite difference scheme is neutral. Namely that IZ 1=1. This
instance will hold true if, and only if:

That is:

which is the classical Courant-Friedrichs-Levy (CF) condition for computa­
tional stability.

Stability Conditions for the Inertial-gravity Waves
We consider the following system of partial differential equations:
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ah
f Y - g ax

ay
-=-fuat (9)

ah
at

au
- H ax

We assume that:

Q~,l = Q n exp (i ).l mL1x) exp (i v L1y)

where Q = (u, Y, h) and an amplification factor, Z, exists such that:

(10)

A leapfrog in time and second order space difference scheme IS

considered. We obtain:

u n+ 1 un-l + 2 L1t f v n - 2

v n+ 1 vn-l 2 L1t f un

hn+! hn- 1 - 2 i H Yx sin 8

Equation (11) may be rewritten as:

L[ un L4 Yn + L2 h n = 0

L1 Yn + L4 Un 0

L! h n + L3 un 0

g Yx sin e hn

un

(11)

where L4 = 2 f L1t.

Following the same procedure as in the previous section, yields:

Z = [1 - 2 (fL1t)2 - 2 C2 y~ sin2 e] ±

i [1 - (1 - 2 (Mt)2 - 2 C2 y~ sin2 ef]I/2
(12)
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If the term under the radical sign is positive, the stability analysis shows
that the absolute value of the amplification factor is equal to one. We will
have a neutral stability condition. This will require that:

(13)

That is

Adamec and O'Brien (1978), in their reduced-gravity model, used a
~ t of the order 104sec. At mid=latitudes (f "" 10-4 sec-1). the product
f ~t could be of order one. Thus, the stability condition (for reduced­
gravity models) could be easily violated, if caution is not taken.

However, for barotropic (vertically integrated) models, ~t varies from
100 to 600 sec. The product (f ~t? could be of the order 10-3. Therefore,
the term (f ~t)2 does not represent a serious problem, since it is very
small.

Stability Conditions for 2D Flow
Consider the linear shallow water wave equations at a constant latitude,
i.e., f = constant. We will have:

au ah
- f v - g -
at ax

av
- f u -

ah
(14)- g-

at ay

ah _ H (au + av)- =
at ax ay

Upon using, as in the two previous sections, a centred in space and
time difference scheme yields:

un+1 Un_I + 2 t.t f v - 2 g Yx sin 8 hnn

vn+1 vn- 1 2 t.t f u - 2 g Yy sin cr hn (15)n

hn+1 hn+1 2 H i [Yx sin 8 un + Yy sin cr vn]

where 'Y is equal to ~t/~y.
y
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The above system of equations, (15), may be rewritten as:

L1 un L4 vn + L2 hn 0

L1 Y n + L4 Un + LS hn 0

L, hn + L3 Un + L6 Y n 0

where

LS 2 g Yy sin ()

L6 2 H Yy sin ()

(16)

For the set of equations (16) to have a unique solution, it follows that:

Following the same procedure as in the previous cases, yields:

Z2 - 2 X Z + 1 = 0

where

X = 1 - [2 (f~t)2 + 2C2 (y~ sin2 e + y; sin2 cr)]

Neutral stability conditions will be obtained if:

(17)

(18)

(19)

Several cases are considered.

a) For Lx = 2~x and Ly = 2~y, i.e. e = cr = n, where Lx and Ly are

the wavelengths in the x and y directions, respectively, we obtain:

(f ~t)
2

~ 1 for stability

b) For Lx =4L1x and Ly = 4L\y, i.e., () =() =n / 2, yields:

(20)

(21)
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If ~x = ~y = ~ the following relation holds:

(22)

Close to the equator, f z 0, we obtain:

(23)

The same stability condition is obtained for the two-dimensional
unstaggered grid case.

c) For Lx =8 L1x and L y =8 D..y, we will have:

(24)

If D..x =D..y =D.., it may be obtained:

(25)

Therefore,

(26)

Stability condition is larger than in the two previous cases. This is natural

since this stability condition is for the 8 D..x wave.

