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Abstract

In this article, an implicit hybrid method of order six is developed
for the direct solution of second order ordinary differential equations
using collocation and interpolation approach. To derive this method,
the approximate solution power series is interpolated at the first and
off-step points and its second and third derivatives are collocated at
all points in the given interval. Besides having good numerical method
properties, the new developed method is also superior to the existing
methods in terms of accuracy when solving the same problems.
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1 Introduction

This article proposes a general one-step third derivative implicit hybrid block
method (GOHBM) for the direct solution of the second order ODEs in the
form

y' = flz,y,9), yla)=1vo, vhla)=vy), a<az<b (1)

with the assumption that f is differentiable and satisfies Lipchitz’s condition
which guarantees the existence and uniqueness of the solution ([10]).

Block methods which are widely used by many scholars for solving (1) were
first introduced by [14] and later by [9] mainly to provide starting values for
predictor-corrector algorithms. Those methods produced better accuracy than
the usual step by step methods. [8], on the other hand, extended Milne’s idea to
develop block methods for solving ODEs. In order to obtain higher order meth-
ods and hence to increase the accuracy of the approximate solution, [4] pro-
posed hybrid block methods which included off-step point(s) in the derivation
of the algorithms. Furthermore, hybrid block methods were used to circumvent
Dahlquists barrier conditions which stipulate that the order of a k-step Linear
Multistep Method (LMM) cannot exceed k + 1 for k is odd or k + 2 for k is
even for the method to be zero-stable ([6]). In addition, hybrid block methods
are also known to share with Runge-Kutta methods their favourable advantage
of being self starting and more accurate since they are implemented as a block.

In hybrid block methods, step and off-step points are combined to form a
single block for solving ODEs ( see [4], [15], [12]). In addition, [16] introduced
second derivative methods which are special types of hybrid methods (referred
by [14] as Obrechkoff methods) to enhance the accuracy of the approximation
which shown to reach an order k + 2 . Meanwhile, some scholars such as [5],
[11] proposed a Simpson’s-type second derivative method for the solution of
stiff system of first order IVPs. Their work motivated us to propose a new
generalized one step third derivative implicit hybrid block method for solving
second order ODEs directly using interpolation and collocation in the form

1 1 1
Z QitYntit = h? [Z ﬁitfn+it+51fn+1]+h3[z VitIntit +V19n+1], T E [Tn, Tnt1]
i=0

=0 i=0

where n = 0,1,2,...,. N — 1, h = z, — x,,_1 is the constant step size for the
partition my of the interval [a,b] which is given by 7y = [a = 2 < 1 < ... <
Tn_1 < Ty = b], ay, Bir and v; are unknown coefficients, g, = f) . and
In+1 = f{z—i—l'



Generalized one-step third derivative implicit hybrid block method 419

2 Development of the Method

Let us assume the following power series be the approximate solution to (1)

ya)= > @)

where r and s are the number of interpolation and collocation points respec-
tively. Differentiating (2) twice and thrice yields

2s+r—1
V@)= Y a0 = fey) ®)
V@)= Y il =06 =20 = gl ) @)

Interpolating (2) at z,4,, ¥ = {0,%} and collocating (3) and (4) at x,s,
s ={0,t,1} where t € (0,1), and on combining gives a system of equations in
matrix form

AX =U (5)
where .
A= [CL() a; Qas a3 a4 Qa5 Qg 0,7] s
T
U= [yn Yntt Jn Jott Tt Gn Gnt gnJrl] ]
and
1z, z2 3 xh xd x8 zl ]
L Zpgr Thiy Tpp Tng T Tni Ty
0 0 2 6z, 1222 2023 30xk 4223
v |0 0 2 6Tni 12955 it 20:1;%?; Tt 30:@ it 42x§ Tt
0 0 2 Obwpyr 122, 20z, 30x,,., 42z),,
0 0 0 6 24r,  60x2 120z 21023
0 0 0 6  24w,4y 6023, 12023, 210z,
0 0 0 6 24w, 6022,, 120z3,, 210z,

Solving (5) for the unknown constant a’;s using matrix manipulation and sub-
stituting them back into (2) gives a continuous hybrid linear multi-step method
in the form

1 1 1
y(z) = Z QiYntit + hQ[Z Bit frtit + B1fat1] + hg[z VitGn+tit + V1gnt1] (6)
i=0 i=0 i=0
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whose first derivative is

1 1 1
1
() = I > it + B Birfuvie + B fasl £ 5D AisGnsit + Ngnsa) (7)
=0 =0 =0

Evaluating (6) at * = x,; and (7) at © = x,4;, ¢ = {0,¢,1} produces the
following general equations in block form

1 1
AOY, = ADY, + Y BOF, .+ DYG,., (8)
=0 =0

where A©) is a 4 x 4 identity matrix, Y, 11 = [yn+t,yn+1,y;+t,y;+1}T,Ym =
[yn b U Yoen U]

[fn 3t fro 2t>fn tufn] NISEES [fn—l—t;fn—i—l}T)Gm = [gn—3tagn—2tagn—t;gn}Ta
Gm+1 [9n+t,gn+1} .

