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RINGKASAN

Kaedah-kaedah bagi penyelesaian masalah Ulak peringkat kedua persamaan pembezaan biasa di
bincangkan. Kekakuan dan penumpuan bagi masalah tersebut juga ditakrifkan. Akhir sekalz' dibuktikan
penumpuan bagi beberapa kaedah Pembezaan Kebelakang Itlak untuk masalah-masalah kaku.

SUMMARY

Methods for the solution of the general second order ODE are discussed. Stiffness and
convergence are also defined. Finally proof of convergence is given for certain cases of the GBDF methods
for stiff pro blems.

2. STIFFNESS

In the same way, the A-stability of a method
when solving directly the second order system

for many problems in (1), it is more efficient to
solve them using Direct Integration (DI) methods
if they are non-stiff and a combination of the
DI and BDF methods which shall be called the
Generalised Backward Differentiation (GBDF)
methods if they are stiff.

Stiffness is somewhat associated with absolute
stability (A-stability). The A-stability region of
a method for solving the first order system in
(2) is the set of values of h\ in the left half of
the complex plane I where h is the stepsize used
and \ the eigenvalues of the Jacobian af * ,

ay
for which the moduli of the roots of the A
stability polynomial of the method are less than
one. This is in fact the A-stability of the method
to the linearised problem of (2) to

where A
I

Y = Ay + <I>(x)

The general system of second order initial
value problem is given by

y" = f(x , y , y'),

y(a) = T/ , y' (a) = T/' , a < x < b. (1)

In this discussion f is assumed to satisfy the
conditions of the theorem for the existence of
solutions.
The most common technique of solving (1) is
to reduce it to a system of first order equations,
viz:

1. INTRODUCTION

z = f*(x, z), z(a) = T/*, (2)

, ]Twhere z = [y , y ,..
f*(x I z) = [y', f(x, z)]T,T/* = [T/, T/,]T ,

and the methods commonly being used to solve
(2) are either the Adams-Moulton or the Runge
Kutta classes of methods if (2) is non-stiff or the
Backward Differentiation (BD"F) class of methods
if it is stiff. However works by Krogh (1969,
1973) and Suleiman (1979) have shown that
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hac ~ 0.04.

Since h st > hac the solution is still stable.

Hence along the point of integration for TOL

10-4 at x = 1,

At x = 3,

hac ~ 0.23,

(4)(TOL*2.4). ' /3
i.e., hac ==

y"' (x)

when reduce to the equivalent first order system
will have eigenvalues -6, -2. Then such a system
will not normally be considered stiff by Lambert's
definition. However it may be stifff from a certain
point along the x-axis depending on the explicit
me thod being used. If the Adams two-step explicit
me thod is used, then the local truncation error
r is given by

h ~ 1
st _ 0.17, where A is the eigenvalue

I AI
with the largest mag11ltude.

The solution to (3) is given by

y(x) = e-2x + e-6x +....:....
12

This is the step limitation due to accuracy. Since
the interval of absolute stability of the two-step
Adams f:, .. ' _it method is (-1 ,0), therefore the
stepsize :ilnitation due to stability for the above
problem is

5 1/, 3 4r = - y (x) h + O(h ).
12

Normally the stepsize strategy chosen is such that'

TOL ~ (tolerance required),

Stiffness has been defined only for a system
of first order equations and there are various
definitions of stiffness, but the most widely
known is given in Lambert (1973), which is
dependent only on the large ratio of the
magnitudes of the-- negative real parts of the
largest eigenvalue to that of the smallest one.
Ehle (1972) attempts to define stiffness in terms
of the stability restriction on the stepsize, thus
making it method dependent, while Soderlind's
(-) definition is problem, method and interval
dependent. The definition given below for the
second order system is more agreeable to that of
Soderlind's.

y" = By' + Ay + ¢(x)

where A =~ and B ~ . Here the eigenvalues
ay ay'

\ are given by

I A~ I - A. B - A I = 0
I I

Definition 1: The system in (1) is said to be stiff
in the interval [ a, b ] if all the eigenvalues of
the Jacobian af* have negative real parts and

ay

explicit methods are restricted by stability to
relatively smally step-sizes to such an extent that
(near A-stable) implicit methods would be more
efficient.

