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ABSTRAK

Takrif anjakan Markov matra dua berserta dengan sukatan Markov yang
berpadanan diberi. Kemudian dipaparkan suatu syarat cukup untuk
percampuran eksponen anjakan tersebut. Hasil ini mengitlakkan hasil
yang diketahui umum dalam kasus matra satu.

ABSTRACT

The definitions of a two-dimensional Markov shift and the associated
Markov measure are given. Then a sufficient condition for the exponential
mixing of such shifts is provided. This generalizes the well-known result in
the one-dimensional case.
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INTRODUCTION

Unlike the theory of one-dimensional Markov shifts, the theory of higher
dimensional analogue of these dynamical systems is filled with anomalies
and difficulties (see Schmidt 1990 for a brief survey). In this paper, we make
a small contribution towards a better understanding of these higher-
dimensional Markov shifts by studying the rate of mixing of such shifts.

A standard result in the ergodic theory of one-dimensional Markov
shifts is as follows: Let (7, X,C, ) be a (one-dimensional) Markov shift
where the Markov measure is given by some transition probability (p, P).
Suppose A and B are arbitrary cylinder sets in C. Then the sequence
(u(ANT"B)),s, converges to p(A)u(B) at an exponential rate as 7 tends
to infinity, when the matrix P is irreducible and aperiodic (i.e., there exists
some interger N > 0 such that all the entries of PV are strictly positive).
This result follows from the crucial matrix fact that when P is irreducible
and aperiodic, then the sequence (P"(i,)),~ converges exponentially fast
to p(j) as n tends to infinity, for all i, j. Note that an immediate corollary to
the above result is that 7 is strong-mixing.
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Our purpose in this short note is to generalize the aforementioned
results to the case of a two-dimensional Markov shift. Observe that the
dynamical system in questions consists of two commuting (invertible)
measure-preserving transformations acting on the measurable space of
functions from Z? to some fixed finite set together with the Markov
measure. Here the Markov measure is defined by two commuting stochastic
matrices P and Q such that they share a common stationary probability
vector p (see below for details). Working analogously with the one-
dimensional case, we need to look at the rate of convergence of the sequence
(P"0") (i) mns0 to P(j) as m,n tends to infinity, for all i, j. We show that if
either P or Q is irreducible and aperiodic then the convergence rate of the
aforementioned sequence is exponentially fast. This in turn implies the
exponential convergence of measures on rectangle sets for the corresponding
two-dimensional Markov shift (see Theorem 1). An immediate corollary to
the above is that the two-dimensional Markov shift is strong-mixing.

DEFINITIONS AND RESULTS

Let Y be the finite set {1,2,...,k} equipped with the o-algebra 2. The
measurable space (Y ,B) is deﬁned as the space of all functions x : Z2 — ¥
endowed with the product o-algebra B. Recall that this means, B is the
smallest o-algebra such that the collection of all projection maps
np: Y2 — YF which is given by mg(x) = X|F for each finite subset F of
72, is measurable. Of course, the set ¥¥ here is equipped with the product
o-algebra [[,z2". Given x € YZ, then we shall write X, for the value of
the function x at ¢ € Z2.

We shall be interested in the following subsets of YZ, First, let F be the
set {¢= (cl,cz) e B oL 6% a,+ u,t=1,2} for some given
a=(a,a) e Zu= (u1,u2) (Z+) . Then, an (elementary) rectangle
R,y is any subset of YZ which takes the form

=lxe YZ . X(ere) = Ueren)r VO < € < @+ uy t = 1,2}

for some fixed elements i, of Y, for each ¢ ¢ F. It is clear that such subsets
are measurable. Moreover, it is not difficult to see that the collection of such
rectangles generates the product o-algebra B.