The matrices A®, B® D® will be described later. To obtain the specific
equations of (8), let us consider the following three cases for demonstration.

Casel:t=

Wl

r—x

Substituting ¢t = 3 and z = :Jr% in (6) and (7) we get

1
Z%y

w\*

1
Zﬁ fn+1 + B fat1] + 1P| Z ViGnti + V1Gn+1]
=0

=0
where
ay = —3z
% 1432

= (2(1 + 32)(709 — 21272 + 63812* + 16472° — 151472* + 97202°))/17010
6% —((2(1 + 32)(—626 — 642z + 19262% + 8372° — 42122" + 24302°)) /5040)
B1 = —((2(1 +32)(—106 + 3182 — 9542* — 94232° — 74522" + 121502°))/136080)
Yo = (2(1 + 32)(44 — 1322 + 3962% + 7022° — 21062 + 12152°)) /17010
71 = (2(1+32)(—115 + 345z + 14852% — 67527 — 3078z" + 24302°)) /15120

(

71 = (2(1 +32) (=17 + 51z — 1532% — 14312% — 8102* + 24302°)) /136080
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and

1 1 1
1
y'(2) = 7 Z a%yn+§' + h[z B%fn+% + Bifuga] + 12 2; ,ygtgnJr% + MYn+1]
i=0 i=0 i=

709 4 831602° — 510302* — 2143262° + 2041202°) /17010
626 + 5040z — 264602z% + 85052* + 612362° — 510302°) /5040

(

(

(106 + 491402° + 1786052" + 612362° — 2551502°) /136080
7o = (44 + 75602 — 306182° + 255152°) /17010

(

(

1 =

74 = (=115 4 75602% + 151202% — 255152* — 408242° + 510302°) /15120
—17 — 75602% — 255152* + 510302°) /136080

=
|

Now, equation (8) can be written as

1
A(O)Ym-i-l — A(%)Ym + Z B(i)FmH + Z D(i)GmH

i=0 i=0
where

010 h 00 0 613h2 97h2 37h2
oot oo 00 o i
AR =100 o 11 BY= A | BY = |y IR
000 B m
0001 000 7 0 80

5h° —11h% _—h3

000 3402 5670 22680

00 0 & 9h° —h

DO — 0, pM = | 280, 210

O 0 0 17h —29h —h*

21 B

000 5 ER

CaseII:t:%

Similarly, replacing ¢t = £ and z in (6) and (7) produces

1 1 1
() =D sy + D Bafurs + Bufan] R0 Vigurs + Ngnt]
=0 =0 =0
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where

g = —2z2

=142z

Bo = (2(22 + 1)(9602° — 9282* — 3762> + 7482% — 3742 + 187)) /3360
= 2(322° — 402% + 302 4 11)/60

B = —((2(22 + 1)(9602° — 322" — 8242° — 1482* + T4z — 37))/3360)
Yo = 2(22 4+ 1)(402° — 482" + 32% + 162 — 82 + 4)/840

v1 = 2(3202° — 3362* + 1402 — 19)/840

11 = (2(3202° 4 2242° — 1682* — 1402° — 5)) /3360

N|=

and
= 1 1
=7 Z O/%yn—&-% + h[z B%fmg + B foia] + 17 Z ’Y%gmg + Y1Gn1]
i=0 i=0 i=0
where
apy = —2
/ E—
o) =
By = (13440z — 53762° — 84002* + 44802z + 187) /3360
B1 = (192z° — 160z° + 60z + 11)/60
By = (—13440z° — 53762° + 84002" + 44802° + 37) /3360
v, = (2802° — 1682° — 1052 + 702° + 2) /420
74 = (22402° — 16802* + 4202% — 19)/840
= (

_.\ ol

22402°% + 13442° — 840z* — 5602° — 5)/3360

Thus, equation (8) becomes

1=0 1=0
where
010 & 00 0 & B
1 01 0 h 0 0 0 D% 4h%  79h?
A = 00 01 B = 00 0 1tk BY = i b
480 1 480
0 001 00 0 = 8h  Th
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00 0 59h3 —h3  —11h3
O O O 1%10 jé)}?d 1%0
DY = S | DW= | % 20
000 960 24 37%
000 =& 0o =

