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Abstract

The purpose of this paper is to present a numerical approach to solve fuzzy initial value problems (FIVPs)
involving n-th order ordinary differential equations. The idea is based on the formulation of the six stages
Runge-Kutta method of order five (RKM56) from crisp environment to fuzzy environment followed by the
stability definitions and the convergence proof. It is shown that the n-th order FIVP can be solved by
RKM56 by transforming the original problem into a system of first-order FIVPs. The results indicate that
the method is very effective and simple to apply. An efficient procedure is proposed of RKM56 on the basis
of the principles and definitions of fuzzy sets theory and the capability of the method is illustrated by solving
second-order linear FIVP involving a circuit model problem. c©2016 All rights reserved.
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1. Introduction

Many dynamical real life problems may be formulated as a mathematical model. These problems can
be formulated either as a system of ordinary or partial differential equations [6, 15, 24]. Fuzzy differential

∗Corresponding author
Email addresses: kakarotte79@gmail.com (Ali Jameel), alanaghreh_nedal@yahoo.com (N. R. Anakira),

abdomari2008@yahoo.com (A. K. Alomari), ishak_h@ukm.edu.my (Ishak Hashim), Mali@yu.edu.jo (M. A. Shakhatreh)

Received 2015-08-02



A. Jameel, et al. , J. Nonlinear Sci. Appl. 9 (2016), 627–640 628

equations (FDEs) are a useful tool to model a dynamical system when information about its behavior is
inadequate. Fuzzy Initial value problem (FIVP) appears when the modeling of these problems was imperfect
and its nature is under uncertainty. Fuzzy ordinary differential equations are suitable mathematical models
to model dynamical systems in which there exist uncertainties or vagueness. These models are used in
various applications including, population models [26, 30] mathematical physics [9], and medicine [3, 7] An
ordinary differential equation involving linear FIVP can be considered to be the simplest case to test the
effectiveness of proposed methods for solving FDE. The explicit Runge-Kutta methods have been widely
used in the solution of FIVPs. Even in the early days of these methods, the conditions for order seemed to
have been thoroughly understood and methods of order 4 were successfully used to solve both single FIVPs
[27] and systems of FIVPs [2]. The efficiency of Runge-Kutta methods depends on increasing the number
of function evaluations per step [19]. In the last ducat various types of Runge Kutte methods have been
used to solve nth order FIVPs including, second order Runge Kutta method [28], third order Runge Kutta
methods [12, 17, 21], fourth order Runge Kutta methods [2, 14], also fifth order Runge Kutta method of
five stages in [18] and other methods [22, 31].

Our main motivation is to develop and analyze the use of RKM56 in order to obtain the numerical
solution of FIVPs involving fuzzy linear second-order differential equation. To the best of our knowledge,
this is the first attempt at solving n-th order FIVP by using RKM56. The structure of this paper is as
follows. We will begin in Section 2 with some preliminary concepts about fuzzy numbers. In Section 3 we
define the defuzzification procedure of n-th order FIVP. In Section 4, we analyze and formulate RKM56 for
solving n-th order FIVP. In Section 5, we present the convergence and error analysis of RKM56 in detail.
In Section 6, we employ RKM56 on test example involving second order linear FIVP model and finally, in
Section 7, we give the conclusion of this study.

2. Preliminaries

Definition 2.1. Fuzzy numbers are a subset of the real numbers set, and represent uncertain values. Fuzzy
numbers are linked to degrees of membership which state how true it is to say if something belongs or not
to a determined set. A fuzzy number is called a triangular fuzzy number [8] if defined by three numbers
α < β < γ where the graph of µ(x) is a triangle with the base on the interval [α, β] and vertex at x = β
and its membership function has the following form:

µ (x;α, β, γ) =


0 , if x < α,
x−α
β−α , if α ≤ x ≤ β,
γ−x
γ−β , if β ≤ x ≤ y,
0 , if x > γ

Figure 1: Triangular Fuzzy Number
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and its r -level is: [µ]r = [α+ r (β − α) , γ − r (γ − β)] , r ∈ [0, 1].
In this paper the class of all fuzzy subsets of < will be denoted by Ẽ and satisfy the following properties

[8, 23]:

1. µ (t) is normal, i.e ∃ t0 ∈ < with µ (t0) = 1.

2. µ (t) Is convex fuzzy set, i. e. µ(λt+ (1− λ) s) ≥ min{µ (t) , µ(s)} ∀t, s ∈ <, λ[0, 1].

3. µ upper semi-continuous on <.

4. {t ∈ <:µ (t) > 0} is compact.

Ẽ is called the space of fuzzy numbers and < is a proper subset of Ẽ.
Define the r -level set x ∈ <, [µ]r = {x \ µ(x) ≥ r}, 0 ≤ r ≤ 1, where [µ]0 = {x \ µ(x) > 0} is compact
[30] which is a closed bounded interval and denoted by [µ]r =

(
µ (t) , µ (t)

)
. In the parametric form [20], a

fuzzy number is represented by an ordered pair of functions
(
µ (t) , µ (t)

)
, r ∈ [0, 1] which satisfies:

1. µ (t) is a bounded left continuous non-decreasing function over [0, 1].