We shall now move on to the notion of a Markov measure on (YZ B).
For this, assume that we are given two kK X k-matrices P and Q satisfying the
following three properties:

1. P,Q are stochastic matrices such that PQ = QP.

9. There exists a probability vector p = (p(1), ..., p(k)) such that pP =p
and pQ = p.

3. If P°,Q° denotes the 0-1 matrices which are compatible with P and Q
respectively, then we require P°Q% = Q°P% and P°Q is also a 0-1

matrix.

78 Pertanika J. Sci. & Technol. Vol. 4 No. 1, 1996



The Rate of Mixing of Two-dimensional Markov Shifts

Let
2 .
Roy = {x & ¥ X(c1,e2) = Heryea)s Vo, <er<ar+u,t=1,2}

be a rectangle, for some a = (a;, @) € Z* and u = (uy,u3) € (Z+). Wesshall
call Ryy an allowable rectangle if, in addition,

Po(x(cl,cz)ax(c1+1,cz)) = Qo(x(cl,cz)ax(cl,cz+1)) =

for all x € Ran and a; < ¢; < a;+u,— 1,1 =1,2. We are now ready to
define the Markov measure m on (YZZ,B) associated with the matrices P
and Q. Let Raw = {X € Y7 X(0, o) = f(ey.c2) VO < ¢ < @y + sy t = 1,2} be
an allowable rectangle. Then the measure of R,y is taken to be

u1—1
m(Ra,ll) = p(i(al ,az)) H P(i(ﬂl+e,112)’ i(a1+e+1,a2)) X
e=0
u;—1
H Q(i(al +ur,a+f)> i(al+u1,a2+f+1))
=

For non-allowable rectangles R, we take m(R) to be zero. By using the
Kolmogorov consistency theorem (see, e.g., Parthasarathy 1967), m extends
uniquely to a probability measure on the product o-algebra B. In analogy
with the one-dimensional case, we shall call this measure m the Markov
measure defined by the matrices P and Q.

We shall define the horizontal shift o: Y% — YZ* and the vertical shift
Y2 > Y2 by

(Ux)(cl,cz) = x(cl+1152) and (Tx)(c‘l,cz) = x("lyc2+1)

for all x € YZ and (c1,¢2) € Z?%. Then, it is clear that ¢ and T commute.
Moreover, since each o and 7 preserve the measure m on the algebra 4 of
finite disjoint union of rectangles then they are measure-preserving on the
smallest o-algebra containing 4, which is, of course, the product o-algebra
B. Thus o and 7 are two commuting measure-preserving automorphisms
acting on (YZZ,B, m). We shall call the resulting (invertible) measure-
preserving dynamical system (YZZ,B,m,a, 7) a (two-dimensional) Markov
shift with transition probability (p, P, Q).

DISCUSSION

By working on rectangle sets, it can be shown that the assumption that
P°Q0 is also a 0-1 matrix is needed to check consistency of the Markov
measure (c.f. Kolmogorovs theorem).

A second implication of the 0—1 assumption on the matrix P°QC is that
for allowable rectangles Ry, (Ray) is also given by
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uz—l
m(Ra,u) = P(i(al,az)) H P(i(a1,a2+e’)7 i(a;,a2+e'+1))x
=0
u—1

H Q(i(a1+f'1,tl2+uz)1 i(al +f’+l,a2+u2))

=0
Suppose we give the set Y the discrete topology. Then the Markov measure
m is supported by the subshift of finite type

2
X={xeY: P(X(e.r), Xes1.) = Q" (X(e,f)s Xerp+1)) = 1, Ve, f € Z}

when we assume that the stationary probability vector p is a strictly positive
vector. Note that the fact that X is non-empty follows from the commuting
assumption on PY and Q°.

Using well-known methods from the theory of one-dimensional Markov
shifts, we prove:

Lemma 1

Suppose P and Q are two commuting k X k-stochastic matrices such that there exists
some probability vector p = (p(1), ..., p(k)) satisfying pP = p = pQ. If either P or
Q_1s irreducible and aperiodic then the sequence (P™ Q" (1, j) )m,n>0 converges to p(j)
at an exponential rate as m, n tends to infinity, for all i, j = 1,.. ., k, i.e., there exists
constants C > 0,0 < o, B < 1 with af3 < 1 such that

|P"Q"(i, j) —p()| L Ca™F"  forallmn >0

and foralli,j=1,...,k.