60 60

Case I11 : t:§

r—x

;+% in (6) and (7) we have

Finally, putting ¢ = % and z =

1 1 1
y(z) =Y amyua + 02 Bafoin + Bufar] + B vag.,n + Ngur]
=0 1=0 =0

where
ag = —32/2
az =1 +32/2

Bo = (2(2 + 32)(4420 — 66302 + 99452% — 87752° — 46982* + 121502°)) /136080
= (Z

Bz (24 32)(380 4 690z — 103522 — 17552% + 17822 4 24302°)) /5040

Bi = —((2(2 + 32)(—=1000 + 1500z — 22502% — 70202> + 54272* 4+ 97202°))/17010)
Yo = (2(2 + 32)(464 — 6962 + 10442 — 6212° — 16202" + 24302°)),/136080

72 = (2(2+ 32)(—488 + 732z + 1622% — 21332° 4 6482* 4 24302°)) /15120

1= (2(2 4 32) (=104 + 1562 — 2342% — 5942° 4 8912 + 12152°)) /17010

and

1 1 1
1
Y(2) =3 > otz + h[; Ba fvzt + Bifuia] + 72 ZO Vo Gns 2 + NGt

1=0
where
ay = —3/2
a; =3/2

0 = (8840 + 491402° — 1786052* 4 612362° + 2551502°) /136080
B = (760 + 5040z — 264602° — 85052* + 612362° + 510302°) /5040
3

(

B = (1000 + 415802° + 255152* — 1071632° — 1020602°) /8505

76 = (928 + 7560z% — 255152* 4 510302°) /136080

vs = (=976 + 75602% — 151202 — 255152* 4 408242° + 510302°) /15120
(

7, = (=208 — 75602 + 306182° + 255152°) /17010
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Hence, we can write equation (8) as below

1

1
A0V, = ADY, + Y BOF,  + Y DG,
1=0

i=0
where
2h 1111h2 R 752h2
010 ] 000 o
ABG) — BO — 280 | BM = [280 r0-
317h Th  304h
SHH NS e
80 80 5
26h3 —116R%  —16h3
000 B T
DO — 000 Zp pW — | 12, 105,
00 0 5h° —17h —32h
L
000 % 20 B0

3  Analysis of the Method

Order of the method

The linear operator L associated with the hybrid block methods formula (8)
according to [13] and [7] is said to be of order p if

1 1
[:{y(l’), h} = A(O)Ym - A(t)Ym-i-l - Z B(z)Fm-i-z - Z D(i)Gm—f—i
=0 =0

expanding in Taylor series and combining like terms

L{y(z);h}y =) Cih'y® =0 (9)
=0
where
C():Cl:...: p+1:0ande+27éO

The term Cp9 is called the error constant and the local truncation error is
given by :
tnik = Cproy? 2hP 2 (2,) + O(RPF?)

For Case (I), substituting ¢ = 5 in (9), we get
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oo Rit2,i+2)

[0 (hiy, () h 613h2y">) ¢ 1 5h3y®) T
> i 0(3”.)34 —Yn — 3Yn — 17010+3T Z):z 0 1360807 (2619(5) +37) — 2555 0
30 o (44 (1) + 1)

i i 3h2 (2) Bit2,,(i+2) . B33
Zio(%)yg) —Yn — hf%/z - T (:)z;iooo #(27(%)1 +5) — % 0
hz+3 g

— 250w (27(3)' = 4)

oo hitlyl (i+2)

0o ¢ hiy, (i+1) 182hy ) 1 17h2y®)
> e o(3)Un = Yn — “ipie _Zz -0 T (3537(5) +31) — 55

00 hz+2 0
+ 2 ico “Toston (261( )" +5)
[e's) i i+1 ohy? co  Ritl 5:’-&-2) pit2 7(13)
S (Byys Y — g, — Pt :22(@—9 e —(27(3)" + 21) —
i —Zz ©o e (27(5)" = 5) 1 0]
Comparing the coefficients of y* and h’ produces Cy = C; = ... = C; = 0 with
vector of error constants .
_ 31 1 11 1 o )
Cs ; %3226697600 1088640 82668600 340200] which implies the order (p) of this
method is 6.

