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Abstract: Recent analysis of area-level COVID-19 cases data attempts to grapple with a challenge
familiar to geovisualization: how to capture the development of the virus, whilst supporting analysis
across geographic areas? We present several glyphmap designs for addressing this challenge applied
to local authority data in England whereby charts displaying multiple aspects related to the pandemic
are given a geographic arrangement. These graphics are visually complex, with clutter, occlusion
and salience bias an inevitable consequence. We develop a framework for describing and validating
the graphics against data and design requirements. Together with an observational data analysis,
this framework is used to evaluate our designs, relating them to particular data analysis needs based
on the usefulness of the structure they expose. Our designs, documented in an accompanying code
repository, attend to common difficulties in geovisualization design and could transfer to contexts
outside of the UK and to phenomena beyond the pandemic.

Keywords: COVID-19; geovisualization; multivariate visualization; cartography; glyphs

1. Introduction

A key challenge in spatial analysis is how to visualise and interpret patterns over both
spatial and temporal dimensions simultaneously. The increasing availability of longitu-
dinal or time series data that also contains spatial information is driving methodological
development and a number of reviews have been carried out, for example addressing the
cartographic options in traditional maps [1] and interactive visual data analysis systems [2],
or more foundational papers establishing the design space for spatiotemporal data visu-
alization [3]. Work in this area is constantly evolving, driven by new data and enabled
by new technologies. The most obvious and pressing of which has been the spread of the
SARS-CoV-2 virus, also known as the Corona Virus or COVID-19. Due to the gravity of the
pandemic, and certainly efforts to make case data easily accessible (e.g., [4]), there has been
intense focus on spatiotemporal analysis. In a short period of time during the first wave
of the pandemic, a wide range of visualization efforts were published and shared on-line,
tracking its spread and trajectory in populations around the world [5].

Many of these analyses of area-level COVID-19 cases and deaths data attempt to
grapple with a challenge familiar to geovisualization: how to compare the development of
cases aggregated to area-level, whilst retaining the spatial context associated with those
areas? Animation was used with great effect to communicate a sense of the pace of
change and spread of cases across geographic areas [6,7] and was even used in government
briefings [8]. Animation nevertheless has limits as it relies on visual memory—on the ability
of users to track information between frames as time progresses [9]. One way of getting
around this is to cumulatively build, or ‘reveal’, a visualization such that information in
previous frames is retained. This approach is more viable for certain chart types than others.
Mathieu Rajerison [6] and Michal Skop [10], for example, show the spatial progression
of COVID-19 case data with animated line charts overlaid on a polygon map. Static
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equivalents have previously been applied across a range of domains and with different
nomenclature—value flow-maps [11], geosparklines [6] and glyphmaps [12], our preference.

This paper develops various glyphmap designs for studying the spread of COVID-19
cases data during the first wave of the pandemic for Local Authorities in England. To
inform this design work, we identify several Data Requirements (DatRs) from the existing
attempts to represent area-level spread in the COVID-19 cases data. These are to display
case data according to:

DatR1 Geography—case numbers by area displayed in an arrangement that reflects their
spatial relationships.

DatR2 Absolute number—of cases by area (total and/or cumulative case counts).

DatR3 Relative number—of cases by area, for example expressing total and /or cumula-
tive case numbers as a share of population size.

DatR4 Rate of change—the extent to which growth in cases by area is speeding-up or
slowing-down.

DatR5 Time elapsed—against an absolute or relative start point in time.

DatR6 Case history—case numbers by area either continuously (daily case releases) or at
specific milestones in the disease trajectory.

DatR7 Cases relative to local ‘peak’—whether the daily growth in case numbers at a
time point by area has reached its fastest recorded growth rate.

Additional to these are four Design Requirements (DesRs) to which our designs should
adhere if they are to be successful in supporting detailed spatiotemporal analysis:

DesR1 Concurrent—all data items must be shown simultaneously to support comparison,
exploration and other synoptic tasks.

DesR2 Discernible—all marks must be discernible, with limited or manageable occlusion.

DesR3 Prioritised—phenomena and patterns that are important must be visually salient.

DesR4 Estimable—graphical techniques used to encode quantities must enable accurate
estimation.

