Automorphisms of Fuchsian Groups of Genus Zero

ABU OSMAN BIN MD. TAP

Department of Mathematics, Centre for Quantitative Studies Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia.

Keywords: Automorphisms; Fuchsian groups; braid groups; mapping class groups; Seifert fibre groups.

ABSTRAK

Setiap automorfisma kumpulan Fuchsan diaruh oleh suatu automorfisma kumpulan bebas. Kertas ini memberikan suatu persembahan kumpulan automorfisma bagi kumpulan Fuchsan genus sifar melalui kumpulan tocang. Sebagai sampingannya kumpulan kelas pemetaan tulen dan kumpulan serabut Seifert dibincangkan.

ABSTRACT

Every automorphism in Fuchsian group is induced by some automorphism of a free group. This paper gives a presentation of a automorphism group of Fuchsian group of genus zero via braid groups. We also obtained the pure mapping class groups and the Seifert Fibre Groups.

INTRODUCTION

A co-compact Fuchsian group, Γ, is known to have the following presentation:

$$\Gamma = \langle a_1, b_1, \dots, a_g, b_g, x_1, x_2, \dots, x_r | x_i^{-1}$$

= $\prod_{i=1}^r x_i \frac{g}{\pi} [a_j, b_j] = 1 >$

where $g \ge 0$, $r \ge 0$, $m_i \ge 2$ and $[a, b] = aba^{-1}b^{-1}$. (See [5]). The integers $m_1, m_2, ..., m_r$ are called the *periods* and g is called the *genus*. We say Γ has *signature* (g; $m_1, m_2, ..., m_r$). If g = 0, we simply write $(m_1, m_2, ..., m_r)$ for $(0; m_1' m_2, ..., m_r)$. If g = 0, r = 3, we call (ℓ, m, n) the *triangle group*.

 Γ is the fundamental group of some surface. By Nielsen's theorem, every automorphism in the fundamental group of a surface is induced by a self-homeomorphism of the surface. With abuse of language, we call those automorphisms induced by the orientation-preserving self-homeomorphisms of the surface, the orientation-preserving automorphisms, denoted by Aut⁺. In this paper, we will give a presentation of Aut⁺ Γ , for Γ a Fuchsian group of genus zero.

1. BRAID GROUPS

Artin (1925, 1947) defined the *braid group* (the full braid group) of the plane, Br, with r strings as:

Generators: σ_i , $1 \leq i \leq r - 1$.

Defining relations:

$$\sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1}, 1 \leq i \leq r-2$$

$$\sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, \quad , |i-j| \geq 2$$

$$(1.1)$$

The braid group, B_r , can be looked upon as the subgroup of the automorphism group of a free group of rank r. We will adopt the convention of operating from right to left, that is

$$\sigma_i \sigma_i(x) = \sigma_i(\sigma_i(x)).$$

Let $v: B_r \to \Sigma_r$ be defined by $v(\sigma_i) = (i i + 1)$, for $1 \le i \le r-1$, where Σ_r is a symmetric group on r letters. Let $P_r = \ker v$. Then P_r is called the *pure braid group* and is known to have the following presentation: Generators:

$$A_{ij} = \sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \dots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \dots$$

$$\sigma_{j-2}\sigma_{j-1}, 1 \leq i < j < r$$

Defining relations:

$$\begin{array}{l} A_{st}^{-1}A_{ij} A_{st} \\ = A_{ij}, \mbox{if } s < t < i < j \mbox{ or } i < s < t < j \\ = A_{ij}^{-1} A_{ij} A_{sj}, \mbox{if } t = i \\ = A_{ij}^{-1} A_{tj}^{-1} A_{ij} A_{tj} A_{tj}, \mbox{if } s = i < j < t \ (1.2) \\ = A_{sj}^{-1} A_{tj}^{-1} A_{sj} A_{tj} A_{tj} A_{ij} A_{tj}^{-1} A_{sj}^{-1} A_{tj} A_{sj}, \\ \mbox{if } s < i < t < j \end{array}$$

As a representation of the automorphism of the free group $F_r = \langle x_1, x_2, ..., x_r \rangle$, we have.

$$\begin{aligned} \mathbf{c}_{i} &: \mathbf{x}_{i} \rightarrow \mathbf{x}_{i} \mathbf{x}_{i+1} \mathbf{x}_{i}^{-1} \\ & \mathbf{x}_{i+1} \rightarrow \mathbf{x}_{i} \\ & \mathbf{x}_{j} \rightarrow \mathbf{x}_{j}, \quad \text{for } j \neq i, i+1. \end{aligned} \tag{1.3}$$

and

$$\begin{array}{l} A_{st} : x_{i} \rightarrow x_{i} &, \text{ if } t < i \text{ or } i < s \\ \rightarrow x_{s} x_{i} x_{s}^{-1} &, \text{ if } t = i \\ \rightarrow x_{i} x_{t} x_{i} x_{t}^{-1} x_{i}^{-1} &, \text{ if } s = i \\ \rightarrow x_{s} x_{t} x_{s}^{-1} x_{t}^{-1} x_{i} x_{t} x_{s} x_{t}^{-1} x_{s}^{-1} &, \text{ if } s < i < t \end{array}$$