In (1) is considered by linearising the problem
to

The set of values of A.h in the left half of the
complex plane for which the moduli of the roots
of the A-stability polynomial are less than one is
again the region of A-stability. The region is only
method dependent in the first order case, while
Gear (1978) and Hall and Suleiman (1981) have
shown that for the second order case, it is both
method and problem dependent. Methods for
which the A-stability region is the whole of the
left half plane are said to be A-stable.

The single equation v" + 8y' + 12y = c,

A problem is either stiff or not stiff. It is
mildly stiff if only small gains in efficiency are
possible by switching to implicit (near A-stable)
methods; severely stiff if great gains in
efficiency are possible.

. c
c-constant, wIth y(O) = 2 + 12 '

y' (0) = -8,

(3)

and at x = 5,

Hence from the point x = 3 onwards, h < h ,
st ac

indicating stiffness. Clearly at x = 5, there is a large
gain in stepsize if near A - stable method is chosen,
i.e., the method becoming more stiff as x
increases. For higher order methods, the point
of instability are generally earlier as h are much

. st
smaller and hac larger.
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be the k degree polynomial interpolating y (2:i) ,
n-1

0,1, ... ,k-1,

1 , ... , k-1,

y' (x)lim y'n

h -+ 0

x n = x

lim y n y(x)
h-+o
x n x

lim Tl~ (h) = Tl' , J.l.
h-+o

lim TlJ.1 (h) == Tl J.l.
h-+o

then

j=0,1,2;

i=o

3. DI AND GBDF METHODS
k .

LetPk (x) = L 8i y(~-J)"
n-l

The same arguments apply qualitatively,
even when (3) is not reduced to the first order
system, rather solved directly by the DI
methods. In fact the explicit DI methods become
stiff earlier than the Adams methods since their
interval of absolute stability are smaller and the
orders of their local truncation errors are
higher for the same k.

i = 0 1, " . , k. For j = 0 , y(2.) - fn-i ' i.e.,,
k

n-l

Pk (x) = L 8i f
n

_
i

i=o

Replacing f with Pk(x) in (1) and integrating
twice, we have

h'Yn-l + y n-l

k
y'n- = Yn + h L (Ji f I1-i '

i=o

(5 )

where y(x) is the solution to (1).

The convergence of the DI methods have
been proven in Suleiman (1979) and its stability
discussed by Gear (1978) and Hall and Suleiman
(1981). Henrici (1962) gives the proof of a special
second order problem y" = f(x, y), while Gear
(1971) gives the proof of convergence of certain
methods for non-stiff higher order problems,
which can be transformed into the Nordsieck's
array.

the DI methods.

For j == 1, integrating Pk(x) and then differen

tiating and equating p' k (x) with f, respectively,
obtaining

i==o

k

Y = Y + h Ln n-1

k ,
h fn L ex- i y n-i

i=o

*0:.
1

,
y n-i'

(6)

4. CONVERGENCE OF THE GBDF METHODS
FOR J = 1

For the case j == 1, the following are defined.
k

Let p(z) =. L 0: i zk-i be the associated polynomial
1=0

to the method in (6).

(7 )

Consistency is defint'Q in the usu~l way using the
operator

where the order is p, if Co = c1 = : .. = c
p

=

o and cp +1 =P 0, and it is consistent if p ~ 1.

Henceforth in proving the theorems, we assume
(1) to be a single equatioh. The proofs for the case
when (1) is a system are done by taking norms
instead of moduli.

k
(L O:i y' (x- ih)) ~ hy" (x)

i=o

,. ". 2 "'= Co Y (x) + c1hy (x) + c2 h y (x)

+ ... + c hPy(p+l) (x) + ...
,I>-

£ [y(x), h]

For j = 2, differentiating twi.ce and equating
p" k(x) with f, we have

k *
hy~ = oL 'Y i Yn-i '

i=o

2 _ k
h fn -. L 'Y i Yn-i .

1=0

The case j = 1 and j = 2 are the GBDF class of
methods for stiff problems.

For any of the above methods to be of any
practical use they must be convergent.

