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RINGKASAN

Kaedah kuadratur digunakan bagi mendapatkan keputusan keunikan bagi persamaan pembezaan
biasa tak linear autonomi. Kaedah ini membolehkan kami memberi syarat perlu dan cukup untuk penye­
lesaian unik bagi ketaklinearan cembung. Teknik ini kemudian digunakan untuk menentukan supremum
bagi spektrum masalah dengan ketaklinearan cembung.

SUMMARY

A quadrature method is used to obtain uniqueness results for an autonomous nonlinear
ordinary differential equation. This method enables us to give a necessary and sufficient condition for a
unique solution when the nonlinearity is convex. The technique is then used to determine supremum of
the spectrum for the problem with convex nonlinearity.

1. INTRODUCTION 2. QUADRATURE METHOD

Consider the autonomous ordinary differen­
tial equation

We make the following assumptions on f:

(fl) f e C2 [0, 00),

(f2) f > 0 on [0, ~], 0 ~ ~ < 00 .

In this paper we are interested in positive solutions
of (1.1). Such a problem has been extensively
studied. among others by (Gelfand. 1963).
Ooseph. 1965) • (Keller and Cohen, 1967).
(Laetsch. 1970). and (Brown and Harun, 1977).
The main result in Section 3 (Theorem 3.3)
gives a necessary and sufficient condition for
(1.1) to have a unique solution when f is convex.
Our result is in contrast with what has been
conjectured by Keller and Cohen that such a
problem always has nonunique solutions.

(2.1)

-u "(x) = M(u(x», x e (0, 1)

u(O) = 0 =u(l).
(1.1 )

In this paper we are interested in posItIve
solutions of (1.1). We can extend f to a continuous
nonnegative function on ( - 00 , ~). By the
maximum principle we may assume A > 0 since
if A ~O then no solution of (1.1) has a positive
maximum and hence all solution are nonpositive.
On the other hand, all solutions of (1.1) for
A > 0 are strictly positive and have precisely
one maximum on (0. 1).

We shall first reduce (1.1) to a quadrature.
For details of the procedure refer to Laetsch
(1970).

Theorem 2.1 For any number p e (O,~), there is
exactly one number A ( p ) and one nonnegative
function u(p) satisfying (1.1) such that II u II =

sup { lu(x) I: x e [0,1]} = P . We also have

ji:(p) = 12 J: [F(p) - F(v) ] -1/2 • dv

rc:; Jl . 1/2 d= J 2 p 0 [ F (p) - F (p s )r s
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and u is given by
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Lemma 2.4 The following relations hold

.{2ix fo(X) [ -lizJn F (p) - F (v) ] dv,
aj(p,v) = Y2 p[ pvr (pv) - f(pv) ]

av
(2.2 )

u
where F(u) = f f(s) ds.

0

Furthermore, A is a continuous function.

ProDf The proof is straightforward and is a
special case of the resul t in Brown and Harun
(1977).

a 2 J (p,Y) = Y2 p3 vr" (pv).

av2

If H (p) = J(p, 0) = F (p) - 1.pf (p ),
1 2

then H' (p) = "2 [f(p) - pf (P)]

and H" (p) = -~ pf' (p)]
2

Proof Direct differention.

(2.3)

(2.4)

(2.5 )

(2.6)

Clearly (2.1) has a solution for all A in the
range of A (.) and if A (.) is one-one then for a
fixed A, (2.1) has at most one solution.

We shall use equation (2.1) for our analysis.
First we shall derive some preliminary results.

Lemma 2.2 The function

3. UNIQUENESS RESULTS

The following results on uniqueness of solu­
tions are obtained by considering the behaviour
of the functions J(p,.) and H. Similar results
have been obtained by other authors using
different techniques.

1
f0 [ F (p) - F (p s) ] -l/ll ds

Proof The result can be obtained by applying
simple calculus and the Lebesgue dominated
convergence theorem.

is differentiable in p and

d II_ [F(p)-F(ps)r~ ds = -%
dp 0 ~

I

f(p )-sf(ps) ds.

o [F(p)-F(ps) ] 3/2

Theorem 3.1 There exists r > 0, sufficiently
small such that (1.1) has a unique solution u
wi th II u II = p < r.

Proof H' (p) > 0 for sufficiently small p < r
and since H(O) = 0 we get H(p) > 0 for p < r.
Hence J(p,O) > 0 if P < r. Also from (2.2)
J (p,.) is a decreasing function if p < r such th at
J(p,l) = O. Hence J(p,v) > 0 for p < rand
v € [0,1]. Hence A. is an increasing function and
by Theorem 2.1 the solution of (1.1) is always
unique for p € (O,r).

« 0) if

Theorem 2.3 Let

~ = .f2P flo [F(p) - F(pv) ] _1/2 dv.

Then

dA (p) > 0

dp

J(p,v) = [F(p)-F(pv)] - }p2[f(P)-Vf(PV)], v·C [0,1]

is positive (negative).

Proof Direct differentiation.

The following results give us some elementary
properties of the function J which we shall need
later.
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Theorem 3.2 If f satisfies (£1) and (f2) and in
addition

either (i) f' < 0

or (ii) f" < 0

then (1.1) possesses a unique salu tion.

