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ABSTRAK

Satu masalah utama dengan penggunaan kekangan integriti untuk mengawasi
integriti pangkalan data yang berubah secara dinamik ialah kos penilaiannya.
Kos ini yang berkait dengan prestasi mekanisme pemeriksaan ialah ukuran
kuantitatif yang utama yang harus diselia dengan teliti. Kami telah mem-
bangunkan satu subsistem kekangan integriti untuk suatu pangkalan data
teragih hubungan yang mengandungi beberapa teknik yang diperlukan untuk
pemeriksaan kekangan secara efisien, terutamanya di dalam persekitaran teragih
di mana pengagihan data adalah bebas kepada domain aplikasi. Di dalam
makalah ini, kami akan menunjukkan bagaimana teknik-teknik ini telah dengan
efektifnya mengurangkan kos pemeriksaaan kekangan di dalam persekitaran
teragih.

ABSTRACT

A principal problem with the use of integrity constraints for monitoring the
integrity of a dynamically changing database is their cost of evaluation. This
cost which is associated with the performance of the checking mechanisms is
the main quantitative measure which has to be supervised carefully. We have
developed an integrity constraint subsystem for a relational distributed database
(SICSDD) which consists of several techniques that are necessary for efficient
constraint checking, particularly in a distributed environment where data
distribution is transparent to the application domain. In this paper, we will
show how these techniques have effectively reduced the cost of constraint
checking in such a distributed environment.
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INTRODUCTION

A database state is said to be consistent if the database satisfies a set of
constraints, called semantic integrity constraints. Integrity constraints specify those
configurations of the data that are considered semantically correct. Any update
operation (insert, delete or modify) or transaction (sequence of updates) that
occurs must not violate these constraints. Thus, a fundamental issue concerning
integrity constraints is constraint checking, that is the process of ensuring that
the integrity constraints are satisfied after the database has been updated.
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Much attention has been paid to the maintenance of integrity in centralized
databases over the last decade. A naive approach to constraint checking is to
perform the update and then check whether all the integrity constraints are
satisfied in the new database state. This method, termed brute force checking, is
very expensive, impractical and can lead to prohibitive processing costs (Hsu
and Imielinskin 1985; Mazumdar 1993; Qian 1989). Enforcement is costly
because the evaluation of all integrity constraints requires accessing large
amounts of data which are not involved in the database update state transition.
Researchers have suggested that constraint checking can be optimized by
exploiting the fact that the constraints are known to be satisfied prior to an
update. This strategy known as incremental integrity checking, avoids redundantly
checking constraints that are satisfied in the database before and are not
affected by the update operation. It is the basis of most current approaches to
integrity checking in databases. Another strategy is to simplify the constraint
formulae so that less data are accessed in order to determine the truth of a
constraint. Under the assumption that the set of initial constraints, IC, is known
to be satisfied in the state before an update, simplified forms of IC, say IC’, are
constructed such that /Cis satisfied in the new state if and only if /C’is satisfied,
and the evaluation cost of IC’is less than or equal to the evaluation cost of IC.
This strategy is referred to as constraint simplification and the simplified forms of
these constraints are referred to as integrity tests. This approach conforms with
the admonition of Nicholas (1982) to concentrate on the problem of finding
good' constraints. Various simplification techniques have been proposed where
integrity tests are derived from the syntactic structure of the constraints and the
update operations (Gupta and Widom 1993; Hsu and Imielinskin 1985; McCune
and Henschen 1989; Nicholas 1982; Simon and Valduriez 1986). Researchers in
this area have focussed solely on the derivation of efficient integrity tests,
claiming that they are cheaper to enforce and reduce the amount of data
accessed, thus reducing the cost of integrity constraint checking. Three different
types of integrity test are defined in (McCune and Henschen 1989), namely:
sufficient tests, necessary lests and complete tests.

Although this research effort has yielded fruitful results that have given
centralized systems a substantial level of reliability and robustness with respect
to the integrity of their data, there has so far been little research carried out on
integrity issues for distributed databases. Devising an efficient algorithm for
enforcing database integrity against updates is more crucial in a distributed
environment. The reasons for this are described in (Barbara and Garcia-
Molina 1992; Mazumdar 1993; Qian 1989; Simon and Valduriez 1986). The
brute force strategy of checking constraints is worse in the distributed context
since the checking would typically require data transfer as well as computation
leading to complex algorithms to determine the most efficient approach.
Allowing an update to execute with the intention of aborting it at commit time

! Good is intended to mean easy to maintain and easy to check (Nicholas 1982)
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in the event of constraint violation is also inefficient since rollback and recovery
must occur at all sites in which the update participated.

A principal problem with the use of integrity constraints for monitoring the
integrity of a dynamically changing database is their cost of evaluation. This cost
which is associated with the performance of the checking mechanisms is the
main quantitative measure which has to be supervised carefully. Different
criteria have been used to assess this performance such as the time to check
the validity of the constraints against updates. Generally, an efficient constraint
checking strategy tries to minimize the utilization of the computing resources
involved during the checking activities. A common goal addressed by previous
researchers in this field is to propose constraint simplification strategies which
manage to derive a better set of constraints than the initial set. A simplification
strategy is said to be efficient if the evaluation of the generated simplified forms
has effectively reduced the cost of integrity checking compared to the evaluation
of the initial constraints. Based on the following studies (Bernstein and Blaustein
1981; Gupta and Widom 1993; Hsu and Imielinskin 1985; Mazumdar 1993;
Nicholas 1982; Qian 1988; Simon and Valduriez 1986), the cost of evaluating an
integrity constraint includes the following main components: (i) the amount of
data accessed (locally or non-locally for a distributed database) — this is related
to the checking space of the integrity constraint (Hsu and Imielinskin 1985;
Qian 1988); (ii) the amount of data transferred across the network; and (iii)
the number of sites involved, which is interrelated with (ii) above. For a
centralized database, the main emphasis is on minimizing the amount of data
accessed or the checking space. In distributed databases, where many sites are
involved, the amount of data transferred across the network and the number of
sites involved must be minimized too. Most of the authors cited consider a
single cost component due to the difficulty in assigning suitable weights to all
cost components.