Meeting each of the design and data requirements together is challenging. If all data
items are to be shown concurrently (DesR1) visual clutter is increasingly likely, making
individual items difficult to discern (DesR2). Through a detailed design discussion, this
paper attempts to draw attention to these difficulties in order to suggest candidate de-
signs and make claims about the effectiveness of particular design configurations. The
contributions are:

e A survey of recent glyphmap approaches for spatiotemporal analysis of COVID-19
cases data;

*  Glyphmap designs for spatiotemporal analysis of cases data that meet our data and
design requirements and that may transfer to other contexts, implemented using a
high-level visualization grammar (ggplot2 [13]);

¢ encoding schematics, a novel means of describing design candidates, closely linked
to their implementation, and which help draw attention to issues of data density and
encoding effectiveness;

¢ claims around the likely effectiveness of our novel visualization designs in light of
shifting data analysis needs related the pandemic.

2. Background
2.1. COVID-19 Visualization and Glyphmaps

The rapid spread of COVID-19 has resulted in numerous visualizations that aim to
track the virus over time, across geographic areas. Data are typically captured at regular
intervals and aggregated according to administrative areas within the region of interest.
The virus’s extent—it has impacted most countries and occupied the policy agenda of most
governments—offers an unprecedented opportunity for innovation and learning, with a
diverse community of researchers analysing the same datasets and asking similar questions.
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Whilst the data are novel, the visualization challenge is familiar. Temporal patterns
(that are linear) are often best enabled using standard time-series charts and aligned scales,
where time progresses along a horizontal axis and the quantity of interest is represented
along a vertical axis. With a 2D geospatial arrangement, horizontal and vertical position
is already in use and instead temporal analysis must be effected via other means. For
example, via difference representation [14], creating a single ‘change’ statistic between
two points in time and displaying the measure directly as a change map [14]; animation,
representing each time cut as a frame on a thematic map; introducing a third dimension on
which time might be represented (e.g., space-time-cubes [15]); or by generating discrete
time series graphics for each spatial unit, using established idioms such as line charts, and
applying a 2D geospatial arrangement to form glyphmaps [12].

As the COVID-19 outbreak began to establish itself in March 2020, numerous maps
were published and shared online displaying area-level counts of cases data in standard
choropleths [16,17], proportional-symbol maps [16] and dot-density maps [18]. Colin
Angus’s work [7] was particularly detailed in its attention to temporal patterns of locally-
occurring peaks in English local authorities, contrasting a small-multiple heat map with
authorities ordered top-to-bottom according to the recency of their peaks in cases, and a
geospatial arrangement (standard map and hexagon cartogram) where change-over-time
is conveyed by animating over the daily new cases data and colouring by proximity to
local peaks.

As this design work continued, various glyphmaps emerged demonstrating how
spatiotemporal patterns in area-level cases data could be represented simultaneously. These
glyphmap designs appeared to convey the sorts of detailed, multivariate spatiotemporal
structure relevant to the analysis of COVID-19 identified in our Data Requirements (DatRs).
For example, Mathieu Rajerison [6] used lines to signify cumulative case trajectories in
France, located at the centroid of départments, with emphasis placed on départments
experiencing rapid growth in absolute cases using animation. The same encoding was
used by Michal Skop to represent area-level case data for the Czech Republic, with the
addition that overall case numbers are also double-encoded using colour lightness as well
as height [10]. Reis Thebault and Abigail Hauslohener, of The Washington Post, published
a similar visualization for US counties [19], a version of the graphic is in Figure 1. In
addition to annotating counties with distinctive growth rates, the authors used colour
value and thickness to encode growth rates and relative exposure (current cases as a share
of the population), respectively.

