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ABSTRAK

Kaedah tak tersirat kumpulan berselang-seli (TTKS) merupakan satu kaedah
lelaran tak tersirat bagi masalah parabola yang melibatkan domain sekata telah
dilaksanakan dalam sistem Sequent S27. Kaedah ITKS ini sesuai bagi komputer
selari kerana ia mempunyai tugas-tugas yang terpisah dan merdeka, contohnya blok­
blok (2 x 2) yang boleh dilaksanakan serentak tanpa melibatkan satu sama lain.
Makalah ini menerangkan pembangunan dan perlaksanaan algoritma selari TTKS.
Keputusan-keputusan yang diperolehi daripada perlaksanaan selari ini dibandingkan
dengan perlaksanaan secara jujukan.

ABSTRACT

The alternating group explicit (AGE), an explicit iterative method for parabolic
problems involving regular domains ofcylindrical symmetry is implemented in parallel
on a MIMD Sequent S27 system. The AGE method is suitable for parallel computers
as it possesses separate and independent tasks, i.e (2 x 2) blocks which can be
executed at the same time without interfering with each other. This paper reports
the development and implementation of the parallel AGE algorithm. The results
from parallel implementation are compared with those of the sequential imple­
mentation.
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INTRODUCTION

Let us consider the following parabolic equation in one-space dimension

given by

au
at

a2u ex au
-+-
ar2 r ar (1.1)

subject to the initial-boundary conditions

U(r, 0) = f(r), 0'5:1''5:1

and au
- (0, t)= 0, U(l, t)= 0, forO '5: t'5: Tau (1.2)
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This equation reduces to the simple diffusion equation when a = 0 and by
putting a = 1 and a = 2 respectively, it becomes a parabolic problem with
cylindrical and spherical symmetry. The application of the AGE algorithm to
the heat equation (Evans and Sahimi 1987) is now extended for problem (1.1).

PROBLEM FORMULATION

A uniformly-spaced network whose mesh points are r
i
= iLlr, t =jM for i = 0,

1, ..., m, m +1 andj = 0,1, ... , n, n +1 is used with M = Ij(m +1): M= Tj(n +1)
and mesh ratio 'A = Mj (Llr)2.

I
r

m

Fig. 1

A weighted approximation to (1.1) at the point (ri , ~+l) is thus given by
Saul'yev (1964),

[1 + 2(1 + a)'A8]uO,j+1 - 2(1 + a)'A8u1•
j
+1 = [1- 2(1 + a)'A(I- 8)uO,j

+ 2(1 + a)'A(1- 8)u1,j (2.1)

at the axis r = 0 and

- p.8u. 1 . 1 + (1 + 2Ae)u1 . 1 - q8u. I . 1 = p. (1- 8)u. 1 .
I I-,j+ .j+ I 1+,j+ 1 1- ,J

+[1 - 2'A(1- 8) ]u.. + q.(I- 8)u. 1 .
l,j 1 1+ ,J

for i = 1, 2, ... , m and points not on the axis, where

and
qi = (1 + a/2i)'A.

(2.2)

Following Sahimi and Muda (1988), approximations (2.1) and (2.2)may be
written as

ao bo

o ll~ I~~ lc
1
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l
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_
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m

or Ag=f. (2.3)
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where

ao= 1 + 2(1 + a)'A8,

bo = - 2(1+ a)'A8,

a t =a=(1+2A8),for i=1,2, ...,m;

bi = - qi 8, for i = 1, 2, ... , m;

c
i
= - Pi8, for i = 1, 2, ... , m;

fo = [1- 2(1 + a)'A (1-8)]uo./ 2(1 + a) A (1-8)]u
1
•
j

f. = p. (1- 8)u. I' + [1- 2'A(1- 8)]u.. + q. (1- 8)]u. 1 .,
J I I-J l.j I It,J

for i = 1,2, ..., m - 1;

fm= Pm (1- 8)um_ l •j + [1 - 2'A(1 - 8)]um,j + qm [8um+l •j +1

+ (1-8)]um+I)·

Note that (2.3) corresponds to the fully implicit, the Crank-Nicolson and the
classical explicit methods when 8 = 1, 1/2, and 0 respectively with 0 «M)2 +
M), 0 «~r)2 + (M)2) and 0 «~r)2 + M) accuracy.

Without loss of generality, assume that m is odd. Then, we have an even
number (m + 1) of internal mesh points at which we seek the solutions of (2.3)
along each time level. We now perform the following splitting ofA:

(2.4)

where

~ a
o ~: a ~ ()

····························~····~··a········b~······r j .
G1 = ~ c3 1/2 a ~. ~ (2.5)

............................: ~ ': .. ... " .

............................; · i················i .o ~ 1/2 a bm_1

c 1/2 a
m (m+l) x (m+l)
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~a !........~ ~ ~ , , , .
~ ~ a b l ~ ~ ~ ( ) ~
: c ~a:: :
: 2 : : . :

···········T···················l···~·~···b~····T·· ~ j .