Stability Condition for a 2D Gravity Wave with Advection.
We consider the following set of partial differential equations:
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Ou Ou
B

Ou
f

em
-+ A- + v - g -
at dx dy dy

iJv iJv B Jv - f u - em
(27)-+ A-+ g-

at dx dy dy

em
A

em B
em

-H(~ + ~)-+ +
at dx dy

Use of a centred in space and time differencing scheme yields:

u n+ 1 = U n+ 1 + 2 .11t f vn - 2 i g Yx sin 8 hn

-2 i [Ay x sin 8 cos <J + By y cos 8 sin cr] un

Vn+l = Vn-l - 2 .11t f Un - 2 i g Yy sin cr hn

-2i[Ayx sin8cos<J+By y cos8sincr]vn

h n+ 1 =hn- 1 - 2 H i [yx sin 8 un + Yy sin <J vn]

- 2 i[A Yy sin 8 cos cr + By y cos e sin cr] hn

(28)

It is convenient to redefine the amplification factor, Z, in the following
manner:

(29)

The operator L
1

will change due to the incorporation of the advective
terms. Its new value is:

L1 Z - Z-l + 2 i [Ayx sin () cos 0"+ B yy cos () sin 0"] (30)

The value of the other operators will remain unchanged.
For the set of equations (28) to have a unique solution, it must satisfy

condition (17).
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Upon substitution of the operators LI' , L
6

in equation (17), and
after some mathematical manipulations, a second and a fourth order
equation will be obtained. The second order equation yields:

Z2 + 2 i F Z -1 =0

where:

F =A Yx sin ecos cr + Byy cos esin cr

(31)

(32)

Equation (31) represents the advection equation. Following the same
procedures as in previous sections, a neutral stability solution is obtained if:

In other words:

IA Yx sine cos CY + B Yy cos esin CY! ~ 1

On the other hand, the fourth order equation is:

Z4 + 4 i P Z3 - 2 G Z2 - 4 i P Z + 1= 0

where

(33)

(34)

(35)

The reader can verifY that equation (34) may be factorized in two parts.
Namely, that:

[Z2 + (2 i P + (2 G - 4 p
2

- 2t 2 ) Z - 1] *

[Z2 + (2 i P- (2 G- 4p2 - 2t 2 )Z -1] = 0
(36)

Using either of the quadratic factors, after some algebraic manipula­
tions, a general condition for stability is obtained:
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(37)

For Lx = 2Lix (4 Lix) and L y = 2~y (4 ~y), results similar to those in sec­

tions 3.a and 3.b are obtained;

However, for Lx = 8& and L y = 8 .1y; i.e., () = (J = n / 4; & =.1y =.1;

(
2 2)1/2

IAI = IBI; Yx = Yy = y; and lUi = A + B yields:

This can be written as:

(38)

Advective terms are computed over a 4 ~distance. Therefore, the
stability condition, due to the advective terms, is twice the value for the
unstaggered grid. As expected, the CFL condition for the Coriolis and
gravity terms are in perfect agreement with stability condition obtained in
section 3.c.

We have conducted a similar stability analysis for variables at even time
levels. The results were identical.

CONCLUSION
In using a leapfrog scheme in an staggered grid in space and time, there are
no computational modes. Furthermore, the excessive smoothing needed to
compute the Coriolis (gravity wave) terms in the C (B) lattice is avoided.

It is shown that the stability conditions for the shallow water wave
equations, using an Eliassen grid, are practically the same as for the unstaggered
(0' Brien 1986). As expected, the truncation error remains unchanged.

The usage of an Eliassen grid saves by half the computation time
required either on an Arawaka's B or C grid (Mesinger and Arakawa 1976:
53). Furthermore, the computational modes are nonexistent. Therefore,
there are fundamental advantages in the usage of an alternated grid in
space and time.
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