The Washington Post piece is particularly impressive as a data dense visualization—
lines representing over 3000 US counties and 85 time points are shown simultaneously.
Many careful design decisions are made in order to emphasise certain aspects and de-
emphasise others. For example, in varying line thickness by relative exposure and line
colour by growth rate, those counties less exposed to the virus and with slower growth
rates are much less salient. It is challenging to discern complete trajectories here, but
instead a typical model or expectation of these trajectories can be learnt from visually
scanning the graphic. That spatial autocorrelation [20] affects the trajectories is helpful—an
overall pattern of exposure can be abstracted almost pre-attentively, before eyes are then
drawn to exceptions. Initially these might be towards the extreme end; tall, steep, dark
and thick lines, suggesting large absolute numbers, rapid growth rates and high exposure.
Secondarily, interesting subtle patterns can be discerned, for example a thick and mid-dark
line surrounded by lines that are generally lighter and thinner; a county that appears
locally exceptional in having a comparatively high growth and exposure rate. Occlusion
is nevertheless inevitable, meaning that not all marks in the visualization are discernible
(DesR2). This might not be so problematic if the data items in the visualization are appro-
priately prioritised (DesR3)—that is, in using thickness to convey relative exposure (cases
relative to population size) and colour and height growth rates, and showing the lines
with a spatial arrangement, it may be that the more important patterns in case growth are
indeed given appropriate emphasis. For example, the obvious outlier counties (labelled)
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and the counties in the west of the US experiencing relatively low relative virus growth
rates when compared nationally, but that are locally exceptional. Nevertheless, there may
also be interesting patterns in the case growth trajectories occurring in the North East and
Mid West that are unlikely to be discernable (DesR2) due to the heavy occlusion.
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Figure 1. Map displaying growth in COVID-19 cases by US County, based on the design by Thebault
and Hauslohner [19]. Our graphic uses data collated by New York Times and made available via the
covdata R package [21]. Documented code for the graphic is in the code repository accompanying
this paper.

2.2. Evaluating Design Candidates

In this paper, we develop several glyphmap design candidates for representing
COVID-19 cases data and, in a similar way to the Washington Post example, pay par-
ticular attention to how the glyphs might be parameterised and layered to build data
density and reveal important structure. Developing design candidates, where multiple
solutions are generated to meet analysis requirements, is an important aspect of visual
data analysis [22]. How to evaluate and select the ‘best’ candidates is not straightforward.
Upstream evaluation involves discussing low-level design choices, applying cognitive and
perceptual principles to ensure that guidelines around effective visualization design are
not violated. Downstream evaluation involves soliciting feedback from target ‘end-users’
and selecting designs based on this discussion [23]. A category of downstream evaluation
that lends itself particularly to DesR4—whether the discussed chart idioms [24] encode
quantities in a way that can be accurately estimated—is the perception-based experiment
(e.g., [25]), which is a particular challenge for geographic contexts [26]. We reserve this
for future work and instead focus on the upstream encoding threat—the possibility of
violating cognitive and perceptual principles—as it is especially relevant to the sorts of
applied visualization projects envisaged, where graphics are encoded with multiple data
items at the same time. Our encoding schematics provide a novel framework for structuring
this design candidate evaluation. Although the data on which our designs are based is
limited to English local authorities, the designs could transfer to country settings other
than the UK and analysis domains other than Epidemiology.
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3. Datasets and Technologies

Our designs use a single COVID-19 dataset and level of geographic hierarchy in the
UK: confirmed cases data recorded for 150 Upper Tier Local Authority areas in England,
released daily by Public Health England [27], where upper tier authorities comprise county
council and unitary authority areas. We wish to characterise spread in the first wave
of the virus and therefore make the decision to analyse case data reported up to 1 June
2020. Geographic boundary data were obtained from the Office for National Statistics’s
(ONS) Open Geograpy Portal [28] and population data from the ONS mid-year population
estimates released at County Council and Unitary Authority level. Restricting ourselves
to this geography has implications for our designs. It may be desirable to analyse spa-
tiotemporal trajectories in the case data at lower levels of geography, for example the ONS
Deaths Involving COVID-19 dataset released at Middle-layer Super Output Area level [29].
However, PHE’s is a complete dataset ranging back to the first confirmed case in England
in late January 2020. The 150 Upper Tier Local Authorities in England also present an inter-
esting visualization challenge. They are administrative delineations covering both densely
populated urban centres, provincial towns and more sparse rural areas—as discussed in
Section 4.3, this creates challenges related to occlusion and visual clutter, which we try to
address using semi-spatial layouts.