For Case (II), substituting ¢ = 3 in (9), we have

i Bi o\ (3) h 13h2y 2 Ri+2y0+D) g 59R3y) ]
Zio(ﬁ)yn ~Yn — 23/;1 - Wﬂ) Z(;Oo WW(E) + 1) - 134Zo 0
oo h*
+2 0 13440u (128(%) +11)
0o i 79h2y ) 0o hit2y(it?) i 5h3y$D)
>ie (h )yg) = Yn — hyn — 550 7;;)1 0 0 (112(%) +19) — 25— 0
oo hit3yy 7
+ Y (83 + 2)
00 i i+1 huy® oo hitly (i+2) R2y®)
Zi:o(;’%i!)y?(i ) y;z - % - Zz 0 Tow(l%(%) + 11) - % 0
hz+2
+ 0 o (40( )'+3)
00 ’L+1 7h (2) 00 h2+1 (i+2) i hi+2 7(13)
(Bt — g, — T S B (16(1)7 4 7) — K
+3°%, ey 0
L Te0il J L~
Associating the coefficients of y* and A’ yields Cy = C} = ... = C7 = 0 with
vector of error constants .
1 1 1 1 . . .
Cs = [4423680 1209600 1209600 604800} which also implies that the order (p)

of this method is 6.
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For Case (III), substituting ¢ = 2 in (9), we get

0o ((2h)"y, (i) oh, s 1111h%y%) oo Rit2y it 2\i 2613y T
2imo(Gir Y = Un = 50 ~ s — Do waosr(27(5)" T 752) — T

00 1+3 (i+ i
+30° %W(éw(g) +20)

; ’ h2y P pi+2,,(i+2) : B3y
Z;’io(%)yfﬁ) —Yn — hy:z 61280 - Zi’io 28y()z‘! (27(5)1 + 52) -2 56yo
%) h1+3 (i+3)

+2ico TTese (135(§)i + 32)

5h2ys)
243

iy (i (2) 0o Ritl,it2) )
220((2@ )y7(1+1) . y/ 317hyy, 2 _ ZZ . u(lSQ(%)Z + 304) -

3iq! n 1215 +2 s 12153!
+ 30 BT (5321 4 39)

pit1,,(i+2) Bit2,3)

i1 (2) i n
S (gt gy Pl :22(::0 e —(27(3)" + 32) —
+Z°° Mo (27(2)" + 8)

Matching the coefficients of y* and h? yields Cy = O} = ... = C; = 0 with

vector of error constants

Cy = [k 11 29 L_1" which again implies that the ord
8 = [10333575 5443200 10333575 340200} which again imphes that the order

(p) of this method is 6.

3.1 Consistency

Definition 3.1. A block method is said to be consistent if its order is greater
than one.

We conclude from the three cases above that the order (p) of the hybrid block
methods formula (8) is greater than 1 hence the consistency property is satis-
fied.

3.2 Zero Stability

Definition 3.2. The hybrid block method formula (8) is said to be zero stable
if no root of the first characteristic equation p(R) has modulus greater than
one i.e | Ry |< 1 and if R, = 1 then the multiplicity of Ry must not exceed
two .

To show that the roots of the first characteristic equation satisfies the prior
definition we assume that ¢ € (0, 1) and hence

p(R) = det[RA® — AD] =0
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R0 0 0 01 0 th
0O R 0 0 010 &
pR)=detll o 0 g ol 1o 00 1170
000 Rl looo 1
R*(R—-1)*=0
Ri— Ry =0
Ry— Ry =1

As a result, the developed method is zero stable.

3.3 Convergence

Theorem 3.1. (Henrici,1962) Consistency and zero stability are sufficient
conditions for a linear multi step method to be convergent

The hybrid block method (8) is convergent since it satisfies both the consis-
tency and zero stability conditions.

4 Numerical Examples

In this section accuracy of the general one-step implicit hybrid block method
(8) with order 6 is tested on three experimental problems for the three cases
simultaneously, with a fixed step size h = 1000 for the first problem h = 100
for the second and h = % for the third. The computed results are then com-
pared with recent methods and the new methods is found to have advantages
as shown in Tables I-1II.

Problem (1) : f(x,y,y") = 3y’ +8e**, y(0)=1, y (0) 1.
Exact Solution : y = —4e* + 3e3® + 2 with h =
Source : [2].

Table I : Comparison of the proposed method with A.M. Badmus (2014).