Definition 2: The above multistep methods are
said to be convergent, if for all sequences { y n }

{ y' n } with starting values satisfying the conditions
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The following theorem is the necessary conditions
for convergence.

Theorem 1:
The necessary conditions for convergence of

the method in (6) are that

(i) the modulus of no root of p(z) exceeds
1 and that roots of moduli 1 are simple
(condition of stability),

I 1 t . hk +1 . I'oca runcatlon error Om = Cm Imp les
that the order of the method is at least one for
k >-:'1 • Hence the method is consistent.

Consider the left hand side of (11) and multiply
it by a R.,.£ -.0 , 1 , ... , n - k and m = n -Q.
Add the resulting equations and denote it by
Sn • Using the identity in (9), we have

S' ,
n = en + (0:0a 1 +0:1ao )en _1 +...+ (O:oan _k + <:X:1Cb-

lc
_
1

From the right hand side of (11), we have

n n ,
Sn = h( L Gm eman_m + L Gme~ a

n
_m +

m=k m=k

(ii) the method is consistent.

The proof of both the conditions (i) and (ii)
follow the line of the proof in Henrici ~1962)

where for (i) the equation considered is y 1 (x) =
0, y(a) = y' (a) = 0 and considering the solution
of y' instead of y . For condition (ii) then n
equation considered is y" (x) = 1, y(a) = y' (a)
1 togehter with the solution of y'

n.

The following lemma is proved in
Henrici (1962).

Then,

I s - e' I < r AZk .n n- (13 )

From (10), for m = n , n - 1 , ... , k add the
resul ting equations,

k n

L I em 1:::; n Oek._rl+hA L le~:1 +~n).
m=n m=o

(14)

(17 )

n
:s; Lr L leml

m=k
n

~ Lrn(lek_l 1 + h~~ole:U I

+ Ain). (16)

n ,
~ Lr L I em I .

m=o

I
n
~ G e a

m=k m m nom

. *; * *,
··Ie 1=lek1 +h[O:c e +(0: + o:)e 1n - n 1 - 0 n-

* * *, k *,
+ '" + (O:k_1 + O:k_2 +...+ 0: o)en _k+1 + ( L O:i )e n-k

i=o

n
< I ek-1 I + hA L I e:U1 + l\n. (15)

m=o

k * k-l * n
+... + ( L CXi )e~ + L O:i e~.d + L 5:n

i=o i=o m=k

Then r = sup I aQ I < 00 •

Q=0, I, ...

There exists positive constants d
1

' d2 such
that

A k+2 d A = d
2

h k+1 .l=dJ!1 an 2

Let L = max (IGm I , IG'01 1) ,A = { (10:01 + 10:11

m

+ ... + Io:kl) + (Io:~ 1+ Io:r l + ... + \0::1) }.

The necessary part is proven in theorem 1.
The fact that Pk (x) is of degree k giving the

Theorem 2:

Let the starting values satisfy the conditions
of definition 2 and further, let le~l < Z ~ d 3

8(h) , i=o , 1 , ... , k-l and lek-l'l ~ d4 8(h)

where Z, d3 , d4 are positive constants, 8 (h)

> 0 and 8 (h) -+ 0 with h. Then the necessary
and sufficient conditions for convergent of (6)
are that it is consistent and stable.

Lemma. Let the polynomial p(z) satisfy the
condition of stability, and let the coefficients
aQ'( Q = 0, 1 , 2 , ... ) be defined by

~_1_ a
o

+ a1z + a z2 + .... < (8)k 2

L O:i zi
i=o
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n
+ Lr L le~1 + rJ\zn).

m==o

Bringing the terms involving le~ I from the right

to the left and simplifying, The condition f(x , y) being continuous is
actually enough for the canvergence of (&). Then
we could show that by the condition of consistency
om and o'm are at least of O(h o(h)).

we have lenl -+ °as h -+ 0, implying convergence

of en' Hence the GBDF method for j == 1 is
convergent.

Since hn == (xn - a) is fixed,

Therefore, le:U I ~ KX(h) for some K and V m.

From inequality (15), we have,

lenl ~ lek _l I + hAKnX(h) + Al h- 1 (xn-a).