A code repository, with discussion of data, code and design choices, is published
alongside this paper. Detailed in this repository is data processing code for the derived
variables on which our graphics depend: 7-day rolling case counts, the local ‘peak’ for
each local authority over the study period (cases to 1 June 2020) and relative case counts by
local authority normalised according to local population size. All data graphics were pro-
grammed using the ggplot2 package in R. For many of the graphics, or design candidates,
we present a static and animated alternative within the repository.

4. Designs

In this section, we describe our glymphmap designs for analysing local authority-level
COVID-19 cases data in detail. We introduce a mechanism for describing our designs,
which we call encoding schematics. These schematics are then used to document and assess
the design choices made when creating glyhmaps of increasing data density. As is often the
case, increased data density results in problems of occlusion and clutter, particularly in this
case where there is a requirement to represent multiple features of the case data (DatR2-
DatR?) for local authorities with a geospatial arrangement (DatR1). We reflect on this and
layout options which involve relaxing geography, overcoming the occlusion problems at
the expense of geographic precision, demonstrating the kind of design exposition [30,31] that
we use to guide our design process (Figure 2).
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Figure 2. Graphical representation of the upstream evaluation process for our design candidates.

4.1. Describing Designs: Encoding schematics

Visualization design is ultimately a process of decision-making. Data relevant to
an analysis use case must be filtered and prioritised before being matched to visual
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channels [24] (Figure 3) through which components of a data graphic can be encoded. Cer-
tain visual channels are more effective at encoding certain types of data than others—and so
judicious decisions must be made around which data to encode with which visual channel
[24,32]. For data rich graphics where several data items are to be encoded simultaneously,
as in the Washington Post example, these decisions become increasingly challenging.
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Figure 3. Left: Adapted from Munzner [24], visual channels through which data can be encoded,
ordered according to effectiveness. This ordering is based on empirical work by Cleveland and
McGill [33], later replicated by Heer and Bostock [34]. Right: example schematic describing a line
chart of cumulative cases, and above to the right is a simplified version that we use in this paper for
concise descriptions. We can quickly see from the main schematic that 4/7 DatRs are addressed (grey
columns), with broadly effective encodings (high large dots) and some double encoding (columns
with two dots).

In our case, there are numerous ways in which graphics might be encoded—data
matched to visual channels—to meet the seven Data Requirements (DatRs) identified in the
introduction. To describe and compare across the possible design candidates we propose
using encoding schematics. A characteristic example is illustrated in Figure 3 and in this case
the schematic describes the encoding for a familiar daily cumulative cases chart, featured
in the figure itself. The columns translate the seven DatRs into data channels [24] and
the rows identify the visual channels [24] with which these data can be encoded. So in
this case, the linechart conveys DatR2 absolute number of cases, DatR4 rate of change,
DatR5 time elapsed and DatR6 case history. This encoding is denoted with dark fills for
each of the columns. Furthermore, identified via dots is the corresponding visual channels
(rows). DatR2 absolute number and DatR5 time elapsed are encoded using position on
an aligned scale—vertical and horizontal position, respectively, DatR4 rate of change
is encoded using orientation (line steepness) and DatR6 case history is communicated
indirectly, and can be derived using a combination of position and orientation. Notice
that the arrangement of the visual channels (rows) in the matrix is deliberate. Following
Munzner [24] visual channels are grouped by the types of data to which they are most
appropriately applied—quantitative and ordinal, or ‘magnitude’ and ‘order” according to
Munzner [24] and categorical and nominal, ‘identity” and ‘category’ [24]—and are then
ordered by their effectiveness based on graphical perception literature (e.g., Figure 3).
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Each design candidate presented in the paper is accompanied by an encoding schematic.
This allows high-level differences between design candidates to be quickly communicated
and invites consideration of the combination of encodings used when generating complex
data graphics. For example, data density is implied by the number of columns with darker
fills; a sense of encoding effectiveness can be read by the vertical position of the dot within
the table and this is double encoded with dot size—the larger and higher the dot within
the matrix the more effective, following Munzner [24], the encoding; and encoding effi-
ciency can also be quickly inferred from scanning the columns—more than one dot implies
double encoding. Clearly, for designs attempting to encode many data items concurrently,
strict adherence to this schema might not guarantee successful design. Many dots higher
up in the matrix implies high data density and encoding effectiveness, but may result in
designs that are cluttered and unintelligible. However, the schemas help draw attention
to this—they provide a structured framework for evaluating the encodings used in our
designs. As the graphics are also generated using a library underpinned by grammar of
graphics thinking [13] (ggplot2), the schematics are also closely linked to implementation,
clarifying the mapping of data- to visual- aesthetics intrinsic to ggplot2 specifications.