Bernstein and Blaustein (1981) and Nicholas (1982) used the following two
intuitive arguments as a justification that the evaluation of a simplified constraint
produced by their algorithm has effectively reduced the cost of integrity
checking compared to the evaluation of the corresponding initial constraint: (i)
the more constants that are substituted for variables in a given constraint, the
more selective is the constraint, and so the easier it should be to evaluate and
therefore the cheaper the evaluation; and (ii) the simplified forms are derived
on a minimal substate of the database state and so involve less data access. Hsu
and Imielinskin (1985) measured the simplicity of an integrity constraint by the
notion of its checking space. The checking space of a constraint IC(v,, v,, ..., v,)
is defined as v, X u, X ... X v, where x is the cartesian product operator, and
the v/s are the range variables in the IC. A constraint /G- is said to be simpler
than a constraint /Cy if the checking space of IC-i is smaller than the checking
space of ICy. The checking space of a constraint is a rough measure of the
complexity of its evaluation and the number of variables it has to access. This
measurement is later used by other authors (Qian 1988). Simon and Valduriez
(1986) claimed that their simplification method minimized the cost of integrity
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checking since only data subject to update are evaluated. Thus they are
reducing the checking space by removing data that is known to be unaffected
by the change. Mazumdar (1993) proposed a metric called scatter, 0, to capture
the amount of non-local access necessary to evaluate a constraint in a distributed
database.

We have developed an integrity constraint subsystem for a relational
distributed database (SICSDD). The subsystem provides complete functionality
and an efficient strategy for constraint enforcement. Complete functionality is
attained through a modular and extensible architecture in which several
techniques are incorporated. These techniques are necessary to achieve efficient
constraint enforcement, particularly in a distributed database. By database
distribution we mean that a collection of data which belongs logically to the
same system is physically spread over the sites (nodes) of a computer network
where intersite data communication is a critical factor affecting the system’s
performance. In this paper, we will show how the SICSDD techniques have
effectively reduced the cost of constraint checking in a distributed environment.
We do this by analysing and comparing the generated simplified forms to their
respective initial constraints with respect to the amount of data that has to be
accessed, the amount of data transferred across the network and the number
of sites that may be involved during the evaluation of these constraints/
simplified forms. In general, our strategy reduces the amount of data needing
to be accessed since only fragments of relations subject to update are evaluated.
The amount of data transferred across the network and the number of sites that
may be involved are minimized by evaluating the simplified forms at the target
site, i.e. the site where an update is to be performed.

PRELIMINARIES

Our approach has been developed in the context of relational databases (Date
1995), which can be regarded as consisting of two distinct parts, namely: an
intensional part and an extensional part. A database is described by a database
schema D, which consists of a finite set of relation schemas, <R, By voes B0 B
relation schema is denoted by R(A, A,, ..., A) where R is the name of the
relation (predicate) with n-arity and the A’s are the attributes of R. Let dom(A)
be the domain values for attribute A, Then, an instance of R is a relation R
which is a finite subset of cartesian product dom(4)) x ... x dom(A). A
database instance is a collection of instances for its relation schemas. A
relational distributed database schema is described as a quadruple (D, IC, FR,
AS) where IC is a finite set of integrity constraints, FR is a finite set of
partitioning rules and AS is a finite set of allocation schemas.

The database integrity constraints considered in this paper are state constraints
which include: domain (I/C-1), key (IC-2, IC-3), referential (IC-4) and general
semantic integrity constraints (/C-5, IC-6). They are expressed in prenex
conjunctive normal form with the range restricted property (McCune and
Henschen 1989; Nicholas 1982). A conjunct (literal) is an atomic formula of
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the form R(u,, %, ..., u,) where Ris a k-ary relation name and each u, is either
a variable or a constant. A positive atomic formula (positive literal) is denoted
by R(u,, y, ..., w,) whilst a negative atomic formula (negative literal) is prefix

by —. An (in)equality is a formula of the form u OP u, (prefix with — for
inequality) where both u, and wu, can be constants or variables and OP € |, <,
>, 2 € 3y =)

A set of fragmentation rules, FR, specifies the set of restrictions, C, that must
be satisfied by each fragment relation R. These rules introduce a new set of
integrity constraints and therefore have the same notation as IC. We assume
that the fragmentation of relations satisfies the completeness, the disjointness
and the reconstructability properties (Ozsu and Valduriez 1991). An allocation
schema locates a fragment relation, R, to one or more sites. Throughout this
paper the same example emp_dept database is used, as given in Fig. 1. Here we
assume that the relation emp is first vertically fragmented into emp, on attribute
set A| = {eno, ename, eaddress} and emp, on attribute set A, = {eno, dno, ejob, esall;

Schema: emp(eno,ename,eaddress,dno,ejob,esal)
dept(dno,dname, mgmo,mgrsal)
Integrity Constraints (Global Constraints):
‘A specification of valid salary’
IC-1 : (VuVvWwVaVyVz)(emp(u, v, w, x, y, 2) = (2>0))
‘Every employee has a unique eno’
IC-2 : (VuVv1Vv2VwlVw2Vx1Vx2Vy1Vy2Vz1Vz2) (emp(u, v1, wl, x1, y1, z1) A emp(u, v2, w2, x2, y2, 22)
SWl=v2)AWl =w2) Al =x2)A(yl =y2)A (2]l =22))
‘Every department has a unique dno’
IC-3 : (YwVx1Vx2Vyl Vy2Vz1V22)(deptiw, x1, yl, z1) A depK(w, x2, y2, 22) = (x1 =x2) A (yl = y2) A (z] = 2))
“The dno of every tuple in the emp relation exists in the dept relation’
1C-4 : (VrVsVINuVvVWwAx3yAz)(emp(r. s. t, u, v, w) — dept(u, x, y, 7))
‘Every manager in department D/ earns more than 4000 pounds’
IC-5 : (VYw¥xVyVz)(dept(w. x, y. ) A (w = DI) = (z > 4000))
‘Every employee must eam < to the manager in the same department’
1C-6 : (VrVsVIVuVvWwYxVyVz)(emp(r, s, t, u, v, w) A dept(u, x, y, 2) = (w S 2))
Fragmentation Rules:
FR-1: (YwVxVyVz)(empu(w, x, y, 2) = (x = D1))
FR-2: (VwVxVyVz)(empn(w, x, y. 2) = (x = D2))
FR-3: (YwVxVyVz)(depti(w, x, y. 2) = (w = D1))
FR-4: (YwVxVyVz)(depti(w, x, y. 2) = (w = D2))