Note:

$$(\sigma_1 \sigma_2 \dots \sigma_{r-1})^r = (\sigma_{r-1} \sigma_{r-2} \dots \sigma_1)^r$$
$$= I(x_1 x_2 \dots x_r)$$
(1.5)

$$(A_{r-1,r}A_{r-2,r} \cdots A_{2r}A_{1r}) (A_{r-2,r-1}A_{r-3,r-1})$$

... $(A_{23}A_{13}) (A_{12}) \cdots A_{1,r-1}) \cdots (1.6)$

=
$$(A_{12}) (A_{23}A_{13}) \dots (A_{r-1, r}A_{r-2, r} \dots A_{1r})$$

= $I(x_1 x_2 \dots x_r).$

where I (γ) denotes the inner automorphism $x \rightarrow \gamma x \gamma^{-1}$ The center of B_r , $r \ge 3$, is the infinite cyclic subgroup generated by

$$a^{r} = (\sigma_{1}\sigma_{2}...\sigma_{r-1})^{r} = (A_{12})(A_{23}A_{13})...$$
$$(A_{r-1,r}A_{r-2,r}...A_{1r}).$$
$$.... (1.7)$$

(See Birman, 1974 and Chow, 1948)

We now state the well-known necessary and sufficient condition for an automorphism of a free group to be an element of the braid group B_r . Theorem 1

Let
$$F_r = \langle x_1, x_2, \dots, x_r \rangle$$
. Then $\beta \in B_r \subset Aut F_r$

if and only if β statisties:

$$\beta(\mathbf{x}_{i}) = \lambda_{1} \mathbf{x}_{\mu i} \lambda_{i}^{-1} \quad 1 \leq i \leq r$$
$$\beta(\mathbf{x}_{1} \mathbf{x}_{2} \dots \mathbf{x}_{r}) = \mathbf{x}_{1} \mathbf{x}_{2} \dots \mathbf{x}_{r}$$

where $\begin{pmatrix} 1 & 2 & \dots & r \\ \mu_1 & \mu_2 & \dots & \mu_r \end{pmatrix}$ is a permutation and

$$\lambda_i = \lambda_i (x_1, x_2, \dots, x_r).$$

(Artin, 1925 and Birman, 1974) (See [1], [3])

The mapping class groups are closely related to the braid groups and the automorphism groups of the Fuchsian groups. (See [3], [7]). The mapping class group (full mapping class group), (M(o, r), is known to have the following presentation:

Generators: ξ_i , $1 \leq i \leq r - 1$.

Defining relations:

$$\begin{aligned} \xi_{i}\xi_{i+1}\xi_{i} &= \xi_{i+1}\xi_{i}\xi_{i+1} , \ 1 \leq i \leq r-2 \\ \xi_{i}\xi_{j} &= \xi_{j}\xi_{i} , \ |i-j| \geq 2 \quad (1.8) \\ \xi_{1}\xi_{2}\cdots\xi_{r-2}\xi^{2}{}_{r-1}\xi_{r-2}\cdots\xi_{2}\xi_{1} &= 1 \\ (\xi_{1}\xi_{2}\cdots\xi_{r-1})^{r} &= 1 \end{aligned}$$

2. AUTOMORPHISM GROUPS

We now state a restricted version of Zieschang's theorem (1966):

Theorem 2.1.

Let $\Gamma = \langle x_1, x_2, \ldots, x_r | x_i^{m_i} = x_1 x_2 \ldots x_r = 1 \rangle$ be a Fuchsian group of genus zero and $\widehat{\Gamma} = \langle \widehat{x}_1, \widehat{x}_2, \ldots, \widehat{x}_r \rangle$ be a free group of rank r. Then every $\phi \in \text{Aut}^+ \Gamma$ is induced by some $\phi \in \text{Aut} \Gamma$ staisfying:

$$\begin{split} \widehat{\phi}(\widehat{\mathbf{x}_{i}}) &= \widehat{\lambda}_{i} \widehat{\mathbf{x}}_{\mu} \widehat{\lambda}_{i}^{-1} , 1 \leq i \leq r \\ \widehat{\phi}(\widehat{\mathbf{x}_{1}} \widehat{\mathbf{x}}_{2} \dots \widehat{\mathbf{x}_{r}}) &= \widehat{\lambda}(\widehat{\mathbf{x}_{1}} \widehat{\mathbf{x}}_{2} \dots \widehat{\mathbf{x}_{r}}) \widehat{\lambda}^{-1} \end{split}$$
(2.1.)

where $\begin{pmatrix} 1 & 2 & \dots & r \\ \mu_1 & \mu_2 & \dots & \mu_r \end{pmatrix}$ is a permutation with $m_{\mu_i} =$

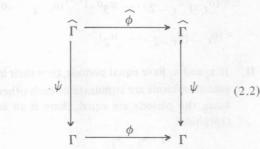
m;

and $\widehat{\lambda}_1, \widehat{\lambda}_2, \dots, \widehat{\lambda}_r, \widehat{\lambda} \in \widehat{\Gamma}$

Let $\psi: \widehat{\Gamma} \to \Gamma, \psi(\widehat{x_i}) = x_i, 1 \le i \le r$, be

 $, 1 \leq i \leq r$

the natural homomorphism. If $\phi \in \operatorname{Aut} \widehat{\Gamma}$ satifies (2.1.), then there is a unique $\phi \in \operatorname{Aut}^* \Gamma$ defined by:

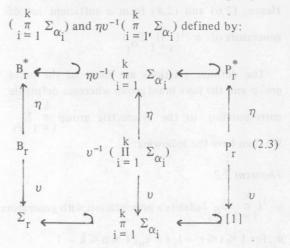


We know that every automorphism of Γ can be obtained in this way by Theorem 2.1. The set of all such automorphisms $\widehat{\phi}$ of $\widehat{\Gamma}$ forms a subgroup of Aut $\widehat{\Gamma}$ which is denoted by $\widehat{A}(\widehat{\Gamma})$. By definition, $B_r \subset \widehat{A}(\widehat{\Gamma})$. The correspondence $\widehat{\phi} \rightarrow \phi$ defines a homomorphism $\eta: \widehat{A}(\widehat{\Gamma}) \rightarrow \operatorname{Aut}^+ \Gamma$. We denote $\eta(B_r) = B_r^*, \ \eta(P_r) = P_r^*$. Without ambiguity, we will use the same symbol for the elements in B_r^* , (respectively, P_r^*), corresponding to the elements in B_r , (respectively, P_r).

As we see, $\phi \in Aut^+ \Gamma$ maps x_i into a conjugate of $x_{\mu i}$ with $m_{\mu i} = m_i$. The intermediate groups between P_r and B_r (and hence the intermediate groups between P_r and B_r) depend strongly on the periods and the permutation. Let $\frac{\pi}{i=1} \sum_{\alpha_i} \sum_{\alpha_i}$ $\Sigma_{\alpha_i} \times ... \times \Sigma_{\alpha_k}$ where $\sum_{i=1}^{k} \alpha_i = r$, be the symmetric group corresponding to the permutation of the periods. Then we have:

$$v: \mathbf{B}_{\mathbf{r}} \to \Sigma_{\mathbf{r}} \supset \frac{\kappa}{n} \sum_{i=1}^{K} \Sigma_{\alpha_{i}} \supset \{\mathbf{1}\}$$

We are interested in the structure of the groups v^{-1}



Let us simplify the notation of the signature of $\boldsymbol{\Gamma}$ as:

 $\begin{pmatrix} \alpha_1 & \alpha_2 \\ (m_1^-), m_2^- & \dots, m_k^{\alpha_k} \end{pmatrix}$ (2.4)

where $\sum_{i=1}^{K} \alpha_i = r$, to mean that the first α_1 generators have period m_1 , the next α_2 generators have period m_2 , ..., and the last α_k generators have period m_k . We set $\alpha_0 = 0$, the significance of which will become clear later for the simplicity of notation. Let $\ell_n = \sum_{i=0}^{n} \alpha_i$, $0 \le n \le k$. Then $\ell_0 = 0, \ell_1 = \alpha_1, \ell_2 = \alpha_1 + \alpha_2, \dots, \ell_k = r$.

Then the defining relations of Γ with signature (2.4) are:

 $x_1 x_2 \dots x_r = 1$

$$x_i^{mn+1} = 1, \text{ for } \ell_n + 1 \le i \le \ell_{n+1}, 0 \le n \le k - 1.$$

From the homomorphism v, we then see that the generators of $v^{-1} \begin{pmatrix} k \\ \pi \\ i = 1 \end{pmatrix} \Sigma_{\alpha_i}$ are:

PERTANIKA VOL. 11 NO. 1, 1988

1

 $\sigma_{i} \text{ for } 1 \leq i \leq r - 1, i \neq \ell_{n}, 1 \leq n \leq k - 1. \quad (2.6)$ $A_{ii} \text{ for } 1 \leq i < j \leq r. \quad (2.7)$

From the definition of A_{ij} in terms of σ_i 's, we see that it suffices to substitute (2.7) with:

 ${}^{A}i, \ell_{n}+1 \text{ for } 1 \leq i \leq \ell_{n}, 1 \leq n \leq k-1. \tag{2.8}$

Hence, (2.6) and (2.8) form a sufficient set of generators of $v^{-1}(\underset{i=1}{\overset{k}{\coprod}}\Sigma_{\alpha_i})$.

The defining relations are those of the braid group and the pure braid group wherever definable corresponding to the symmetric group $\substack{k \\ i = 1} \Sigma_{\alpha_i}$. We then have the following:

Theorem 2.2.

 $v^{-1} \begin{pmatrix} k \\ \pi \\ i = 1 \end{pmatrix} \psi_{\alpha_{i}} admits a presentation with generators:$ $\sigma_{i}, \text{ for } 1 \leq i \leq r - 1, i \neq \ell_{n}, 1 \leq n \leq k - 1$ $A_{i}, \ell_{n} + 1, \text{ for } 1 \leq i \leq \ell_{n}, 1 \leq n \leq k - 1$

and defining relations: (1.2)

and
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$
, for $1 \le i \le r-1$,
 $i \ne \ell_n - 1, \ell_n$
 $\sigma_i \sigma_j = \sigma_j \sigma_i$, for $|i - j| \ge 2$
 $A_{ij} \sigma_t = \sigma_t A_{ij}$, for $t \ne i - 1, i, j$.