Proof

Without loss on generality, we shall assume that P is irreducible and
aperiodic. Thus by the Perron-Frobenius theorem (see, for instance, Seneta
1981), the dominant eigenvalue 1 is a simple eigenvalue for P. Now let V' be
the subspace {v € Ck: < p,u>=0}. (Here <,> denotes the standard
inner-product in C k ). Then, it is easy to see that P leaves V invariant, i.e.,

PV C V. Moreover, if we denote the vector (1,1,...,1) by 1, then each
w € CF can be uniquely written as

w=w—<pw>l+<pw>1

such that w— <p,w>1¢€eV and <p,w>1¢€ U, where U is the one-
dimensional subspace generated by the vector 1. Thus we have

Cr=veoUuU.

Hence, by virtue of the simplicity of the eigenvalue 1 of P, we deduce that
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the spectral radius of P}, (the restriction of P to the invariant subspace V) is
strictly less than 1. The spectral radius formula then implies there exists
some 0 < a < 1 such that

I PRIl < Cra™

for all m > 0 and some constant C; > 0. (Here the matrix norm is the usual
operator norm.) Now, if Q also has 1 as a simple eigenvalue then using the
same argument as above, it gives us

1O Il < GB°

for all » > 0 and some constants 0 < 8 < 1, Cy > 0. Thus, in this case, we
have

1 PL Ol < Ca™p"

for all m,n > 0 and some constant C > 0.

On the other hand, when the eigenvalue 1 of Q is no longer simple the
spectral radius of O}, may equal 1. In this case, it suffices to note that Q’[’v is
bounded so that

Ioh 1l < G

for all » > 0 and for some constant C3 > 0. This in turn implies that
PO < Cla™
for all m,n > 0, and some constant C’ > 0. Hence, in either case, we have
||PT’V’Q|"V||§Ca”’ﬂ" Vm,n >0

and for some constants C > 0,0 < o, <1 with a8 < 1. From this last
inequality we deduce that

|P"Q"|| < Ca™B"|lv]]  Vmn>0,YveV.

(Here the vector norm is the usual /; norm.) Recall that given w € C*, then
w— < p,w > 1 € V. Thus, since P"Q" is stochastic for all m,n > 0, we have

|| P"Q"w— < p,w>1|| < Ca"B"|| w— < p,w>1]|

for all m,n >0 and all w € Ck. Furthermore, by taking
w=(0,...,0,1,0,...,0), the j-th unit vector, it is easy to see that

|P"Q"(i, j) = p()| < | P"Q'W — <p,w > 1|
forallm,n>0and i,j=1,2,...,k. Thus
|P"Q"(i,j) —p(J)| < C'a™B"  Vm,n>0,
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and for all i,j = 1,2,...,k where C' = C max{||w— < p,w > 1||: w = j—th
unit vector, j=1,2,... ,k}. This gives us the required result.

Observe that the essential ingredient in the above proof is the fact that
either P or Q has a simple dominant eigenvalue 1 and the rest of the
spectrum has a modulus strictly less than 1. Of course, a similar observation
also holds in the case of a one-dimensional Markov shift. The following
theorem is the main result of this note.

Theorem 1

Let (YZZ,B,m,a, T) be a Markov shift with transition probability (p,P,Q).
Suppose either P or Q is irreducible and aperiodic. Then given any rectangle A, B € B,
there exists an interger N > 0 and constants C > 0, 0 < o, 8 < 1 with af3 < 1 such
that

m(4 N o7 "B) — m(A)m(B)| < Ca™p"

for all intergers m,n > N.