1000

X VALUE ERROR FOR | ERROR FOR ERROR FOR | ERROR in
t=1 t=1 t=2 AMB
0.0050000 4. 440892E( 16) | 4.440892E(-16) | 2. 22()446E( 16) | 3.159 E(-07)
0.0100000 8.881784E(-16) | 8.881784E(-16) [ 6.661338E(-16) | 1.2709 E(-06)
0.0150000 2.220446E(-16) | 2.220446E(-16) | 4.440892E(-16) | 8.6554 E(-06)
0.0200000 6.661338E(-16) | 6.661338E(-16) | 8.881784E(-16) | 2.59148 E(-05)
0.0250000 4.440892E(-16) [ 4.440892E(-16) | 8.881784E(-16) | 3.395058 E(-05)
0.0300000 1.332268E(-15) | 1.554312E(-15) | 2.664535E(-15) [ 5.990417 E(-05)
0.0400000 1.776357E(-15) | 1.998401E(-15) | 3.774758E(-15) [ 8.885833 E(-05)

Remark: AMB is the error in [2] .
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Problem (2): f(x,y,z) = x(
Exact Solution: y=1+1In
Source : [1].

y(0) =1, y'(0) = 1.
L) with h = 5

y/)2
( 24
100°

Table II : Comparison of the proposed method with Adetola Olaide (2013).

X VALUE ERROR FOR | ERROR FOR | ERROR FOR | ERROR
t=1 t=3 t=2 FOR EAO

0.1000000 5.220146E(-16) | 2.220146E(-16) | 6.061338E(-16) | 9.992 B(-15)
0.2000000 0.000000E(+00) | 2.220446E(-16) | 1.332268E(-15) | 8.149 E(-14)
0.3000000 8.881784E(-16) 2.220446E(-16) 4.440892E(-16) 4.700 E(-12)
0.4000000 1.998401E(-15) | 4.440802E(-16) | 1.332268E(-15) | 1.637 B(-12)
0.5000000 3.330669E(-15) 2.442491E(-15) 3.774758E(-15) 4.664 E(-12)
0.6000000 8.650740E(-15) | 6.661338E(-15) | 1.065814E(-14) | 1.116 E(-11)
0.7000000 1.798561E(-14) | 1.576517E(-14) | 2.642331E(-14) | 2.501 E(-11)
0.8000000 3.819167E(-14) | 3.419487E(-14) | 5.861978E(-14) | 5.215 E(-11)
0.9000000 7.071401E(-14) | 7.260859E(-14) | 1.265654E(-13) | 1.076 E(-11)
1.0000000 1.665335E(-13) | 1.540090E(-13) | 2.711165B(-13) | 2.170 B(-10)

Remark: EAO is the error in [1] .

Problem(3) : y" + gy’ + m%y =0, y(1)=1, (1) =1.

Exact Solution : y =
Source : [3].

3
3x

2 ; — 01
— 35 with h = =

Table IIT : Comparison of the proposed method with A.M .Badmus (2014).

X VALUE [ERROR FOR [ ERROR FOR [ ERROR FOR [ ERROR
t=1 t=3 t=2 FOR EAM
1.0031250 2.220446E(-16) | 2.220446E(-16) [ 2.220446E(-16) | 8.3E(-8)
1.0062500 0.000000E(+00) | 2.220446E(-16) [ 4.440892E(-16) | 1.16E(-6)
1.0093750 2.220446E(-16) | 4.440892E(-16) | 8.881784E(-16) | 6.638E(-6)
1.0125000 8.881784E(-16) | 1.110223E(-15) [ 1.776357E(-15) | 9.491E(-6)
1.0156250 1.332268E(-15) | 1.554312E(-15) | 3.108624E(-15) [ 1.9535E(-6)
1.0187500 2.442491E(-15) | 2.664535E(-15) | 4.884981E(-15) | 9.416E(-6)
1.0218750 3.996803E(-15) | 3.996803E(-15) [ 6.883383E(-15) [ 4.6505E(-5)
1.0250000 5.107026E(-15) | 5.107026E(-15) [ 8.659740E(-15) | 4.7122E(-5)
1.0281250 6.217249E(-15) | 5.995204E(-15) [ 1.065814E(-14 ) | 1.86926E(-4)
1.0312500 7.327472E(-15) | 7.327472E(-15) | 1.287859E(-14) [ 4.43321E(-4)

Remark: EAM is the error in [3]

5 Conclusion

A general one-step hybrid (GOHBM) block method with one off step point
of order 6 has been successfully developed for the direct solution of general
second order IVP. The developed method is tested on ¢ = { :13, ;, g} Numerical
analysis shows that the developed method is consistent and zero stable which

implies its convergence. Apart from having good properties of the numerical
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method, the numerical results suggest that the new method has not only out
performed the existing methods, but also circumvent Dahlquists barrier.
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