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RINGKASAN

Beberapa populasi normal merdeka yang mempunyai pekali ubahan pemalar tetapi tidak diketahui
telah dipertimbangkan. Modelnya dalam bentuk lebih itlak. Bilangan kumpulan tidak terhad dan saiz
sampel untuk setiap kumpulan mungkin berbeza-beza. Suatu kaedah penyelesaian berasaskan tatacara
kebolejadian maksima telah dibentuk. Persamaan-persamaan keboZehjadian maksimum dirangkaikan kepada
satu persamaan tunggal sahaja. Ini menghasilkan suatu penyelesaian berangka yang tepat. Penilaian Monte
Carlo dikaji. Contoh dari makalah diambil untuk menunjukkan kaedah pemakaiannya. Penganggar bagi min
telah ditunjukkan lebih cekap secara asimptot dari min biasa. K ecekapan sebanding asimptot meningkat
apabila saiz sam pel sebandingnya meningkat.

SUMMARY

A number of independent normal normal populations having constant but unknown coefficienls
of variation are considered. The model is of more general form. There is no restriction on the number of
groups and the sample size in each group may differ from one another. An efficient method of solutions
based on the maximum likelihood procedure is developed. The maximum likelihood equations are reduced
to a single equation. This results in a numerically exact solutions. Monte Carlo evaluations are studied.
Examples from the literature are taken to illustrate the method. The estimators for the means are shown to
be asymptotically more efficient than the ordinary means. The asymptotic relative efficiency increases as
the relative sample size increases.

INTRODUCTION

In many technical and biological applications researchers may not be willing to assume that their
normal models have constant or homogeneous variances particularly when the observations are taken in
groups at various points of time under different conditions. An alternative model that has recently been
proposed is the less realistic assumption of constant and known coefficients of variation. We propose
here a more general alternative model without the assumption that the coefficients of variation are known.
The model is in its most general form in the sense of unrestricted number of groups of different sample
sizes.

We consider k independent normal populations with y.. ~ NID(J.l. , c' J.l.'), i = I, ... , n· , j = 1, ... , k.
. . Jl J J . J

We assume the parameter space as the pOSItIve orthant

Q = {J.lI, ...,J.lk,CIJ.lj€R~,j= 1, ... ,k,c€R~}.

Solutions for k = 2 and nj = n, all j, are discussed in Lohrding (1969). When nj = nj', j f j', the solutions
become fairly complicated even with k = 2. It is therefore essential to develop an efficient numerical
method of estimation. We note that there is a possibility that real solutions do not exist in this case.
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Basically, the method involves some simplications of the k + 1 equations into a single equation of
the form F(x) = x. It is also established that both lower and upper bounds exist for c2 • This enables us to
apply the method of bisection (Kelly, 1967). Very accurate numerical solutions are possible.

It can be shown that the distribution function for this model satisfies the regularity conditions of
Bradley and Gart (1962) (see Abd-Rahman 1978).

THEORY

Let L represent the likelihood function of k random samples yj! , ... , Yjnj of size n
j

, j = 1, ... , k.
Denote log L by Q. The log-likelihood of e' = (Ill ' ... , Ilk > c) given the random samples is

Q= const-
k
~

j=l
[ n. log 11. + n. log c + (2c2Il! )-1 ~j (Y.. -Il.)2 ].

] ] J J i=l ]1 J

Differentiating Q partially with respect to (w.r.t.) the parameters III , ... , Ilk, and c, and on equating to zero,
the likelihood equations may be adjusted to obtain the k + 1 equations as follows:

C 2 1) - 2 - - tf; 2 .C + Il j - Il j Yj - j = 0 , J = 1, ... , k,

where y. = n:' ~ y.. , and l/;.' = n-
j
.' ~ (YJ·i - ii]Y, and c2 = n-I ~ n. l/;! lii·2

] ] i]1 j i j J J ],

where n = 1: n.. Substituting l/;! of (2.1) in (2.2) we have
j J ]

~ (n./ii.) y. = n.
j j] ]

Also, if S2]. = n-~ ~ (y.. - Yj)2 , then (2.1) can be reduced to
] i JI

c2 ii.' + ii .Y. - (s~ + y~ ) = 0 , j= 1 , ... , k.
j ]] ] ]

On dividing equation (2.4) by y: , we obtain
]

c2 (ii·/YJ·)2 + (ii./Y.) - (P + 1) = 0,
J J J J

where t~ = s~ ly 2
• , j= 1, ... , k. Considered as quadratic equations in UJ../Y.), we have

J J ] J ],
(ii

j
) = [-1 + {l + 4c2 (tj + 1)} Z] 12c 2

,

(2.1 )

(2.2)

(2.3)

(2.4 )

(2.5)

(2.6)

taking only the positive solutions. We note that 4c 2 (t~ + 1) > O. Substituting this quantity (2.6) in (2.3)
and simplifying we get the required form of F(c2

) = c2 J, namely

I

(n/2) I ~ n. I [-1 + {l + 4c2 (t! + l)p] = c2
•

j J ] (2.7)

The solution is a zero of f(c 2 ) = F(c2 ) - c2 , where F, and hence f, is differentiable to any order.
To determine whether the method of bisection can be applied to solve equation (2.7) it is sufficient to
show that f'x) < 0 at its zero.