G2 ~ ~ c4 ~ a ~. ~ j (2.6)

···········1···················1"···················1·········:·l····················I······.. ··

···········l······(···)··········I·················:··\... ~ .. ·······I···~·~····b~~~t·········
~ ~ ~ ! c ~a!

···········+····················f····················j + ':!-;-!•...•..•.••+ .
: : :: : ~a
• • '. • (m+l) x (m+l)

Following Evans and Sahimi (1987), the following iterative AGE conver­
gent scheme was derived,

(G + rI)l!(k+l/2) = (fl - G )U(k) + f
I 2 - -

+ (2 - w) [l!(k+l/2) (2.7)

for any 0 ~ w~ 2 and r > 0 being a fixed acceleration parameter along each
intermediate (half-time) level or iterate. A particular choice of w= 0 gives us
the Peaceman-Rachford (PR) scheme and for w= 1, we obtain the variant due
to Douglas and Rachford (DR). Both stable variants are known to have
truncation errors of the order T pR= 0 ((L'lr)2 + (M)2) and TOR ((L'lr)2 + M)
respectively.

Following Sahimi and Muda (1988) we arrive at the computation of the
solution of our geometrical problem:

1) at level (k + 1/2)

U (k+1/2) = (A U (k) + B U (k) + C U (k) + D )/ a
o 00 01 02 0 0

U (k+1/2) = (A U (k) + B U (k) + C U (k) + D )/ a
I I 0 1 1 1 2 1 0

U(k+l/2) = (Au. (k) + Bu (k) + Gu (k) + Uu (k)+ E.) / a
1 I 1-1 1 1 1+1 I 1+2 I 1/2

152

for i = 2, 4, 6, ... , m - 1

u. (k+l/2) = (Au (k)+ BU(k) + Bu. (k)+ C.u (k)+ D.)/a.
1+1 1 I-I 1 1 HI 1 1+2 I 1/2

for i = 2, 4, 6, ..., m -1
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where

with

2) at level (k + 1)

s= r + a/2, So = r - ao/2, and s = r - a/2.

U (k+l) = (q U (k) + d U (ktl/2)Is
a 00 00 a

U(ktl) = (P.U(k) + Qu. (k) + Ru. (ktl/2) + S.U. (ktl/2) I&...
I I I 1+1 1 I 1+1 (1+1)/2

for i = 1, 3, 5, ... , m - 2

U. (ktl) = (P.U(k) + P.u. (k) + Q-.U(k+ 1/2»+ Ru. (k) la.
1+1 I 1 1 1+1 1 1+1 (1+1)/2

for i = 1, 3, 5, ..., m - 2

where

(2.9a)

(2.9b)

with

Q= bJs - q), R=sd, S=- bd
1 1

qo = a/2 - (1 - co)1', q=a/2-(l -co)f and d=(2-co)f.

Since the equations 2.8a & 2.8b and 2.9a & 2.9b are explicit, then
their solution on a parallel computer is possible.

PARALLEL AGE EXPLOITATION

A parallel algorithm has been developed and implemented to solve the
one-space dimension parabolic equation on a MIMD shared memory
parallel computer.
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The mesh of points (Fig. 1) is decomposed into a subset of points,
each of which is assigned to a processor. As we have seen, the computation
of the solution of our geometrical problem involves iterations of the two
sweeps.

For the first sweep of each mesh point, each computational molecule
of equations 2.8a & 2.8b is again assigned to a processor. The computational
molecules are then solved depth by depth in parallel in bottom-up order
(Fig. 2(a)). This method is also known as the balanced binary tree method.
The depth of such a tree will be bound by (log n) and the complexity
of such an algorithm will be 0 (log n) where n is the number of nodes.
The maximum number of processors employed in this discipline is n/2.

( CD+Ei )/Ui/2 ( 0+ Di )/Ui/2

8/ '8 8/
,

8
?' , .?1

? "'"0 0 0 0 0 0 0 0
l' ~ ~~ /'~ Jf~ 7' ~ f "" ;7 ~ ! t

A U
i
_1 B U. C. u j+1 D j U i+2 A U

i
_
1 B. U. B u j+1 Cj u j+21 1 I I I I

for i = 2, 4, ... , m - 1

Fig.2(a)

for i = 3, 5, ..., m

The second sweep is started after the first sweep has been completed. The
computational molecules of equation 2.9a & 2.9b are also solved using the
same technique (Fig. 2(b)). Then a test of convergence is carried out after the
second sweep. Further iterations are needed until a prescribed tolerance c is
achieved.

for i = 1, 3, ... , m - 2 for i = 2, 4, ... , m - 1

154

Fig.2(b)
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The algorithm for the parall~lAGE method is then described as follows,

Algorithm begin
for h = 1 to n do

begin
T=ht
k=O
while (not converge) and (k <MAX)

begin
k=k + 1
U (k+l/2) =o ,.,

U (k+l/2) =
I ...

for i = 2 to m-l in parallel do
begin

for j = 4 to 7 in parallel do
A. =A 2*A 2.