4.2. Charting Idioms: Lines and Ridge Contours

We explore two chart idioms for designing to the seven DatRs: line and ridge contour
charts (Figure 4). The line chart requires little explanation. DatR5 time elapsed, the number
of days since the first 100 cases was recorded, is encoded along the horizontal axis; the
cumulative number of daily cases (DatR2) is encoded along the vertical axis; and a line
connecting daily cumulative case counts is drawn in temporal order. The chart can be
static and display the full case history (DatR6) or designed to animate over the cases data,
as demonstrated via the frames in Figure 4. The ridge contour charts attempt to encode
loosely the same data properties as the lines. They were proposed as an abstraction for
emphasising comparison across particular aspects of our Data Requirements. For example,
whilst line charts are the ‘obvious” approach to encoding the full temporal trajectory of the
virus, comparison of absolute (DatR2) and relative (DatR3) case counts or emphasising
particular milestones in the disease trajectory (DatR6 case history) is also important. There
is precedent in cartography for using ridge symbolisation for encoding quantities [35] and
the different ridge shapes that result from varying ridge width and height according to
separate data items—thin and short, thin and tall, short and wide, tall and wide—might
provide convenient visual short-hands. In our ridge charts, linear time varies along the
horizontal axis and frequency along the vertical. Rather than a single line connecting
points in temporal order, a separate line is drawn for each frame (release of cases data),
similar to the ‘lockdown” annotation in the line chart, but connecting positions on the
horizontal and vertical axes to contrive a triangle or ridge shape. Case history is therefore
encoded via animating over the ‘current’ frame, which is made bold and also through
the case milestones that persist through the animation. The case milestones are a form
of visual benchmark used frequently in cartographic contexts [36], and appear at regular
intervals—every 1000 cases in this instance. Milestones located close together imply a fast
rate of change (DatR5) and milestones further apart imply a slow rate of change; it is for
this reason that we name them contours.
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Figure 4. Example line and contour ridge encodings applied to data for the region of London, accompanied with descriptions
via encoding schematics. Selected frames from an animation are displayed. An animated equivalent is available at the
paper’s github repository.

4.3. Geospatial Arrangements

There are several options for incorporating spatial context within our designs. In the
top row of Figure 5 are three candidates: an ‘exact’ arrangement, with local authorities
positioned according to their true geographic location (at local authority centroids), a
continuous area cartogram layout with local authorities distorted according to population
size [37]; and a semi-spatial ordering with local authorities of regular size and geome-
try (grid squares) but with an approximate spatial arrangement (e.g., [38,39]). Each is
presented using the ridge contour design and encoding described in Figure 4 and with
accompanying encoding schematics.