Denote c2 by x, and let
I

a
j

(x) = -1 + {l + 4x (t/ + l)} Z ,

which is greater than zero. Then

d '
a'. (x) = - a. (x) = C2tj + l)/{1 + 4xCtj + l)}z .
] dx]
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SOLUTION IN NORMAL MODEL WITH CONSTANT BUT WITH UNKNOWN VARIATION COEFFICIENTS

Writing a. for aj(x), the function F under consideration is F(x) = 1 (L Pj a.-I )-1, where Pj = n)n. Thus
J j J

F'(x) = 1 (L Pj ajl )-2 (L Pj at a; ) . By equations (2.8) and (2.9) we have that a; = 2aj (aj + 2) 14x
l J

(aj + 1), and hence F'(x) = (L Pj aj' )-2 {L Pj at aj (aj + 2)/4x (aj + 1)}. When F(x) = a, then F'(x) = x
J J

{ L p. (~ + 2)/aj (aj + 1)} = L qj . 1 (aj + 2) 1 (aj + 1) , where q. = P. a:1 1~ Pj ajl . That is, F'(x) is the
j J j J J J J

weighted average of 1 (aj + 2) 1 (aj + 1). Since 1 (aj + 2 )/(aj + 1) < 1 then we have F'(x) < 1, or

['(x) < O. This holds for all x or c2 on the entire positive half-line.

Upper bound. For the model under consideration the quantity

c~ = n-I L nj (Sj/y)2
J

is an upper bound for c2 .

(2.10)

For a proof of this claim we visualize the expressions ~ (P.ja.)-I as a harmonic mean of a· , and
L P·a· as the expectation of aj . By the well known relation~hip\eJtween them and a CauchY-S~hwarz
j J l

I

inequality we have c' = ~ (L Pja'j')-I '" ~ I: Pja j = ~ ~ Pj [ - 1 + {I + 4c 2 (tj' + 1)P]
J J J

implies that (2c' + 1)' '" 1 + 4c 2 (I: p. V + 1). But I: Pj ti' = n-I I: n j (sj/Yj)' . Hence we finally have
j J l J j

c' '" c~ . Thus c~ is an upper bound for c 2.

Lower bound. For the same model, let t l '" t2 '" ... '" t k where fs are defined as before
Then c' '" t l .

We prove it as follows. We first note that the assumption that t j '" t2 '" ... '" t k is made for
convenience, with no loss in generality. By the inequalities m~n (x j) '" L wj x j '" max (x), where w j is

J J

some weight, j= 1 , ... , k, we have c' = ~ (I: Pj at )-1 ;;. ~ a l , since a j = -1 + {I + 4c 2 (t j' + l)}t is
J

also such that a l '" a2 '" '" '" ak' Then c' ;;. t l '· That is, t l ' is a lower bound for c'. In practice, we find
that cL' = (~nj tj/~ nj)' provides a more efficient lower bound for c'. It may be of some interest to
compare this finding ~ith table 1 of Zeigler (1973).

Using c~ and CL' as the two bounds in the bisection method we obtain the solution for c' in
equation (2.7) based on the following criterion of convergence: compute p = F(c j ' )/c j ' at the ith iteration,
and if p = 1.0 ± 10- 16 we say that the convergence is attained and put c' = cj '. Then ill ' ... , ilk are
obtained using equation (2.6).

ASYMPTOTIC RELATNE EFFICIENCY (A.R.E.)

Suppose (J = (Ill ' ... , 11k ' c)'. From EO (-a' f) /a era es) we obtain (r , s) element of the information
matrix I(e). This is given by

(2c' + 1)nr /c'l1 r if r = s

o if r l' s , r,s = 1, ... , k,
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Ik +1,s(6)

Ik + 1,k+1 (6) 2njc2
•

2nsjc2lls' s = I, '" k, and

This symmetric matrix is of a familiar form, and is easily invertable. The asymptotic variance-covariance
matrix of the estimators is given by

= {c2 Ilr 2 (I + 2nrc2 jn)jn/2c2 + 1) if r = s

21lrlls c' jn( 2c2 + I) if r 1- s, r,s = I, ... , k,

Vk + 1,k+1 (6)

Vs,k+1 (6) = - c3 Ils/n , s = 1, ... , k, and

c2 (2c 2 + I )j2n .