Proof If f < 0 then H' > O. This together with
H(()) = 0 implies that H(p) > 0 for all p. Also
from (2.3) J(p,v) decreases for v € [0,1]. Then
J > 0 on (0,00) x [0,1]. Hence A (p) increases
with p. Consequently (1.1) possesses a unique
solution. -

Suppose f" < 0, Then H is convex with
H' (0) > O. Therefore H(p) > 0 for all
p. Hence from (2.3) J (p,.) is concave. Hence
J > 0 on (0, 00) x [0, 1]. This implies that
A(p) is increasing with p and hence (1.1)
possesses a unique solution.



QUAD~ATURE METHOD FOR AN AUTONOMOUS ORDINARY DIFFERENTIAL EQUATION

An interesting situation arises when the
nonlinearity is convex. ](p,.) and H are convex
and concave respectively. H may change signs
as p increases from zero, initially positive and
eventually negative. However, if we impose the
stronger condition that f(p) - P f (p) > 0 for
all p > 0, then H > O.

Counter example

Consider the function f(u) == 3u + (1 +u) -2.

Then f is positive for positive u. asymptotically
linear, convex and increasing. Furthermore
f(p) - pf' (p) > 0 for all p > 0 and tends to zero as
p -+ 00 • For this choice of nonlinearity H > 0,
a](p ,O)/av < 0 and a](p ,1)/a'v < O. The
convexity of ](p,.) implies ](p,.) > O. Hence
A(.) is an increasing function.

set of real values of A for which positive solutions
of (1.1) exist. The least upper bound of the
spectrum is denoted by A*. Mllch interest has
been focussed on evaluating A* since it plays
a direct role in determining the multiplicity of
solutions of (1.1), (Keller and Cohen, 1967) and
(Laetsch, 1970). In this section we shall use
the quadrature method developed in Section 1
to evaluate A* for the well-known problem

-u" (x) == A exp u(x) , x € (0,1) (4.1)

u(O) = O==u(I).

The value of A* has been determined by
Gelfand (1963) using phase plane technique.
Joseph (1965) has also obtained A* for (4.1).

The above example shows that it is possible
to obtain a unique solution for problem (1.1)
when the nonlinearity f is convex. This is in
contrast with what has been conjectured in
(Keller and Cohen, 1967) that the solution of
this class of nonlinearity is always nonunique.

The above example gives us a motivation for
the following:

For f(u) == exp(u), equation (2.1) takes the
particular form

j A (p) = 23 / 2 e -P12 cosh -1 (e P/2).

It is easy to show that A has a maximum turning
point at p, where p satisfies the transcendental
equation

(eP -1) -1/2 _e-p /
2 cosh-1 (e P/2 ) == O.

U)

] oseph studied the problem
u" (x) + A'exp(u(x» == 0, x € (-1,1)

with A* = 0.66. The transformation x = ~/Aleads

to the problem

Solving this, we obtain P == 1.18683 and the
corresponding value of A* == 3.51383. We now
compare this value with those obtained by Gelfand
and]oseph.

(G)

4(0.893 )

Gelfand's problem is

u" (~) + 2 exp u(~) == 0

u' (0) == 0, U(A) = 0

u(-I) == 0 == u(l)
and obtained A* == 0.893. The transformation t==
(x+l)/2 will transform U) into

-u" (t) == 4A exp u(t), t€(O,I)
u(O) == 0 == u(l)

which is of the form (1.1). Hence A* ==
== 3.572.

Theorem 3.3 Let f satisfy (£1), f2) and in
addition f" > O. Then a necessary and sufficient
condition that (1.l) possesses a unique solution
is that f(p) - P f(P) > 0 for all p-.

Proof Assume f (p) - pf' (p) > 0 for all p.
Then from (2.3) and (2.6) we have ](p.,) convex
and H concave. By the hypotheses of the theorem,
H remains positive with a decreasing gradient.
Hence aJ(p,1 )/av < 0 and the convexity of
](p,.) implies J(P,.) > O. Hence A(.) increases
and by Theorem 2.1 equation (1.1) possesses a
unique solution.

Conversely suppose thft f(p0) - Po f (p 0) ~ 0
for some Po ~ O. Then H (po) ~ 0 and by (2.6)

H' (p) ~ H' (p ) ~ 0 for p ~ Po' Hence H (p) < 0
and so ] (p,G) < 0 for sufficiently large p.
Since ](p,l) == 0 and ](p,. convex, it follows
that ](p,v) < 0 for v € [0,1 and so A (.) is
strictly decreasing for sufficie tly large p . Since
A(O) == O. A(p) > 0 fOI P > 0 and A (.)
is eventually decreasing, A cannot be one-one
i.e. there exists A for which (1.1) possesses
more than one solution.

4. BOUND ON EIGENVALUES

We shall define the term 'spectrum' as the

u" (x) + 2 A2 exp u(x) == 0

u' (0) = 0, u (1) == 0,
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which is equivalent to

u" (x) + 2 f-...2 exp u(x) = 0

u(-1) = 0, u(1) = O.

HARUN BUDIN

University for suggestmg the problem and to the
discussions leading to the solution.
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