Fig. 1: The emp_dept intensional database

emp, and dept are horizontally fragmented into two fragments emp, and dept,
respectively, with predicates dno = D1 and dno = D2.

The key problem in integrity checking is how to efficiently evaluate
constraints. An accurate way of measuring the evaluation of the generated
fragment constraints/simplified forms is a high priority so that they can be
compared fairly and realistically. In this paper, we will evaluate the derived set
of fragment constraints/simplified forms with respect to the following
components. We use the symbol C(R, R,, ..., R) to denote the set of relations
or fragment relations specified in the constraint/simplified form C.

A — provides an estimate of the amount of data accessed, which is related to
the number and the size of the relations or fragment relations specified in a
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given constraint/simplified form. This measurement indirectly indicates the
size of the checking space. It is based on the following formula:

Agan s, ooy = OR1 + 8R2 + ... + 8%Rn  where the 8Ri’s are the relations or
fragment relations specified in the Cand 8Ri is the size of Ri. For a compound
constraint C = A"_ C, where C is a simple constraint, the amount of data
accessed is measured as follows: X" _A . For a disjunction of constraints, C =
Vvr_ C, the amount of data accessed is measured as follows: (A, Z".,A ] which
is a range where A (2" A respectively) is the minimum (maximum,
respectively) amount of data that might need to be accessed.

T — provides an estimate of the amount of data transferred across the
network. It is measured based on the following formula, T = £"_ dt, where dt, is
the amount of data transferred from site ¢ to the target site.

o - gives a rough measurement of the amount of non-local access necessary
to evaluate a constraint/simplified form, and is taken from Mazumdar (1993).
This is measured by analysing the number of sites that might be involved in
validating the constraint. In general, the formula applied is as follows: 6 =
Isite(C)l where G . is the locality of C, i.e. the number of sites involved, and site(C)
is obtained by the following formula.

FOR each distinct relation or fragment relation, Jr, for i = 1.2, sy R} I
C DO
site(C) ={j : j € sites A fr, is allocated at site j where sites € {1, 2, ..., n}}

For a compound constraint C = A"_ C, where C is a simple constraint, the
locality of these constraints is simply obtained from the maximum number of
sites that are involved in evaluating one of the constraints, i.e. 6,= max(c,, O,
.ews G,). The locality of an integrity test, given an update operation, gives a
rough measurement of the amount of non-local access necessary for verifying
if the integrity test is being satisfied or violated by the update operation. This
is measured by analysing the number of sites that might be involved in
validating the test. In general, the formula applied is as follows:

| Jsite()| ifsiteU,) csite(T) (1)
On \site ()| + 1 otherwise (1)

where 6, is the locality of an integrity test, T, with respect to a given update
operation, U, i.e. the number of sites involved. The site(7) and site(U) are
obtained by the following formula.

FOR each distinct relation or fragment relation, fr, for i = {1, 2, ..., k in
T DO
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site(T) = {j : j € sites A fr, is allocated at site j where sites €{1, 2, ..., nj}
site(U) = {1 : L € sites® A fr  is allocated at site [ where sites €{1, 2, ..., n} and
I, is a fragment relation specified in U,.]

Table 1 shows information relating to the emp_dept database. This information
includes each relation R, its size R, its fragment relation R, and their sizes 5‘.Rl..
The fragment relations are derived based on the fragmentation schemas given
earlier in this section. Case I and Case II in the table represent the sites where

TABLE 1
The emp_dept’s relations and fragment relations

R SN R, R, Case I* Case II*

emp 4 emp, g S, S,
mpZI eﬂ Sl Sl
mnPZZ e?? % S?

dept D dept,  d S, s,
deptz d2 S‘Z S4

S, # Slwhere i#]

OIS D T Sk'.v where 8,"7 is the size of the repeated primary
key values

D=3 d

the fragment relations are allocated. Here Case I represents the reasonable case
where the fragment relations constructed based on the same fragmentation
rules are allocated to the same site. It is called the reasonable case as it should
minimize the network traffic. Case II represents a worst case where each
fragment relation is allocated to a different site of the network. It is a worst case
in that network traffic is involved in any constraint evaluation that involves
more than one fragment.

OUR OPTIMIZATION TECHNIQUES AND THEIR PERFORMANCES

The high execution cost of constraint enforcement is one of the major
problems in the field of constraint handling (Grefen 1993). This cost can be
substantially reduced not only by applying an efficient enforcement strategy but
also by generating/evaluating a good set of integrity constraints. The techniques
that are incorporated into our system seek to derive efficient sets of fragment
constraints and a range of possible local tests *. Our techniques are identified

2 As we assume that there is no replication of fragments across the network, for a given update
operation, U, there will be only one target site, i.e. the site where the update is to be performed.

3 An integrity test is a local test if it can be evaluated at a single site, i.e. at the site where the
update is to be performed, and a global test otherwise.
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as constraint preprocessing, constraint distribution and integrity test generation. In this
section, we will evaluate the derived set of fragment constraints/simplified
forms with respect to the components described in the previous section.