Theorem 2.3

Let Γ be a Fuchsian group with signature (2.4). Then.

$$\operatorname{Aut}^{+} \Gamma = \eta \upsilon^{-1} \left(\frac{k}{\pi} \Sigma_{\alpha_{i}} \right).$$

Lemma. 2.1.

$$I(\Gamma) \subseteq P_r^* \subseteq \eta v^{-1} \begin{pmatrix} k \\ \pi \\ i = 1 \end{pmatrix} \Sigma_{\alpha_i} \subseteq B_r^*$$

Proof:

If we denote the inner automorphisms

$$x_j \rightarrow (x_1 x_2 \dots x_\ell) x_j (x_1 x_2 \dots x_\ell)^{-1}, 1 \le j \le r$$

by θ_{ϱ} , $1 \leq \ell \leq r$, then we have the following:

$$\theta_{1} = (\sigma_{r-1} \sigma_{r-2} \dots \sigma_{2})^{1-r}$$

$$\theta_{i} = (\sigma_{r-1} \sigma_{r-2} \dots \sigma_{i+1})^{i-r}$$

$$(\sigma_{i-1} \sigma_{i-2} \dots \sigma_{1})^{i} \quad (2.9)$$

$$\theta_{r-1} = (\sigma_{r-2} \sigma_{r-3} \dots \sigma_{2} \sigma_{1})^{r-1}$$

$$\theta_{r} = (\sigma_{r-1} \sigma_{r-2} \dots \sigma_{1})^{r} = (\sigma_{1} \sigma_{2} \dots \sigma_{r-1})^{r}$$

where σ_i 's now are the elements of B_r^* . Since each element x_i is mapped on a conjugate, it follows then by definition that $I(\Gamma) \subseteq P_r^*$.

Remarks 2.1.

1. Note that with the action on Γ (that is, considering σ_i 's as the elements of B_{μ}^*)

$$\sigma_1 \sigma_2 \dots \sigma_{r-2} \sigma_{r-1}^2 \sigma_{r-2} \dots \sigma_2 \sigma_1$$

= $(\sigma_{r-1} \sigma_{r-2} \dots \sigma_3 \sigma_2)^{1-r} (\sigma_{r-1} \dots \sigma_2 \sigma_1)^r$
= $(\sigma_{r-1} \sigma_{r-2} \dots \sigma_2)^{1-r}$

 If x_i and x_j have equal periods, then their inner automorphisms are conjugate of each other; Since the periods are equal, there is an automorphism

$$\gamma: x_i \rightarrow x_i$$

such that for each k, 1 < k < r,

$$[\gamma I(x_{i})\gamma^{-1}] (x_{k}) = \gamma I(x_{i}) (\gamma^{-1}(x_{k}))$$

= $\gamma (x_{i} \gamma^{-1}(x_{k})x_{i}^{-1})$
= $\gamma (x_{i})x_{k} \gamma (x_{i}^{-1}) = x_{j}x_{k}x_{j}^{-1}$
= $[I(x_{j})](x_{k}).$

Therefore, $I(x_i) = \gamma I(x_i) \gamma^{-1}$.

Proof of Theorem 2.3.

By Zieschang's theorem, every $\phi \in \operatorname{Aut}^+ \Gamma$ is induced by $\widehat{\phi} \in \widehat{A}(\widehat{\Gamma})$ which satisfies (2.1.). Then $\widehat{A}(\widehat{\Gamma}) = I(\widehat{\Gamma}).v^{-1}(\underset{i=1}{\overset{k}{\longrightarrow}} \sum_{\alpha_i})$ and $\operatorname{Aut}^+ \Gamma = I(\Gamma).\eta v^{-1}$

AUTOMORPHISMS OF FUCHSIAN GROUPS OF GENUS ZERO

 $\begin{pmatrix} \pi \\ i = 1 \end{pmatrix}$. By Lemma 2.1. then we have the result.

Corollary: 2.1.

- I. If all the periods are equal, then $\operatorname{Aut}^+ \Gamma = B_r^*$.
- II. If all the periods are distinct, then $\operatorname{Aut}^+ \Gamma = \operatorname{P}_r^*$

Our aim now is to find the structure of these groups $nv^{-1}({k \atop i=1}^{k} \Sigma_{\alpha_{i}}), B_{r}^{*}, P_{r}^{*}$. We will do this in two stages.

Stage 1:

Let N_{π} be the normal closure of $\{\widehat{x}_{1}\widehat{x}_{2}...\widehat{x}_{r}\}$ in $\widehat{\Gamma}$ and $\Gamma_{\pi} = \widehat{\Gamma}/N_{\pi}$. Let $\eta_{1}v^{-1}(\underset{i=1}{\pi} \sum_{\alpha_{i}})$ be the group of automorphisms in Γ_{π} induced by $v^{-1}(\underset{i=1}{\overset{k}{\pi}} \sum_{\alpha_{i}})$. Correspondingly, let $\eta_{1}(B_{r}) = B_{r}^{l}$ and $\eta_{1}(P_{r}) = P_{r}^{l}$.

Then by Magnus's theorem, (Maclachlan, 1973) and Magnus 1934), ker η_1 = center. Hence we have:

Theorem 2.4.

$$\eta_1 v^{-1} \begin{pmatrix} k \\ \pi \\ i = 1 \end{pmatrix} \Sigma_{\alpha_i}$$
 is isomorphic to $v^{-1} \begin{pmatrix} k \\ \pi \\ i = 1 \end{pmatrix} \Sigma_{\alpha_i}$ mo-

dulo the center.