(19)

(18)

n -1, *
le~ I ~ R L em + K

m==o

I ~ Om an-m I
m==k

Equating (12) and (14); and using the inequa
lities (13), (16), (17) and (18), we have

n ,
I e~ 1< r AZk + h [Lrn(lek_11+ hA ~ leml + !\n)

m==o

z
where R = h nALr + hLr = h(xn - a)ALr + hLr:

B B

5. CONVERGENCE OF A SPECIAL CASE OF
THE GBDF METHOD FOR J = 2

We now consider only a special case of (7)
for k =: 2 where the method is reduced to

K* == rAZk +(xn -a)Lfl ek _1 ! +

B

·1 2
h LrA1 (x -a) + r Az (x -a)n n ,

B yn - 2y n-1 + y n-2

(20a)

A,gain if e.~ , e~ are the global errors of y n'
yn' respectIvely, then

B == (1 - hLr - hLrA (xn -a)) ,

nh == (xn -a), fixed.

We now proceed by induction. Since ATL1and
hence K * ~ Z, therefore the inequality Ie~1
:s: K* (1 + R)m is true for m =0, 1 , ... , k-l.
Assuming its truth for m == 0, 1 , n-l and
using on the right of (19, we have

Ie' I ~ RK* (1 + R)n - 1 + K*
n R

+ °n_z '

where Gn ' G~ as defined before,

(21a)

(21b)

, * '" -1Therefore I enl < K exp (nR) == K exp ((xn- a)h R)

exp ((x - a)h-1 R) -+ a constant as h -+ 0,
n

but K* -+ °as h -+ 0,

Therefore Ie~ I -+ °as h -+ 0, implying convergence

of e' . Convergence of e' impliesn n

em == Km X(h) ,where X(h) >0 and x(h) -+0 as

h -+ 0.

X(h) > 0, lim X(h) == ° ,0<en_Z~I,0<en_2g
h-+o

and °n-Z ' °n-Z are the local truncation errors

of (20a, b) respectively, assuming only y(x) S
2C [a,b].

Theorem 3:

If the starting values satisfy the conditions
of definition 2 and further, let eo == °0 (h) ,

e1 == 0l(h) , e1-eo == hOz(h) where 0o(h),

°1 (h) '02(h) tends to zero with h, then the method

defined in (20a, b) for solving (l) is convergent.
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Proof: Solving the difference equation (21a) gives (1 - t n-1 )e' } + ~hc' e'
2 2 n n

+.2-202 (h)+1.hGf1e _Ie _l(e-e)(I)n)
3n. . 2 n 2 1 2 0 2 1 0 3

+ 3 G Kh3 (h) 3 -"2 p. X w* - - KhX(h)w + 18 KhX(h)
1

2 2 n-2 .
-t

where w = (un_2- (1 - t)8n_3 -:- t(1 - t)8n_4 ...-

Simplifying and substituting for /li ' 0i and (e1 -

eo) we get

Ins::( 2{' (' ,Sn = -6 (3) hu z h) + 3h en- 1-t)en_l -t(l-t)en-2

Using (22) on the left hand side of (21b) gives
3 1 1 l'

Sn = "2 (eo - el H(3t - 2(3)n-l +(S)n-2)

1
+ -{ (1 - t)J.l + [(1 - t 2 ) - 2(1-t))/ln_3

1 - t n-2

+ {(1 - t 3) - 2(1 - t2 ) + (1 - t)]/ln_4 +...+

{(1- tn-l) _ 2(1- tn-2 ) + (1- tn -3 )]/l0}:

(28)

(27)

Hence Iwl ~ 2. }

From (26), Iw*1 s: n.