Constraint Preprocessing Techniques

There are five steps that are applied which are performed by the following
procedures (we use the notation X to indicate a finite set of variables, X5 Xy ores
x;and x, x_ and x . are the key, join and reference attribute, respectively).
In general, the amount of data accessed for evaluating the set of fragment
constraints, A, , derived by the procedures embodied in the constraint
preprocessing techniques is less than the amount of data accessed for evaluating

the initial constraint, A, i.e. A, ., <A, . 59{min is minimum (3R, 8R,, ..., OR ).

constraint_transformation_procedure

This procedure transforms the constraints specification at the relational level
(global constraints) into a constraints specification at the fragment level
(fragment constraints). The objective of the transformation is to obtain a
specification of constraints that can be straightforwardly used for constructing
efficient enforcement algorithms. At this stage, the transformations are restricted
to logically equivalent transformations, without considering any reformulation
of the original constraints. Initially, each occurrence of a relation R in a
constraint is replaced by its n fragment relation, ‘.R‘.. The transformation is one
to many, which means that given a global constraint, the result of the
transformation is a logically equivalent set of fragment constraints. There are
four transformation rules which are applied during this process. These rules
analyse the patterns in the prefixes of a constraint and the types of fragmentation
that are being applied to the global relations. The proofs of these rules can be
found in (Qian 1989) and are therefore omitted here.

Horizontal transformation rules:

i (VX)(R(X) = P(X)) = A" (VX) (R(X) P(X))
ii. 3X)(R(X) A P(X)) = V' (3X)(R(X) AP(X))
Vertical transformation rules:

i (VX)(RGX)-P(X)) = (Y, VX, .. VX)(R(x, X¥) A . A
R (%, X,) = Plx,, -1, .y X))
. AXT(RE) A POO) = @x, 3%, . 3X) (R (%, X)) A o A
" R(x o X A P(x,, X, . '%

To obtain a logically equivalent set of fragment constraints from a given
global constraint which contains a relation R and is fragmented by a mixed
fragmentation, we repeatedly apply horizontal and vertical transformation rules
in the same sequence of horizontal and vertical fragmentations to the global
constraint to produce the fragment constraints. Example: The integrity constraint
IC-4 is transformed into the following set of fragment constraints.
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FC4,: AL, VE (VIVuY oV ud3y3z) (emp,(t, u, v, w) — dept(w, x, y, 2))

As expected, evaluating the sets of fragment constraints derived by the
constraint_transformation_procedure without further optimization is inefficient
(with respect to the amount of data accessed) since the evaluation of these
constraints generally will access all the fragment relations specified in these
constraints. This is similar to the brute force strategy, but is only the initial stage
of our application.

simplification_procedure

This procedure, which uses knowledge about the fragmentation of relations,
reduces the number of fragment relations involved in the evaluation of a
constraint. A set of fragment constraints derived from a global constraint can
be simplified if the relations specified in the global constraint are fragmented
on a join/reference attribute using the same fragmentation algorithm. Instead
of deriving all combinations of fragment constraints, only compatible fragment
constraints are constructed. Given global relations R and Swhich are fragmented
on a join/reference attribute into n and m fragment relations, respectively on
the same fragmentation rules, then the following simplification rules are applied.

i AL, VI (W VXYY (R(x,, X) - sj(x"f )
(B(x. X) = S(x., ¥))

i AL, A (Vx, VXV P) (R(x, X) A S(x,, —>...)
A"_I(Vx VXV (R(x,,, EA Ste. y‘”)

ii. Vi, Vit (3x, 3X3P) (R(x,,, X) A S(x,,, )...) =
an(ax 3XP) (R(x,,, A S, B

AL, (Vx, VX3Y)

n

Example: FC-4, above can be simplified since both relations emp and dept are
fragmented on the reference attribute, i.e. dno, using the same fragmentation
rules. The simplified set of fragment constraints are as shown below.

FC4, : A} (VY uV oV w3x3y3z) (empy(t, u, v, w) — dept, (u, x, y, 2))

The simplification_procedure simplifies a set of fragment constraints which
reduces the number of joins/references between fragment relations required in
the definition of the set of fragment constraints.

subsumption_procedure

This procedure attempts to obtain an improved set of fragment constraints by
removing redundant fragment constraints from a set. A redundant fragment
constraint is a constraint that can be implied (syntactically) from other existing
fragment constraints. Thus, deleting a redundant fragment constraint from its
set does not affect the unsatisfiability/satisfiability of the set since the truth of
this constraint can be inferred from the truth of its identical or subsumed pair.
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Even though a redundant set of constraints is semantically correct, excluding
redundancy can improve the enforcement time. Example: Consider the
following set of fragment constraints derived from IC-3 by applying the
transformation process constraint_transformation_procedure.

FC-3t: A2i=1 A§=1 (VwVx1Vx2VylVy2Vz1Vz2) (dept(w, x1,y1,z1) A depLJ(w,
x2, y2, z2) = (x1 = x2) A (yl =y2) A (zl = z2))
The sets [(VwVxIVx2VyIVy2VzI1V22)(dept(w, x1, y1, 2I) A dept(w x2, y2, z2) —
(xI=x2) A (yI=1y2) A (z1=1z22))] and [(Vw\'/x]\‘/xZVyIVy2VzIVzZ)(dept(w x1,
yl, zI) A dept(w, x2, y2, 22) = (x1 = x2) A (yl = y2) A (2] = 22))] for i e {1,
2} and j € {1, 2} are mutually redundant. Removing the redundant fragment
constraints will generate the following set of fragment constraints:

FC3,: N Vi (YoVxIVx2VyIVy2VzIV2) (deptiw, x1, y1, zI) A dept(w,

su

x2, y2, z2) = (x1 = x2) A (y1 =y2) A (z1 = z2))

The subsumption_procedure removes any redundant fragment constraints
from a given set of fragment constraints, i.e. AL fe or VI fecor a set of
fragment constraints constructed by both. Obviously, this set of fragment
constraints is derived from the horizontal/mixed transformation rules.

contradiction_procedure

This procedure removes the fragment constraints produced by the
constraint_transformation_procedure which contradict the fragmentation rules,
i.e. it removes fragment constraints that are never satisfied. The
contradiction_procedure designed by us is a specific-purpose theorem prover
that resembles a resolution-based theorem prover similar to Henschen et al.
(1984) and McCarrol (1995). It is mainly designed for investigating if a
fragment constraint violates one of the existing fragmentation rules. Example:
The fragment constraint FC-3_ above, when i # j, contradicts the fragmentation
rules FR-3 and FR-4.