Hence we can find the presentation of $\eta_1 v^{-1} \begin{pmatrix} \kappa \\ \pi \\ i = 1 \end{pmatrix}$

 Σ_{α_1}) by expressing $I(\widehat{x}_1 \widehat{x}_2 \dots \widehat{x}_r)$, which is the generator of the center by (1.7), in terms of the genera-

tors
$$v^{-1} \left(\begin{array}{c} k \\ \pi \\ i = 1 \end{array} \Sigma_{\alpha_1} \right).$$

Corollary 2.2.

 $B_r^1 \cong B_r^{l}$ center. Therefore B_r^1 is generated by σ_i^{l} , $1 \le i \le r - 1$, with defining relations (1.1) and

$$(\sigma_1 \sigma_2 \dots \sigma_{r-1})^r = 1$$

Corollary 2.3.

 $P_r^{1} \cong P_{r/center}$. Therefore P_r^{1} is generated by A_{ij} , $1 \le i \le j \le r$, with defining relations (1.2) and

$$(A_{12}) (A_{23}A_{13}) \dots (A_{r-1, r}A_{r-2, r} \dots A_{1r}) = 1.$$

Remarks 2.2.

Maclachlan, (1973), gives the presentation of B_r^1 . By the same argument as Theorem 2.3., Aut⁺ $\Gamma_{\pi} = B_r^1$.

Stage 2:

Let Ω : Aut⁺ $\Gamma_{\pi} \rightarrow \text{Aut}^{+} \Gamma$ be the natural homomorphism with $\Omega(B_{r}^{1}) = B_{r}^{*}$, $\Omega(P_{r}^{1}) = P_{r}^{*}$, $\Omega(\eta_{1}v) = \frac{1}{k} \frac{k}{i} = 1$ $\Sigma_{\alpha_{i}}(x_{i}) = \eta v_{1}(x_{i}) = \eta v^{-1}(\frac{k}{i} \sum_{\alpha_{i}} \Sigma_{\alpha_{i}})$. We will first find B_{r}^{*} .

Let K be the normal closure of $[I(x_i^m): 1 \le i \le r)$ in B_r^1 . We will now prove the following:

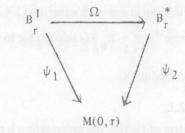
Theorem 2.5.

$$B_r^* \cong B_r^1/K$$

Proof:

By Maclachlan & Harvey (1975) we have:

$$\begin{split} & \mathbb{B}_{r}^{1}/I(\Gamma_{\pi}) \cong \operatorname{Aut}^{+}\Gamma_{\pi})/I(\Gamma_{\pi}) \cong \operatorname{M}(0,r) \cong \operatorname{Aut}^{+}\Gamma/I(\Gamma) \\ & \cong \operatorname{B}_{r}^{*}/I(\Gamma). \end{split}$$



with ker $\psi_1 = I(\Gamma_{\pi})$, ker $\psi_2 = I(\Gamma)$. So, Ω^{-1} (ker ψ_2) = $I(\Gamma_{\pi})$. Therefore ker $\Omega \subset I(\Gamma_{\pi})$. Hence, ker $\Omega \subset K$. Clearly, $K \subset \text{ker } \Omega$. Thus ker $\Omega = K$ proving our theorem.

The extra relations that we have to add in B_r are those of $\{l(x_i^m); 1 \le i \le r\}$ By remark 2.1, it suffices to add only:

$$I(x_1^m) = (\sigma_1 \sigma_2 \dots \sigma_{r-2} \sigma_{r-1}^2 \sigma_{r-2} \dots \sigma_2 \sigma_1)^m = 1.$$

Hence we have shown.

Theorem 2.6

If Γ is a Fuchsian group of genus zero with r equal periods, m, then Aut⁺ Γ is generated by σ_i , $1 \le i \le r - 1$, with defining relations:

$$\begin{split} \sigma_{i}\sigma_{i+1}\sigma_{i} &= \sigma_{i+1}\sigma_{i}\sigma_{i+1} , 1 \leq i \leq r-2 \\ \sigma_{i}\sigma_{j} &= \sigma_{j}\sigma_{i} , |i-j| \geq 2 \\ (\sigma_{1}\sigma_{2}\ldots\sigma_{r-1})^{r} &= 1 \\ (\sigma_{1}\sigma_{2}\ldots\sigma_{r-2}\sigma_{r-1}^{2}\sigma_{r-2}\ldots\sigma_{2}\sigma_{1})^{m} &= 1 \\ \text{We will next find } \eta v^{-1} (\sum_{i=1}^{k} \Sigma_{\alpha_{i}}). \text{ Let K now} \end{split}$$

be the normal closure of $\{I(x_k^{m_{n+1}}); \sigma \leq \eta \leq k-1, \\ \ell_n + 1 \leq i \leq \ell_{n+1} \}$ in Γ_{π} . By a similar argument to (2.5), with the 'mapping class group' corresponding to $\begin{array}{c} k \\ i = 1 \end{array} \Sigma_{\alpha_i}$, then ker $\Omega = K$. Hence we have the following.

Theorem 2.7.