The ‘exact” arrangement has the obvious benefit of being highly recognisable, enabling
authorities to be easily located and perhaps regional grouping and comparisons to be
more accurately and quickly performed. The obvious deficiency is the cluttering and
occlusion in more densely populated parts of the country and particularly London—this
layout clearly violates DesR2 Discernible. The cartogram is a substantial improvement,
but does not entirely solve the problems of clutter and occlusion. Additionally, since
aspects of population size are intrinsic to our data graphics (e.g., Figure 6) there is not a
strong case to distort local authorities according to population size in the same way as
one might an electoral cartogram of voting outcomes. The grid layout, a geospatial small
multiple with gaps (smwg) [38], is the least recognisable. Departing from England’s familiar
geometry means an additional overhead in terms of learning the layout. Additionally,
due to the fact that regular squares are used, not all adjacency relationships between local
authorities are preserved [38—41]. This fact is likely to interfere with judgements around
spatial dependence, which as demonstrated by the Washington Post graphic [19], is an
important factor when monitoring the spread and development of COVID-19. There are,
though, several additional benefits conferred from the use of regularly-sized grids. Firstly,
the grids allow more visually complex and detailed re-designs. In Figure 10, we use
the full grid space to superimpose several chart types that encode directly cumulative
cases and new daily reported cases, this greatly helps with meeting DesR1 Concurrent,
though compromising DatR1 geography. Secondly, the grid layout may also better support
positional judgements for the two key quantitative measures—time elapsed (horizontal
position) and cumulative cases (vertical position). When glyphs are spatially arranged, this
positional encoding is a secondary and inferior one (unaligned scale), as represented by
the encoding schematics where the encoding for DatR2 absolute number and DatR5 time
elapsed is bumped down one row. For the smwg grid layout, however, aligned comparisons
of ridge heights is almost possible along the rows and, perhaps less obviously, of ridge
widths along the columns. This slight difference is represented in the encoding schematic
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by making the mark outlines for DatR2 and DatRS5 light grey and positioning them on the
row representing position (common scale). This elevates smwgs above the cartogram and
‘real’ geographies on the effectiveness of encoding it affords (DesR4 Estimable), and we
opt for the smwg layout for the remainder of the paper.
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Figure 5. Candidate geospatial arrangements for local authorities: left, arranged according to ‘real” location and authorities
sized according to physical geography; middle, physical geography is relaxed and authorities sized according to population
using rubber sheet distortion algorithm [37]; right, authorities are of fixed size and spatially arranged using layout algorithm
in Meulemans et al. [38]. Each is accompanied with an encoding schematic. The light-coloured dots for the smwg layout
denote that the positional encoding of ridge width and heights is partially on an aligned scale. An animated map morphing
between ‘real’ and smwg layouts is in the paper’s github repository.
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Figure 6. Design candidates for building data density. Ridge contour and line equivalents are represented with the same

subset of data. Each design is accompanied by a schematic. Data density can be inferred by the number of filled columns, so

from design Figure 6b all seven DatRs are represented. Encoding effectiveness can be inferred from the position and size of

dots in each schematic—as per Munzner [24] larger dots higher in the matrix suggest greater encoding effectiveness.

4.4. Increasing Data Density

The designs presented in Figure 5 are already data dense, with position and orientation
used to meet five of the seven DatRs. The graphics can be further parameterised in order to
meet the remaining DatRs—DatR3 relative number and DatR?7 cases relative to ‘peak’—
and using the remaining visual channels identifiable from the empty rows in the encoding
schematics.

Figure 6 presents several design candidates that address this challenge with additional
encodings selected through considering the schematics. In each, DatR3 relative number
of cases is encoded using line thickness—length (1D size) according to the schematic, and
although less effective than position, an appropriate visual channel for communicating
quantities. Figure 6b—d encode aspects of DatR7 cases relative to “peak’ using colour. Here
a local ‘peak’ is used, which is the point in time when the largest reported number of daily
cases, expressed as a 7-day rolling average, is recorded. In Figure 6b distance in reported
7-day rolling cases to/from this peak is mapped to a continuous scale and encoded using
colour value. The darker the colour, the closer the current point in the animation is to this
peak—the bold line for the ridge contours and the most recent observation (and dot) for
the lines. So in the two rows demonstrating two time slices in Figure 6b, the ridge in the
first row is light grey (current new cases recorded are much less than the peak) and the
ridge in the second row is dark grey (current new cases recorded are almost at the peak).
Note that from the ordering in Figure 3, colour value is a less effective visual channel
for encoding quantities and the encoding schematic reflects this—a small dot appears
low down in the DatR7 column. In Figure 6c, DatR7 cases relative to ‘peak’ is treated as
a categorical variable and encoded using colour hue, an appropriate visual channel for
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categorical data and reflected in the DatR7 column of the schematic. Where the current
point in time is pre-peak, the ridge or line is coloured red, where it is post-peak, it is
coloured blue. In Figure 6d, distance from the peak is mapped to a diverging scheme—
colour hue to distinguish whether the current point in time is pre- or post- peak and colour
value according to distance from this peak. Again, the encoding schematic is updated to
reflect this with two dots now appearing in the DatR7 column.