The contradiction_procedure eliminates fragment constraints from their
sets if they contradict one of the existing fragmentation rules, i.e. A", fc.or V",
Je or a set of fragment constraints constructed by both. Obviously, this set of
fragmem constraints is derived from the horizontal/mixed transformation
rules.

reformulation_procedure

The above procedures (the simpliﬁcation_procedure, the subsump-
tion_procedure and the contradiction_procedure) use knowledge about data
fragmentation and analyse the syntax of the constraints to either remove
inessential constraints (a redundant constraint or a constraint which contradicts
the fragmentation rules) from the constraints set or reduce the scope of the
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fragment relations specified in a constraint (the simplification-procedure).
These procedures, which are based on syntactic criteria, do not check the
possible occurrence of redundant semantics in the constraint set. The
reformulation_procedure, which is based on semantic criteria, attempts to (i)
remove redundant semantic constructs that may exist, and (ii) reformulate the
set of fragment constraints derived so far into alternative forms which can be
either an antecedent * or an equivalent form. In our approach, removing the
redundant semantic constructs from a given fragment constraint is achieved by
applying the substitution and absorption rules. This strategy makes the
constraint easier to evaluate because more constants are substituted for the
variables in the constraint which makes the constraint more selective. Example:
Consider the following fragment constraint derived from IC-5 by applying the
transformation (constraint_transformation_procedure) and the contradiction
(contradiction_procedure) processes.

FC-5I : (VwVxVyVz) (dept (w, x, y, z) A (w=D1) — (z> 4000))

The literal w = D1 is a redundant construct as this can be implied from FR-3.
Removing this construct will generate the following fragment constraint.

FC5_: (YwVxVyVz) (dept (w, x, y, z) = (z > 4000))

The fragment constraint FC-6, below which is derived from /C-6 can be
reformulated as FC-6’ by using FC-5_derived above.

FC6, : (VIVuVoVwVxVyVz)(emp, (8, u, v, w) A dept(u, x, y, 2) — (w < 2))
FC-6’: (ViVYuVuVw)(emp,(t, u, v, w) = (w < 4000))

Since we require that a fragment constraint which is derived by the reformulation
process must be cheaper compared to the initial constraint, therefore the
amount of data accessed for evaluating the derived constraint must be less than
or equal to the amount of data accessed for evaluating the initial constraint.

Fig. 2 lists the sets of fragment constraints derived after applying the
constraint preprocessing techniques to the initial constraints. Each FC-i is a
semantically equivalent set to its initial constraint /C-i (except for FC-6’ which
is an antecedent of FC-6,).

Table 2 illustrates the amount of data needing to be accessed, A, by the sets
of fragment constraints given in Fig. 2 (except for FC-6’) which are derived by
the procedures embodied in the constraint preprocessing techniques. In most
cases the derived set of fragment constraints is better than the initial constraint
which is similar to the brute force strategy, i.e. A,.. < A, as shown by FC-1, FC-

4 If an antecedent of a fragment constraint is satisfied this implies that the fragment constraint
is satisfied but if the antecedent is falsified, then the fragment constraint has to be evaluated.
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3, FC4, FC-5 and FC-6 in Table 2. A, ..> A, ., only when A, . is specified over the
attribute(s) of a global relation R which is associated with all of its fragment

relations which are constructed by a vertical fragmentation, as shown by FC-2 in
Table 2.

FC-1: Alay (YWVVYV2) (empu(w. x, y. 2) = (2> 0)

FC-2 - A2 (VuVv IV v2YwI Yw2VaVyl Vy2Vz1V22) (empi(u, v1, wl) A empalu, x, yl, z1) A (empy(u, v2, w2) A
empu(u, x, y2, 22) = (v1 =v2) A (Wl =w2) A (y1 =y2) A (2l = 22)) and (VuVx1Vx2VylVy2Vz1V22)

(empa(u, x1, yl, z1) = —(empn(u, x2, y2, 22))

FC-3 : A (YWVX1VX2Vy 1 Vy2Vz1V22)(deptiw, x1, yl, z1) A deptiw, x2, y2, 22) > (x] =x2) A (yl =y2) A (2] = 22))
FC-4 : A m(VIVuYyWwax3ydz)(empu(t, u, v, w) = depti(u, x, y. 2))

FC-5: (YwVxVyVz)(depti(w, x, y, 2) = (z > 4000))

FC-6 : Aluy (VIVUNVYWYVYVZ)(empalt, u, v, w) A deptiu, . y. 2) = (wS 2))

FC-6": (VIYuYvVw) (empa(t, u, v, w) = (w S 4000))

Fig. 2: The sels of fragment constrainls derived by the constraint preprocessing lechniques
with respect to the global constraints and fragmentation rules given in Fig. 1

TABLE 2
Estimation of the amount of data accessed — the constraint
preprocessing techniques

ICi A FC-i A, Comment
IC-1 E FC-1 22 e, A, <Ay,
IC-2 E +E FC-2 22.31(2‘3 + 2e,) F g F b Ares B
Ic3 D+D FC3 32 d + d, Apes By
IC4 E+D FC4 32 e, + d A <Ay,
IC5 D FC-5 d, A < A
IC-6 E+D FC-6 Zﬂlez‘. + d, A <AL,

The amount of data accessed by FC- is determined by the assumption that
all fragment constraints in FC+ are evaluated. But given an update operation
affecting a fragment relation R, only the fragment constraints in FC- containing
R in their specification should be evaluated. Since we assume that fragmentations
satisfy the disjointness property, only a subset of FCi is evaluated, i.e. the
amount of data accessed is less than those presented in this section. Also, we
assume that the worst case, i.e. A, > A, is a rare case since in reality the
fragmentation strategies are chosen in such a way that their effect on the
integrity constraints will result in efficient constraint checking.