I,J I, ~ I, ~+l

for j = 2 to 3 in parallel do
A. =A 2· +A 2.

1,] 1, ~ l,z.)+1
U(k+l/2) = (A +A + A )/a.

I 1,2 1,3 1,4 1

end
U(k+l) = ...

f~r i = 1 to m-2 in parallel do
begin

for j = 4 to 7 in parallel do
B.. = B 2 * B 2·

1,] 1, I, :]+1

for j = 2 to 3 in parallel do
B. = B 2 + B 2'I,J I, ~ I, ~+l

U(k+l) = (B + B. ) * la.
I 1,2 1,3 1

end
Test Convergence
[abs(u(k+l) - U(k») < £ for all i]
Repla~e u. (k+l) ~th new u. (k) for all i

1 I

end
end

Algorithm end.

As the method of divide-and-conquer (Evans and Sutti 1988) is widely
applicable in sequential computation, a sequential program is developed and
implemented to give its performance in contrast with the parallel.

EXPERIMENTAL RESULTS

Let us consider the cylindrical problem (Mitchell and Pearce 1963)

au
at

a2u 1 au
+ (O::;;r::;;l)
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U(l, t) = 0,

U(r, 0) = Jo(Br> ,

au
-(0, t)
au

t>O

where Jo (Br) is the Bessel function of the first kind of order 0 and B is
the first root of Jo(B) = O. The exact solution is U(r, t) = Jo(Br)e-~2t.

This problem is implemented in parallel as well as in sequential on
the sequent symmetry S27 system using the strategy discussed above. The
programs are written in C language; compiled with the Symmetry C Compiler
(version 6.2). The Sequent computer runs on the DYNIX operating system,
a version of UNIX 4.2bsd that also supports most utilities, libraries and
system calls provided by UNIX System V. Here the Sequent computer supports
multi-tasking on 2 processors.

The accuracy of these parallel AGE method results has been verified
(Fig. 3(a) with the implicit-sequential results obtained from Sahimi and
Muda (1988).

0.002
0.0018
0.0016

0.0014
~ 0.0012
o
to 0.001
Q)

Q) 0.0008
:;
""60.0006
~ 0.0004

0.0002
0+---+--;----+--+---+--+---+--+--<

oT-:C\J(T)'Vll)WC'---COC)
°ooci cieidcid

__ AGE (DR) imp/jct-sequential

........ AGE (DR) implict-parallel

Fig. 3(a). The absolute f!TT(ffS of the numerical solutions to the cylindrical problems (where
A. = 1.0, t = 1.0, AT = 0.1, At = 0.01, r = 0.9, (0 = 1)

In the implementations, the execution time of the two sweeps is obtained
with the number of mesh points being increased (Table 1). By comparing
the results of the implementations, we notice that the processing times
for the parallel strategy are less than those of the sequential strategy (Fig.
3 (b) & 3(c). This is mainly due to the effectiveness of the algorithm which
enables a high percentage of the problem to be parallelized (in equations
2.8a, 2.8b, 2.9a and 2.9b).
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Fig. 3(b). The time execution performance of the first sweep
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Fig. 3(c). The time execution performance of the second sweep
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Fig. 3(c). Comparison of the speed-up of the parallel AGE method

Pertanika J. Sci. & Techno!. Vo!. 2 No.2, 1994 157



Zaiton Muda, Mohamed Othman and Chuah Chin Yew

TABLE 1
The execution time (in microseconds) and speed-up performance of the parallel

AGE method (where A = 1.0, t = 1.0, Llr = 0.1, bt = 0.01, r = 0.9, (J) = 1)

sequential parallel algorithm parallel speed-up
no. of algorithm
mesh
points 1st 2nd 1st 2nd 1st 2nd

sweep sweep sweep sweep sweep sweep

10 1035 1012 979 950 1.057201 1.065263
12 1293 1264 1220 1185 1.059836 1.066667
14 1558 1516 1467 1420 1.062031 1.067606
16 1822 1767 1721 1661 1.058687 1.063817
18 2065 2024 1947 1895 1.060606 1.068074
20 2323 2274 2194 2135 1.058797 1.065105
22 2589 2529 2443 2373 1.059763 1.066574
24 2841 2782 2678 2617 1.060866 1.063049
26 3095 3028 2926 2846 1.057758 1.063949
28 3353 3279 3166 3078 1.059065 1.065302
30 3613 3595 3410 3373 1.059531 1.065904

In Fig. 3(d), the speed-up for the first sweep is less than the second.
This is because the second sweep has a higher percentage of parallelism
than the first. Due to the limitation factor of hardware facilities (that is
the number of processors is two), further conclusions on speed-up for more
than two processors cannot be made. However, we expect a better speed­
up as we increase the number ofprocessors. This will mean more subproblems
can be solved simultaneously.
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