If Γ is a Fuchsian group with signature (2.4.), then Aut⁺ $\Gamma = \eta v^{-1} \begin{pmatrix} k \\ \pi \\ i = 1 \end{pmatrix}$ is isomorphic to $\eta_1 v^{-1}$ $\begin{pmatrix} k \\ \pi \\ i = 1 \end{pmatrix}$ modulo K.

Remark 2.3.

Our problem of finding the presentation is reduced to expressing $\{ l(x_i^{m_n+1}): 0 \le n \le k-1, \ell_n + 1 \le i \le \ell_{n+1} \}$ in terms of the generators of $n_1 \nu^{-1} (\begin{array}{c} \pi \\ i = 1 \end{array})$, which depend on the signature of Γ .

Corollary 2.4.

If Γ is a Fuchsian group of genus zero and all the

periods are distinct, then Aut⁺ $\Gamma = P_r^*$ is isomorphic to P_r^1 modulo K, where K is the normal closure of $\left\{ I(x_i^{m_i}): 1 \le i \le r, m_i \ne m_j \text{ for all } i \ne j \right\}$.

Examples

$$\Gamma = \langle x_1, x_2, x_3, x_4 | x_1 x_2 x_3 x_4 = x_i^{m_i} = 1$$

$$1 \le i \le 4, m_i \ne m_j \text{ for } i \ne j >$$

Aut Γ is generated by A_{ij} , $1 \le i \le j \le 4$, with defining relations (1.2) and

$$A_{12}A_{23}A_{13}A_{34}A_{24}A_{14} = 1$$

$$(A_{34}A_{24}A_{14})^{m_4} = 1$$

$$(A_{34}A_{24}A_{14}A_{12}A_{34}^{-1})^{m_3} = 1$$

$$(A_{23}A_{34}A_{24}A_{45}A_{35}A_{25}A_{12}A_{35}^{-1}A_{45}^{-1})^{m_2} = 1(A_{23}A_{34}A_{24}A_{45}A_{35}A_{25})^{m_1} = 1.$$

$$2. \Gamma = \langle x_1, x_2, x_3, x_4, x_5 \rfloor x_1 x_2 x_3 x_4 x_5 = x_1^{m_1} = 1$$

$$1 \leq i \leq 5, m_i \neq m_i, \text{ for } i \neq j > = x_i^{m_i} = 1$$

Aut⁺ Γ is generated by A_{ij} , $1 \le i < j \le 5$, with defining relations (1.2) and

$${}^{A}_{12} {}^{A}_{23} {}^{A}_{13} {}^{A}_{34} {}^{A}_{24} {}^{A}_{14} {}^{A}_{45} {}^{A}_{35} {}^{A}_{25} {}^{A}_{15} = 1$$

$$({}^{A}_{45} {}^{A}_{35} {}^{A}_{25} {}^{A}_{15})^{m_{5}} = 1$$

$$({}^{A}_{45} {}^{A}_{35} {}^{A}_{25} {}^{A}_{15} {}^{A}_{12} {}^{A}_{23} {}^{A}_{13} {}^{A}_{45}^{-1})^{m_{4}} = 1$$

$$({}^{A}_{34} {}^{A}_{45} {}^{A}_{35} {}^{A}_{23} {}^{A}_{13} {}^{A}_{45}^{-1})^{m_{3}} = 1$$

$$({}^{A}_{23} {}^{A}_{34} {}^{A}_{24} {}^{A}_{45} {}^{A}_{35} {}^{A}_{25} {}^{A}_{12} {}^{A}_{35}^{-1} {}^{A}_{45}^{-1} {}^{A}_{34}^{-1})^{m_{2}} = 1$$

$$({}^{A}_{23} {}^{A}_{34} {}^{A}_{24} {}^{A}_{45} {}^{A}_{35} {}^{A}_{25} {}^{A}_{12} {}^{A}_{35}^{-1} {}^{A}_{45}^{-1} {}^{A}_{34}^{-1})^{m_{1}} = 1.$$

3.
$$\Gamma = \langle x_1, x_2, x_3, x_4, x_5, x_6 | x_1 x_2 x_3 x_4 x_5 x_6$$

= $x_i^{m_i} = 1$. $1 \le i \le 6$, $m_i \ne m_i$ for $1 \ne j > 3$.

Aut⁺ Γ is generated by A_{ij} , $1 \le i \le j \le 6$, with defining relations (1.2) and

AUTOMORPHISMS OF FUCHSIAN GROUPS OF GENUS ZERO

$$A_{12}A_{23}A_{13}A_{34}A_{24}A_{14}A_{45}A_{35}A_{25}A_{15}A_{56}$$

$$A_{46}A_{36}A_{26}A_{16} = 1$$

$$(A_{56}A_{46}A_{36}A_{26}A_{16})^{m6} = 1$$

$$(A_{56}A_{46}A_{36}A_{26}A_{16}A_{12}A_{23}A_{13}A_{34}A_{24}A_{14}A_{56}^{-1})^{m5} = 1$$

$$(A_{45}A_{56}A_{46}A_{12}A_{13}^{-1}A_{12}A_{23}A_{13}A_{34}A_{24}A_{14}A_{14}A_{56}^{-1})^{m4} = 1$$

$$(A_{34}A_{45}A_{35}A_{56}A_{46}A_{36}A_{12}^{-1}A_{23}A_{12}A_{46}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_{56}^{-1}A_{56}^{-1}A_{45}^{-1}A_{56}^{-1}A_$$

Remarks 2.4.