Constraint Distribution Techniques

The fragment constraints constructed so far involve data stored at different
network sites. Because the complexity of enforcing constraints is directly related
to both the number of constraints in the constraint set and the number of sites
involved, our objective in this phase is to reduce the number of constraints
allocated to each site for execution at that site. Distributing the whole set of
fragment constraints to every site is not cost effective since not all fragment
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constraints are affected by an update and so sites may not be affected by
particular updates.

These techniques reduce the number of constraints allocated to each site by
allocating a fragment constraint to a site if and only if there is a fragment
relation at that site which is mentioned in the constraint, so that whenever an
update occurs at a site, the validation of the fragment constraints at that site
implies the global validity of the update. Consequently, these techniques intend
to allocate each fragment constraint to a site or minimal number of sites and
relieve the irrelevant sites from the computation of certain sets of fragment
constraints.

The difference between our approach and Qjan’s approach (1989) is that
the distribution techniques in our approach are applied to the end result of the
constraint preprocessing techniques while the distribution techniques in Qian’s
approach are applied directly to the set of fragment constraints derived by her
transformation rules. Our approach is more efficient than hers, since in her
approach redundant processing may result during the optimization of the
distributed fragment constraints. As a simple example, consider a situation
where a fragment constraint requires a join between two fragment relations
which are allocated to different sites of the network and this join is deduced to
be empty. In our approach, this situation which is detected by the constraint
preprocessing techniques will cause the fragment constraint to be eliminated
from the set (i.e. no distribution is required). However, in Qian’s approach this
fragment constraint is distributed to both sites and the optimization of the
distributed fragment constraints which is carried out at both sites will result in
eliminating both distributed fragment constraints from those sites.

Table 3 shows the effect of the constraint distribution techniques on the
derived sets of fragment constraints with respect to o, which gives a rough
measurement of the amount of non-local access required in constraint
enforcement. As shown in the table, most of the derived sets of fragment
constraints can be evaluated at a single site. Even in the worst case where each
fragment is allocated to different sites of the network, the number of sites
involved in evaluating the derived sets of fragment constraints is less (in most
cases, generally) than the number of sites involved in evaluating the initial
constraints (shown by columns Case II of Table 3).

TABLE 3
The reduction in the scatter metric

ICi Case I Casell FCi Case | Case 11

IC-1 3 3 FC-1 1 1
I1C2 3 3 FC2 3 3
1C3 2 2 FC3 1 1
1c4 3 5 FC4 1 2
1G5 2 2 FC5 1 1
1C-6 3 5 FC6 1 2
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Integrity Test Generation Techniques

These techniques generate integrity tests from the syntactic structure of the
constraints and the update operations. The algorithms applied for deriving
these tests use the substitution, subsumption and absorption rules, and are
closely related to Nicholas (1982). These algorithms can be found in Ibrahim
et al. (1996) and are therefore omitted here.

In a distributed database, four types of integrity test can be identified. They
are global post-tests, local post-tests, global pre-tests and local pre-tests (Ibrahim
et al. 1998). We view local pre-tests as more effective in a distributed database
since: (i) only a single site is involved in evaluating the local tests, i.e. the site
where the update is to be performed; (ii) as they are evaluated at a target site,
this avoids remote reading and the amount of data transferred across the
network is minimized — in fact, no data transfer across the network is required
(Gupta and Widom 1993); and (iii) they are evaluated before the update is
performed — this avoids the need to undo (rollback and recover from) an
update in the event of constraint violation, and this reduces the overhead cost
of checking integrity (Simon and Valduriez 1986).

The integrity test generation techniques, which derive integrity tests
(simplified forms) for the set of fragment constraints, further reduce the
amount of data that has to be accessed, A, during the evaluation of these tests.
This is illustrated by Table 5. (Table 4 presents the tests constructed for a given
update operation and the set of fragment constraints, FC+, given in Fig. 2). For
example, the domain constraint IC-1, which initially required E amount of data
to be accessed (see column A, of Table 2), is reduced to 0 (see column A, of
Table 5), i.e. no data access is required at all; the referential integrity constraint
IC-4, which initially required E + D amount of data to be accessed (see column

TABLE 4
The test constructed for a given update operation and the set of fragment
constraints, FC+, given in Fig. 2

FCi INSERT Test, T,

FC-1  emp, (a, b, ¢, d) 1.d >0
FC-2 emp, (a, b, ¢ d) 2 (VoIV o2V wIVw2V xINVy1Vz1)(~emp (a, v, wl)
V —emp (a, v2, w2) V —emp,(a, x1, yI, z1) V [(v] = v2)
Al =w2)A((xI=bA®(yl=cA(z1 =d)]) and
(Vx2Vy2V22)(-emp2j(a, x2, y2, z2))
emp, (a, b, ¢, d) 3. (VxIVyIVzI)(~emp,(a, x1, y1, z1))
FC-3 dept, (a, b, ¢, d) 4. (VxIVyIVzl)(~dept(a, x1, y1, z1) V [(x] = b) A (yI = ¢
Azl = d)])
dept. (a, b, ¢, d) 5. (VxIVyIVzl)(~dept(a, x1, yl, z1))
FC4  emp, (a, b, ¢, d) 6. (3x3y3z)(dept (b, x, y, z))
emp,, (a, b, ¢, d) 7. AEvw)(emp,(t, b, v, w))
FC-5 dept, (a, b, ¢, d) 8.d > 4000
FC-6 emp, (a, b, ¢, d) 9. (VaVyVz)(-~dept(b, x, 5, 2) V(d < 2))
emp,. (a, b, ¢, d)  10.(33v3w)(emp,(t, b, v, w) A (w < d))
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2
A, of Table 2), is reduced to ZH ey, +d, (see column A, of Table 2) by the

constraint preprocessing techniques and further reduced to d; (see column A_,
for test 6 of Table 5) or ¢, (see column A, for test 7 of Table 5) by the integrity
test generation techniques.