The A.R.E. of PI' ... , Pk w.r.t. Y I' ... , Yk is given by ARE (P.Y) = I var-cov (y) I / I V ((l) I , where 1.1
denotes the determinant. Since I var-cov (y) I = c2k II Il/(n j , and it can be shown that

J

I V (fj) I = ( c2k j(2c2 + l)k-1 ] II Il/ /n j •
J

then ARE (p,y) = (2c 2 + l)k-1. Thus, PI' ... , {lk is asymptotically more efficient than YI •...• Yk. The
efficiency increases sharply with c. The A.R.E. of a single estimate Pj W.r.t. Yj is ARE (Pj'}') =
var (Yj)jvar (p) = (2c2 + I) / { (2c 2 nj/n) + I} .

This is also dependent on the relative sample size of each group. The larger the relative size the more
efficien t P j will be.

MONTE CARLO EVALVAnONS AND EXAMPLE

Sufficiently large ranges of value for III •... , Ilk ' and c are simulated: .20-10,000 for Ils and
.01-1.0 for c. We present in Table I three of such simulations. 'True' denotes the value of the parameter
used in generating the data set, 'sd', the estimate of sample standard deviation. 'asd' the estimate of the
asymptotic standard deviation, and # iter, the number of iterations required for convergence. For example,
for a random sample of size 75 taken from a population having a mean III = 0.20. the maximum likelihood
solution gives an estimate of 0.202 for III ' with an asymptotic standard deviation of 0.010. The ordinary
mean estimate is 0.197 wiht a standard deviation of 0.010. In general, it is observed that 'asd' is smaller
than'sd'.

For illustration of this method we work out an example using data on "Absorbance values of three
su bstances in a chemical assay for leucine amino peptidase" in Azen and Reed (1973). with 19 runs of
test each. The following result is obtained (no. of groups = 3) :

.0351

120.2101

(#iter=l)

P2 = 70.4245 , P3 = 69.7337.

The asymptotic variance-covariance matrix is

.93518

.00045

.00045
-.00009

.32097

.00026
-.00005

.31470
-.00005 .0000 I

That is, the 'asd' of the estimates of III , 112 • and 113 are (with the corresponding 'sd' in brackets)
0.967(0.993),0.567(0.594), and 0.561 (0.566) respectively.
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Table 1 Z
Some results from Monte Carlo evaluations Z

0

Parameters 111 112 113 114 115 115 116 C
~
;>
r'
s:::

true .20 .30 .35 .40 .60 .80 .85 .40 0
tJ
tTl
r'

n.=7S y/(sd) .197±.010 .305±.013 .348±.0 16 .364±.0 18 .616±.028 .789±.035 .830±.04 - ;S
J >-j

8/(aSd)
::r:

j=l, ... , 7 .202±.0 10 .298±.0 12 .347±.014 .369±.015 .61O±.025 .779±.032 .840±.035 .400±.014 ()

0

# iter=9 Zen
>-j
;>
Z

0\ 12.00 15.00 17.00 18.00 22.00 21.00 25.00 .10
>-j

2 true tl:l
C
>-j

nj =130 y± (sd) 11.92±.11 15.05±.13 16.86±.14 17.91±.l6 22.38±.19 20.77±.18 24.83±.21
~
::J

8 j ±(aSd)
::r:

j=l, ... , 7 11.93±.10 15.04±.13 16.86±.14 I 7.92 ±.I5 22.38±.19 20.76±.18 24.83±.21 .099±.002 C

# iter=3 ~
Z
0

3
::E

true 1122 1155 1270 1890 2222 2190 2590 .20 Z
<:
;>

nj =130 y=± (sd) 1107±20 1162±20 1249±22 1872±33 2300±39 2142±37 2555±45
;:>::I

- ;;
j=l, ... , 7 8i±(aSd) 1112±19 1160±19 1149±21

>-j
1874± 31 2296±39 2139±36 2555±43 .198±.005 0

# iter=4
Z
()

0
tTl
'Tj
'Tj

n
tTlz
>-j
en
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CONCLUSION

A numerically exact method of solution to a realistic but seemingly complicated model is made
possible. The alternative model that assumes a constant coefficient of variation without further assumption
that the coefficient is known can now be handled efficiently. The estimators for the means in this model
are shown to be asymptotically more efficient than the ordinary means, jointly as well as individually.
In both cases the A.R.E. increases with the increase in the coefficient of variation. For the individual
estimator the A.R.E. also increases with the relative sample size of the corresponding group·.
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