I. We are unable to find the general formulae for $I(x_i^{m_i})$, since our technique is iterative. However, given a particular r, one can calculate $I(x_i^{m_i})$.

0

II. If Γ is a triangle group with distinct periods, then *

 $\operatorname{Aut}^{+} \Gamma = \operatorname{P}_{3}^{*} = \operatorname{I}(\Gamma).$

3. PURE MAPPING CLASS GROUPS

The mapping class group can be looked upon as the quotient group of the orientation-preserving automorphisms, Aut⁺ Γ , of a Fuchsian group, Γ , by its normal subgroup of inner automorphisms, (Maclachulan and Harvey, 1975). Corresponding to the Fuchsian group of genuz zero with r distinct periods, we can get the pure mapping class group, denoted by PM(0, r). So much has been said in the past about the full mapping class groups, (Birman, 1974), but we cannot find much information about the pure mapping class groups.

In this section, we will give the presentations of PM(0, r), based on the calculations in the examples. The technique is to set the terms within the

brackets, that is the terms with periods, equal to one, since they are either $I(x_i)$ or $(I(x_i^{-1}))$. Then we reduce these relations to the simplified form.

3.1. PM(0, 3) = 1.

(Trivial form remark 2.4.)

3,2

PM(0, 4) is generated by A_{ij} , $1 \le i \le j \le 4$, with defining relations (1.2) and

$$A_{34}A_{23}A_{13} = 1$$

$$A_{34}A_{24}A_{14} = 1$$

$$A_{12}A_{34}^{-1} = 1$$

$$A_{23}A_{34}A_{24} = 1$$

PM(0, 5) is generated by A_{ij} , $1 \le i \le j \le 5$, with defining relations (1.2) and

$$A_{45}A_{34}A_{24}A_{14} = 1$$

$$A_{45}A_{35}A_{25}A_{15} = 1$$

$$A_{12}A_{23}A_{13}A_{45}^{-1} = 1$$

$$A_{34}A_{45}A_{35}A_{12}^{-1} = 1$$

$$A_{23}A_{34}A_{24}A_{45}A_{35}A_{25} = 1$$

3.4

PM(0, 6) is generated by $A_{ij},\, 1 \leqslant i < j \leqslant 6,$ with defining relations (1.2) and

$$A_{56}A_{45}A_{35}A_{25}A_{15} = 1$$

$$A_{56}A_{46}A_{36}A_{26}A_{16} = 1$$

$$A_{12}A_{23}A_{13}A_{34}A_{24}A_{14}A_{56}^{-1} = 1$$

$$A_{23}A_{13}A_{12}A_{46}^{-1}A_{56}^{-1}A_{45}^{-1} = 1$$

$$A_{34}A_{45}A_{35}A_{56}A_{46}A_{36}A_{12}^{-1} = 1$$

$$A_{23}A_{34}A_{25}A_{45}A_{35}A_{25}A_{56}A_{46}A_{36}A_{26}^{-1} = 1$$

Remarks 3.1.

If Γ is a Fuchsian group with signature (2.4), then Aut⁺ $\Gamma/I(\Gamma)$ is isomorphic to the mapping class group corresponding to the symmetric group $k = \frac{1}{\pi} \Sigma$.

$$i = 1 \quad \alpha_i \\ \left\{ I(x_i): \ell_n + 1 \leqslant i \leqslant \ell_{n+1}, 0 \leqslant n \leqslant k - 1 \right\}$$

in terms of the generators of $\eta_1 v^{-1} (\begin{matrix} \kappa \\ \pi \\ i = 1 \end{matrix}^{\kappa} \alpha_i)$, we can determine the presentation of this mapping

class group. This mapping class group lies in between the pure mapping class group and the full mapping class group.

4. SEIFERT FIBRE GROUPS

Let Γ be a Fuchsian group:

$$\Gamma = \langle a_1, b_1, \dots, a_g, b_g, x_1, x_2, \dots, x_r | x_i^{m_i}$$
$$= \prod_{i=1}^{I} x_i \prod_{i=1}^{g} [a_i, b_j] = 1 >$$

Let G be a central extension, by Γ , of Z

$$1 \longrightarrow (z) \longrightarrow G \xrightarrow{\psi} \psi \quad \Gamma \rightarrow 1 \quad (4.1)$$

such that:

$$G = \langle a_{1}, b_{1}, \dots, a_{g}, b_{g}, x_{1}, x_{2}, \dots, x_{r}, z |$$

$$x_{i}^{m} z^{n} = 1,$$

$$\prod_{i=1}^{r} x_{i} \int_{j=1}^{g} [a_{j}, b_{j}] = z^{n},$$

$$z \longleftrightarrow x_{i}, a_{j}, b_{j} >$$
(4.2)

where - denotes commutativity.

In Orlik's notation, (1972), we restrict ourselves to the case $0_1: e_i = 1$ for all i. If for each, $i, 1 \le i \le r$, (m_i, n_i) are relatively prime positive integers and $0 \le n_i \le m_i$, then $G = \pi_1(M)$, where M is a Seifert manifold. We call G a *Seifert fibre group*. We call the *signature* of M as: $\{n; g; (m_1, n_1), (M_2, n_2), \ldots, (m_r, n_r\}$

We call M small if it satisfies one of the following:

(i)
$$g = 0, r < 2$$

(ii) $g = 0, r = 3, 1/m_1 + 1/m_2 + 1/m_3 >$
(iii) $[-2;0;(2,1),(2,1),(2,1),(2,1)]$
(iv) $g = 1, r = 1$.