With respect to the scatter metric, o, the number of sites involved in
evaluating an integrity test for a local fragment constraint is 1 and the number
of sites involved in evaluating an integrity test for a non-local fragment
constraint is normally more than 1. A local fragment constraint is one in which
all fragment relations specified in the constraint are allocated to the same site.
For the case of non-local fragment constraints, the number of sites involved can
be reduced to 1 by applying the integrity test generation techniques as shown
in Table 5. For example, test 9 of FC-6 for Case II (see column o, of Table 5)
involves two sites, while test 10 of FC-6 (see column o,, of Table 5) for the same
case involves a single site. As most of the work is being carried out at a single
site, therefore the amount of data transferred across the network is minimized
ie.T=0.

The integrity tests listed in Table 4 are generated from the sets of fragment
constraints constructed by the fragmentation rules given in Fig. 1. As constraint
checking is strongly influenced by the fragmentation rules used to construct the
fragment relations, it is important to see and analyse the effect of applying
different fragmentation rules on the derived integrity tests. This is discussed
below. Assume that the fragment emp,, is horizontally fragmented into two
fragments emp,, with some predicates different from those given in Fig. 1, i.e.
the global relations are fragmented based on different fragmentation rules. The

TABLE 5
The reduction in the amount of data accessed, the scatter metric
and the amount of data transferred across the network for
the integrity tests given in Table 4

Test, T, A o/ a;’ T T.%
1, 0 1 1 0 0
2. 6 +6 +6 +6 3 3 e +e e +e,
3. e 1 1 0 0
4. d, 1 1 0 0
5. d I 1 0 0
6. d, 1 2 0 d
7. €y ] 1 0 0
8. 0 1 1 0 0
9. d, 1 2 0 d,
10. e 1 1 0 0

* o of test T, for Case 1.
b o of test 7, for Case IL
¢ 7 of test 7, for Case L
4 1 of test T, for Case II
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sets of fragment constraints derived after applying the constraint preprocessing
techniques to their respective initial constraints are as shown in Fig. 3. Only the
derived forms for /C-4 (represented by FC4) and IC-6 (represented by FC-6)

are shown, as the rest of the derived sets of fragment constraints remain the
/
same.

FC-4;: A%y Vil (VIVuYvWwax3y3z) (empalt, u, v, w) — deptu, X, y, 7))
FC-6;: AZ;.|A2,.|(VNquVwaVsz) (empai(t, u, v, w) A depifu, x, y, 2) > (w< 2))

Fig.3: The sets of fragment constraints derived by the constraint preprocessing
techniques when different fragmentation rules are applied

Table 7 shows the effectiveness of the integrity test generation techniques
when applied to the sets of fragment constraints derived in Fig. 3 with respect
to A, 6 and 1. (Table 6 presents the tests constructed for a given update
operation and the set of fragment constraints, FC-, given in Fig. 3). From this
simple example, it is obvious that constraint checking is strongly influenced by
the type of fragmentation and allocation used. Although the resulting simplified
forms shown in Table 7 are not as efficient as those presented in Table 5, they
are still better than the initial constraints with respect to A, ¢ and 7. The
integrity test generation techniques formulate local simplified forms (shown by
tests 12 and 14 in Table 7) which are cheaper than their alternative forms (tests
11 and 13, respectively in Table 7).

TABLE 6
The test constructed for a given update operation and the set
of fragment constraints, FC+, given in Fig. 3

FCi INSERT Test, T,
FCA4, emp,, 11. Wj_l(ﬂxﬂyaz) (depLJ(b, x, %, 2))
(a, b ¢ d) 12. (33v3aw) (empy, (4, b, v, w))
FC6  emp, 13. A2 (VxXVyVz) (dept(h, % 3 2) V (45 2))

(a, b, ¢, d) 14. (33vaw) (emp,(4, b, v, w) A (w < d))

TABLE 7
The reduction in the amount of data accessed, the scatter
metric and the amount of data transferred across the
network for the integrity tests given in Table 6

Test, T, A o

Ti

1 O'" tl tll

2
11. [dmin’ Zzpld]] 2 3 [dmin’ szsl and joi d]] [dmin’ Zj:l d] ]

12. e 11 0 0
13' 22j=l dj 2 3 22]':] and j<> i d] E?jzl dj
14. o 11 0 0
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The sufficient tests, which are normally local tests (i.e. 6 = 1), are cheaper
in a distributed environment (Gupta and Widom 1993; Mazumdar 1993; Qian
1989; Simon and Valduriez 1986) where the cost of accessing remote data for
verifying the consistency of a database is a critical factor influencing the
performance of the system (Simon and Valduriez 1986).

Tables 5 and 7 illustrate the improvement in performance gained when
using our algorithm rather than Nicolas’s algorithm (1982) and other techniques
proposed for centralized database. In these tables, the tests 1, 2, 4, 6, 8, 9, 11
and 13 are generated by applying Nicolas’s algorithm, while tests 1, 3, 5, 7, 8,
10, 12 and 14 are generated by our algorithm. Comparing those results, most
of the tests generated by our algorithm are better than their alternative tests
generated by Nicolas’s algorithm with respect to the amount of data transferred
across the network, T and the number of sites involved, o, i.e. the tests
generated by our approach can be evaluated at a single site. This is shown in
tables 5 and 7, where the tests 3, 7, 10, 12 and 14 are better than their
alternative tests 2, 6, 9, 11 and 13 with respect to T and o, particularly for Case
II.