Proof

Let A, B € B be two arbitrary rectangles. Then, by definition, there exists
a=(a;,a),b=(b1,b2) € Z%u= (u,uw),v= (vi,v2) € (ZJ“)2 such that
A = Ray and B = Rpy where

Ryg={xe YZ: X(ene)) = erer), VO L € S ap +ut = 1,2}
and

Roy =X € Y21 X4 i) = i {4 1) ¥by < d < by + vy, 1= 1,2}
Hence

ANo™r"B={x« Y2, Xee) = ere)y VU S < ap +uy
and X4 mdytn) = i (g 4 Vb: < d < b+ v, t = 1,2}

Now, let m > a; +u1 — by and n > a; + up — by. Then, in particular,
ANo77"B is a finite disjoint union of elementary rectangles
Ry, Ry, ..., Ry, say. If either 4 or B is non-allowable, then each of the
R;’s are non-allowable. Thus, in this case, we have m(4No™™7"B) =
¥¥ | m(R;) = 0. Moreover, since m(A4)m(B) is also zero, then the required
result holds trivially in this case. We are now left with the case when the
elementary rectangles 4 and B are both allowable. Then, by the assumption
P°Q° is also a 0—1 matrix (see above), it is straightforward (but tedious) to
check that
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u—1
m(Amo'_mTﬁnB) :p(i(al,az)) H P(i(a1+e,a2)> i(a1+e+l,a2)) X
e=0
ur—1 ,
H Q(l(m +ur,a+ 1) i(a1+u1 ,a2+f+1))Pm o" (i(a1+u1 i) izbl,bz)) X
f=0
v1—1 vy—1
-/ ./ -/ %
HO P(l (b1+eab2)’ 4 (b] +€+1,b2)) g Q(l (b1+U1 ’b2+f), l/(b1+'l)1 ,b2+f+1))
e= =

where m' =by+m— (a1 +u1) >0,n =by+n— (a +uy) > 0. Observe
that since one of P or Q is aperiodic, then the stationary probability vector p
is strictly positive. Hence

(4)m(B)

5 — m Hoetins .
m(ANo ™ "B) = p(i'(b b )) P Q" (l(a1+u1,a2+uz)"/(bl,ba))'
1,02
So that
m(ANo"r"B) 1 j dean ‘ ‘
m(4)m(B) - ‘ :P(i,(b b )) }P’” o (l(a1+”1’”2+”2)’Z,(bl’bZ)) _p(ll(bl,bz))
1,02

Thus, by combining the previous line and Lemma 1, we gather that there
exists 0 < o, B < 1 with af < 1 such that

|m(4ANo™"r7"B) — m(A)m(B)| < Cam'ﬂ”'

for all m’,n’ >0 and for some constant C > 0. Finally, by taking
N =max((a; +w) — b1, (a2 + up) — b2, 1), we deduce that

|m(4No™"r"B) — m(4A)m(B)| < C' o™ f3"

for all m,n > N and some constant C' > 0. This then gives us the required
result. O

Let T1,T> be two commuting measure-preserving transformations
acting on the probability space (Z,D,v). Then the resulting dynamical
system is said to be strong-mixing if

= m n o
ml;r_l?oo m(ANT;"T,"B) = m(A)m(B)
for all A,B € D.

Recall that for Markov shifts, disjoint unions of rectangles form an
algebra that generates the product o-algebra. Hence, by using a standard
approximation theorem (see, e.g., Walters 1981), we have an immediate
corollary to Theorem 1.
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Corollary 1
Let (Yzz,B,m,a, T) be a Markov shift with transition probability (p, P, Q). If
either P or Q 1is irreducible and aperiodic then the Markov shift is strong-mixing .

Observe that if P, say, is irreducible and aperiodic and Q is the identity
matrix then we can identify the two-dimensional Markov shift with the one-
dimensional Markov shift with transition probability (p, P). Thus we can
retrieve the well-known mixing result for one-dimensional Markov shifts
from the above corollary. As a final remark, note that all the above results
can be generalized for Markov shifts of arbitrary dimensions.
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