Figure 6e is slightly different in that DatR7 cases relative to ‘peak’ is encoded directly
with the addition of a background area-chart of the daily new cases data, represented with
a red dot in the schematic to denote an additional ‘layer’. This is an effective (positional)
encoding, and for which there is not an obvious equivalent in the ridge graphics. However,
this sort of ‘overloaded’ [42] view where two separate chart types (line and area charts) are
superimposed on top of each other adds visual complexity. In Figure 6f we try to reduce this
complexity by replacing the cumulative cases line with a spine plot [43] where height varies
according to absolute number of cases (DatR2) and width according to relative number of
cases (DatR3)—this is represented with red dots in the schematic. In the example, the local
authority in the top row has recorded larger case counts than that in the bottom row, but
relative to population size a much higher share of the population in the bottom row has
been infected. A global scaling is applied here, so if the maximum infection rate across local
authorities was 800 per 100k population, local authorities with an infection rate close to
this would show a spine plot with a darker fill occupying almost the full horizontal width;
if the maximum case count across local authorities was 10k, then local authorities with case
counts close to this would show a spine plot that extends across a cell’s full vertical height.

Previous experiments with overloaded maps suggest that when presented as a full
glyphmap these two views are likely to be perceived in concert [44]. A consequence of
removing the cumulative cases line, however, is that the sense of aggregate-level growth,
speed-up and slow-down, in cases over the observed time period is lost. We attempt
to capture the essence of this, whilst not overwhelming the graphics in terms of visual
complexity and saliency, by annotating the chart with faint milestones. Different from the
ridge contours these milestones are sampled at regular time intervals—every 10 days since
the first 100 cases are recorded. The encoding requires initially a little more interpretation:
two horizontal axes are introduced, with time progressing along the bottom horizontal
axis and cumulative case counts along the top axis. A local scaling is used and so when
milestone lines are angled to the left (\) the rate at which cases are accumulating over time
is slower than the period average; to the right (/) cases are accumulating faster than the
period average; and vertical (1) cumulative cases are in line with the period average. These
reference markers are added to the plot background and should be read concurrently with
the daily cases area-chart. Since these milestones capture a sense of accumulating speed-up
and slow-down, there is autocorrelation in the line angles; they become most effective
when displayed as small multiples to support comparison across local authorities, as in the
full glyphmap in Figure 10.

Each of the design candidates in Figure 6 are plausible given visualization design
theory (as validated through the schematics), but moving through Figure 6a—f, the designs
become increasingly visually complex. In Figure 6d, three data channels are mapped to
the lines and ridges simultaneously (line thickness, colour hue and colour value) and
in Figures 6e,f, two separate chart types (line and area charts) are superimposed on top
of each other. Whether or not the distinct data items can genuinely be perceived when
represented as full glyphmaps is difficult to establish empirically (c.f. [44,45]).

Absent from our designs is the use of 3D (depth). Whilst Munzner [24] gives depth
a low effectiveness ordering (see Figure 3), there is precedent in Cartography for encod-
ing temporal data items along a z-axis (e.g., space-time-cubes [15]). Since the temporal
element is so important to the analysis of disease spread—the line graphics in particular
follow characteristic shapes—there is not a strong case for exploring representations of
time using depth (3D position). An interesting future activity may instead be to build
interaction to support rotation of our designs in 3D space [46,47]. For example, estimation
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of quantities encoded via height and width is necessarily hindered due to the 2D geospatial
arrangement—the glyphs in our glyphmaps are unaligned. Selective and flexible rotation of
the ridge graphics in particular may help with the perception of these quantities.

In the section that follows we qualitatively compare the ridge contours and lines,
and their design candidates, and aim to make recommendations matching certain design
configurations to data analysis needs.

5. Analysis

In this section, we present full glyphmaps of local authority case data based on the
design candidates in Figure 6. To structure this discussion we identify three themes.
Owerall case extent (Section 5.1) is a sort of composite of DatR2 absolute number and
elements of DatR6 case history—and that we use to describe the effectiveness of designs
for representing the overall magnitude and collateral damage of the virus given the amount
of time it has been established in a local authority. Change and case history (Section 5.2)
is used to evaluate the effectiveness of designs at together representing DatR4 rate of
change, DatR5 time elapsed and DatR6 case history<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>