From (24),

[wi < { 1 + (1 - t) + t(1 - t) +...+ tn-3 (1 - t) }
(1 n-2)

={ 1 + (1 - t) - t J
(1 - t)

Hence from (27) and using (28)
1

1'1<2{1' I l' --,en - 3' enol + S Ie n.2' +...+ 3n-3 Ie 21 }

3 , 3 n
+ -hL I e I + - hZL·~ le~ I + K* (29)

2 n 2 i=2 1 '

(23)n-3 ( ) , } 2 (... - t 1 - t e2 + Kh X h) w,

Using (22) on the right hand side of (21b) and

substituting /li and 0i gives

_ Z {3 1 3 ( (1 n}S - h G -e - -e - - e1 ·- e ) -)
n n2 l 2 0 2 0 3

+1 h 3 G { , (. . . 2 ,3-_n (1 - t)en + 1 - t )e n-l +...+
1-t

(1 - tn-l)e~} + h
4

GnK X(h)w* + h2G~e~
1 - t

tn-3 (1 - t)8 ).
o

(24)
1 3 3

where K* 3n-2111~(h) I +-"2hL { '210 1 (h)

+ -2
1 10 (h) I + ~Io (h) I <!:-)h}

0 2 2 . 3

9
+ -LKh3 X (h)n +3Kh X (h)

4 3-
+-KhX{h)

2
andL = max { IGn I., I GJ

".].-
n n

L I ' I {' ,et E i = max lezl, ... , lei I }, then for

sufficiently small h (29) becomes,

where A* = (1 - ~ ( h2L + hL) ) and
....

B* ::::. (1 + ~ Lnh 2 ).
2 .

Since nh is fixed, hence ~s: 1 + Dh for some
A*

+ e
n

_
2

Kh 2X(h), (25)

where w* = {(1 - t)8n-2 + (1 - t
2

)8n-3 +...+

(1 - t n-l )8 o}' (26)

Multiplying (23) and (25) by 1. and equating
2

them, gives

/ ( ) , (' n-3 ( /en = 1 - t enol + t 1 - t)e n-2 +...+ t 1 -t)1:2

,
A* Ie' lOS;: B* E' + K*n n-l ' (30)

h 2 G / 2 /+__n((1 - t)en + (1 - t )e n_l +...+
1- t

D> O.

Hence from (30),
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i.e.

E' , K*
n s: (1 + Dh)E n _1 + A*'

E' ~ (1 + Dht-2 (1e~1 + K*)+ .£'
n A* A*

Since K* -. 0, le~ I -. °with hand nh fixed,
A*

E' -. °i.e. the method of (20a,b) is convergent
n

i ,
tn y.

Finally we prove the method of (20a, b) is
convergent in y.

~ - 2"
Writing P n -2 = 0n_2 + h G·ne n then (2Jb) gives

2 -
en - 2en_1 + en _2 = h Gnen + Pn -2

2en _
1

- 4en_2 + 2en _3 = 2h2 Gn _1 enol + 2Jln _3

3e
n

_
2

- 6en _-3 + 3en _4 = 3h
2

Gn _2 en _2 +3 ~-4

(n- 1)e
2

- 2(n- 1)e1 + (n- 1)eo

= (n - 1)h2 G2 e2 + (n - 1)110 ,

is true for m = °, 1.

Assuming its truth for m = °, 1 , ... , n-1
and using on the right of (33), again it is easily
seen that

lenl ~ K(1 + Bh) n.

Hence Ie I < K enhB
n -

- 2' ,
Now, Mi = (\ + h G i+2 e i+2

2 - ~ "
= h (8 i KX(h) + Gi+2 ei+2)

:s:. b
i

h 2 X(h) , b i is some positive constant

Let b* = max -{ b
o

' b1 , . .'., b n_2 } ,

n-2 2 2
then nr L p. ~ r n h b*X(h) -. °with hand nh

• 1
1"=0

fixed

Since £* -. 0, hence from (34) we have K -.0.
o

Hence len I -. 0, implying the method defined

in (20a, b) is convergent.

Adding the left hand side, we have

i=o

We now proceed by induction. Since £6 L max

{°0 (h) , 01 (h)} therefore

Ie I~K(1 + Bh)m
m

The sum of the right hand side

n n-2
S ~ nh2L .2: leil + n L 1Pi l .

n 1=2

Hence (31) and (32) implies,
n-1

1\

len I ~ Bh . L IeiI + K ,
1=0

1
where B ~ r n h L, nh fixed, r = 2'

1- nh L

1\ n-2 -
K = £ * + nr L IPiI .

o i=o

(31)

(32)

(33 )

(34)
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