Otherwise, we call M large.

We summarize below a special case of Orlik s theorem, [10], restricted to the case 0_1 : $\epsilon_1 = 1$ for all i.

1.

0

Theorem 4.1.

Let M and M' be large 0_1 – Seifert manifolds. If $\phi: G' = \pi_1(M') \rightarrow G = \pi_1(M)$ is an isomorphism with $z' \rightarrow z$, then g' = g, r' = r, $m_i' = m_i$. $n_i' = n_i$, ($\lambda = 0$) for all i, and $\phi(x_i') = \ell_i x_{\mu_i} \ell_i^{-1}$, $1 \le i \le r$, where

$$\begin{pmatrix} 1 & 2 & \dots & r \\ \mu_1 & \mu_2 & \dots & \mu_r \end{pmatrix}$$
 is a permutation, $m_i = m_{\mu_i}, \ell_i \in G.$

Corollary 4.1

Let M be a large 0_1 - Seifert manifold with signature $\{n; 0; (M_1, n_1), (m_2, n_2), \dots, (m_r, n_r\}$. Then an automorphism $A^*:G \rightarrow G$ such that $A^*(z) = z$ satisfies:

$$A^*(x_i) = \ell_i x_{\mu_i} \ell_i^{-1}, 1 \le i \le r,$$

where

$$\begin{pmatrix} 1 & 2 & \dots & r \\ \mu_1 & \mu_2 & \dots & \mu_r \end{pmatrix}$$
 is a permutation,
 $m_i = m_{\mu_i}$ and $\ell_i \in G$.

Proof

Set M' = M in Theorem 4.1. for g = 0.

We denote those automorphisms which satisfy Corollary 4.1. by Aut⁺ G, which form a subgroup of Aut G. We call the element $A^* \in Aut^+$ G, a *regular automorphism*

Theorem 4.2

Suppose G and Γ are as (4.1) and (4.2), respectively, for g = 0. Then Aut⁺ G \cong Aut⁺ Γ .

AUTOMORPHISMS OF FUCHSIAN GROUPS OF GENUS ZERO

Proof

By Zieschang's theorem (1966) A ϵ Aut⁺ Γ satisfies:

$$A(x_i) = \ell_i x_{\mu_i} \ell_i^{-1}, \ 1 \le i < r,$$

where

$$\begin{pmatrix} 1 & 2 \dots r \\ \mu_1 & \mu_2 \dots & \mu_r \end{pmatrix}$$
 is a permutation, $m_i = m_{\mu_i}, \ell_i \in \Gamma$

Let $\psi: G \to \Gamma$. Then ψ induces $\psi *: \operatorname{Aut}^* G \to \operatorname{Aut}^* \Gamma$, $\psi_*(A^*) = A$ and ker (ψ_*) trivial. Hence, Aut^{*} G $\cong \operatorname{Aut}^* \Gamma$

Corollary 4.2.

2

Out⁺ G = Aut⁺ G/I(G)
$$\cong$$
 Aut⁺ $\Gamma/I(\Gamma)$
 \cong Mapping class group of
a closed orientable
surface, X₀, of genus
zero such that X₀ =
 $\pi_1(\Gamma)$.

Proof:

D

Observe that $I(G) \cong G/(z) \cong \Gamma \cong I(\Gamma)$ and $\psi_*(I(G)) = I(\Gamma)$. Therefore, $\widehat{\psi}_*$: Aut⁺ G \rightarrow Aut⁺ $\Gamma/$ $I(\Gamma)$ has ker $\widehat{\psi}_* = I(G)$. Hence the results follow.

REFERENCES

- ARTIN E. (1975): Theorie der Zopfe, Abh. Math. Sem. Hamburg Univ. 4: 47-72.
- ARTIN E. (1947): Theory of braids, Ann. of Math 48: 101-126.
- BIRMAN J.S. (1974): Braids, Links and Mapping Class Groups, Ann. of Math Studies 82:
- CHOW W.L. (1948): On the algebraic braid group, Ann. of Math 49: 654-658.
- MACBEATH A.M. (1961): Fuchsian groups, Dundee Summer School.
- MACLACHLAN C. (1973): On a conjecture of Magnus on the Hurwitz monodromy group. *Math. Z.* 132: 45-50.
- MACLACHLAN C. and W.J. HARVEY (1975): On Mapping class groups and Teichmuller spaces, *Proc.* London Math Soc. 30: 495-512.
- MAGNUS W. (1934): Uber Automorphismen von Fundamentalgruppen Berandeter Flachen, Math. Ann. 109: 617-646.
- NIELSEN J. (1972): Untersuchungen zur Topologie der geshlossenen Zweiseitigen Flachen, Acta Math. 50: 189-358.
- ORLIK P. (1972): Seifert manifolds, Springer's Lecture notes in Maths 291.
- ZIESCHANG H. (1966): Uber Automorphismen ebener diskontinuierlicher Gruppen, Math. Ann. 166: 148-167.

(Received 15 October 1986)

a