Some conclusions can be drawn with respect to the type of constraint being
considered. (I) Domain constraints (/C-I): the test generated will always have
A, <A, regardless of the fragmentation strategy used. In fact A;;= 0,5 =1 and
T = 0. This is because the test can be evaluated independently of the rest of the
database as it only refers to the tuples to be updated (Ibrahim et al. 1998). (II)
Key constraints (/C-2, IC-3): we have considered: (i) when the global relations
involved in the initial constraint are fragmented on the join attribute (/C-3),
and (ii) when the global relations involved in the initial constraint are not
fragmented on the join attribute (/C-2). As shown in Tables 4 and 5, it is always
possible to derive local tests (i.e. 6 = 1) which are either (a) complete tests for
case (i) (tests 4 and 5 of Table 4) or sufficient tests for case (ii) (test 3 of Table
4). These complete tests are cheaper than the initial constraint with respect to
the amount of data accessed, i.e. Aj; <A, 6 and 7. (III) Referential constraints
(IC-4): we have considered: (i) when the global relations involved in the initial
constraint are fragmented on the reference attribute, and (ii) when the global
relations involved in the initial constraint are not fragmented on the reference
attribute. For both cases two types of test are generated, namely complete tests
(tests 6 and 11, respectively) and sufficient tests (tests 7 and 12, respectively).
The sufficient tests are cheaper than the complete tests with respect to ¢ and
7. (IV) General semantic integrity constraints (/C-5, IC-6): In general, A, < A,
;and it is always possible to generate complete tests which are normally global
tests, and sometimes possible to generate tests whose ¢ = 1 since this depends
on the fragmentation rules and the allocation schemas used, also on the
complexity of the constraint itself.

In our method, given a set of possible simplified forms (integrity tests), each
of the simplified forms is evaluated with respect to the three main components
listed above. The most efficient one is selected based on the following heuristic
rules (H1-H5). A heuristic based approach is adopted due to: (i) the difficulty
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in determining all the appropriate components/parameters that can be used to
measure and further select the efficient form from a range of possible simplified
forms; (ii) the difficulty in assigning suitable weights to all the cost components,
where the interaction between these components is not clearly defined; (iii)
most of the values assigned to the components/parameters are estimates and
not the actual values, which depend solely on the user input (Qian 1989); and
(iv) components which are considered as critical factor that can influence the
performance of a system in one situation might not be critical in other
situations — for example, in a distributed database which is fully replicated, the
amount of data transferred across the network in the event of evaluating
constraints is not as important as in a distributed database with no replication.
Based on the above arguments, the following heuristic rules are applied:
H1 - Given a set of simplified forms, a simplified form with the lowest G, A
and 7 is always preferable to the others.
H2 - As the cost of accessing remote data for verifying the consistency of a
database state is the most critical factor that influences the performance
of a distributed database, simplified forms which can be evaluated at a
single site without involving any interaction with the remote sites are
more efficient (Gupta and Widom 1993; Mazumdar 1993). Therefore, a
simplified form whose ¢ = 1 is always preferable to the others.
H3 - In asituation where more than one local simplified form can be derived,
then the simplified form with the lowest A is preferable to the others.
H4 - Inasituation where the simplified forms are non-local, then the simplified
form with the lowest o is preferable to the others.
H5 - In a situation where the simplified forms are non-local with the same ¢
value, then the simplified form with the lowest T is preferable to the
others.

CONCLUSION

In a distributed database, the cost of accessing remote data for verifying the
consistency of the database is the most critical factor that influences the
performance of the system (Gupta and Widom 1993; Mazumdar 1993; Qian
1989; Simon and Valduriez 1986). In such an environment, simplified constraint
forms which can be evaluated at a single site are preferable, i.e. 6 =1 and T =
0. In this paper, we have outlined several techniques which are essential for
efficient constraint checking of fragmented relations in a distributed database.
These techniques, which utilize knowledge about the database application to
derive fragment constraints/simplified forms, reduce the amount of data that
has to be accessed, the amount of data transferred across the network and the
scatter metric which captures the scale of constraint non-locality.

Although many approaches/methods have been proposed for constructing
efficient integrity tests from a given integrity constraint and its relevant update
operation, these approaches/methods are mostly designed for a centralized
environment. Hence, the integrity tests derived by these methods are not
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suitable for a distributed environment as they often span multiple sites and
involve the transfer of data across the network. In this paper, we have shown
that it is always possible to generate local tests for domain, key and referential
integrity constraints and it is sometimes possible to generate local tests for
general semantic integrity constraints, depending on their complexity. These
local tests whose evaluation only involves a single site, i.e. the site where the
update is to be performed, reduce the amount of data being transferred across
the network to perform integrity checks and so improve the efficiency of the
integrity checking process. These local tests are derived by employing the
integrity test generation techniques.

The overhead of constraint checking in a distributed environment is strongly
influenced by the complexity of the integrity constraints, the fragmentation
strategies used and the allocation of the fragment relations involved. In this
paper, we have focused on four types of constraint, namely: domain, key,
referential and simple general semantic integrity constraints. We have analyzed
and demonstrated the effect of different fragmentation and allocation strategies
on each of these types of constraint and shown that in most cases we gain
efficiency.

There are a number of extensions and improvements that could be made:
(i) Consider a broader range of constraint types. We have concentrated here on
four types of constraint, namely: domain constraints, key constraints, referential
integrity constraints and simple general semantic integrity constraints. Other
types of constraint, such as aggregate constraints and transition constraints, are
worth investigating. (ii) The overhead of constraint checking is also strongly
influenced by the type of fragmentation and allocation used. Further investigation
of the effect of the fragmentation and allocation strategy on the derived
fragment constraints/simplified forms would be worthwhile.
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