2. µ (t) is a bounded left continuous non-increasing function over [0, 1].

3. µ (t) ≤ µ (t), r ∈ [0, 1] . A crisp number r is simply represented by µ (r) = µ (r) = r, r ∈ [0, 1].

Definition 2.2 ([21]). If Ẽ be the set of all fuzzy numbers, we say that f (t) is a fuzzy function if f : < → Ẽ.

Definition 2.3 ([13]). A mapping f : T → Ẽ for some interval T ⊆ Ẽ is called a fuzzy function process
and we denote r -level set by:

[f̃(t)]r =
[
f (t; r) , f (t; r)

]
, t ∈ T, r ∈ [0, 1].

The r -level sets of a fuzzy number are much more effective as representation forms of fuzzy set than the
above. Fuzzy sets can be defined by the families of their r -level sets based on the resolution identity theorem.

Definition 2.4 ([33, 34]). Each function f : X → Y induces another function f̃ : F (X) → F (Y ) defined
for each fuzzy interval U in X by:

f̃ (U) (y) =

{
sup

x∈f−1(y)

U (x) , ify ∈ range (f) ,

0, ify /∈ range (f) .

This is called the Zadeh extension principle.

Definition 2.5 ([29]). Consider x̃, ỹ ∈ Ẽ. If there exists z̃ ∈ Ẽ such thatx̃ = ỹ + z̃, then z is called the
H-difference (Hukuhara difference) of x andy and is denoted by z̃ = x̃	 ỹ.

Definition 2.6 ([29]). If f̃ : I → Ẽ and y0 ∈ I, where I ∈ [t0, T ]. We say that f̃ Hukuhara Differentiable

at y0, if there exists an element
[
f̃ ′
]
r
∈ Ẽ such that for all h > 0 sufficiently small (near to 0), exists

f̃(y0 + h; r)	 f̃(y0; r), f̃ (y0; r)	 f̃(y0 − h; r) and the limits are taken in the metric(Ẽ,D)

lim
h→0+

f̃(y0 + h; r)	 f̃(y0; r)

h
= lim

h→0+

f̃ (y0; r)	 f̃(y0 − h; r)

h
.

The fuzzy set
[
f̃ ′(y0)

]
r

is called the Hukuhara derivative of
[
f̃ ′
]
r

at y0.

These limits are taken in the space (Ẽ,D) if t0 or T , then we consider the corresponding one-side
derivation. Recall that x̃ 	 ỹ = z̃ ∈ Ẽ are defined on r -level set, where [x̃]r 	 [ỹ]r = [z̃]r, ∀ r ∈ [0, 1] By

consideration of definition of the metric D all the r-level set
[
f̃(0)

]
r

are Hukuhara differentiable at y0, with
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Hukuhara derivatives
[
f̃ ′(y0)

]
r
, when f̃ : I → Ẽ is Hukuhara differentiable at y0 with Hukuhara derivative[

f̃ ′(y0)
]
r

it’ lead to that f̃ is Hukuhara differentiable for all r ∈ [0, 1] which satisfies the above limits i.e. if

f is differentiable at t0 ∈ [t0 + α, T ] then all its r -levels
[
f̃ ′(t)

]
r

are Hukuhara differentiable at t0.

Definition 2.7 ([23]). Define the mapping f̃ ′ : I → Ẽ and y0 ∈ I, where I ∈ [t0, T ]. We say that f̃ ′

Hukuhara differentiable t ∈ Ẽ, if there exists an element
[
f̃ (n)

]
r
∈ Ẽ such that for all h > 0 sufficiently

small (near to 0), exists such that f̃ (n−1)(y0 + h; r)	 f̃ (n−1)(y0; r), f̃ (n−1) (y0; r)	 f̃ (n−1)(y0− h; r) and the
limits are taken in the metric (Ẽ,D)

lim
h→0+

f̃ (n−1)(y0 + h; r)	 f̃ (n−1)(y0; r)
h

= lim
h→0+

f̃ (n−1) (y0; r)	 f̃ (n−1)(y0 − h; r)

h

exists and equal to f̃ (n) and for n = 2 we have second order Hukuhara derivative.

Theorem 2.8 ([29]). Let f̃ : [t0 + α, T ]→ Ẽ be Hukuhara differentiable and denote by[
f̃ ′(t)

]
r

=
[
f ′ (t) , f

′
(t)
]
r

=
[
f ′ (t; r) , f

′
(t; r)

]
.

Then the boundary functions f ′ (t; r) , f
′
(t; r) are differentiable[

f̃ ′(t)
]
r

=
[(
f (t; r)

)′
,
(
f (t; r)

)′]
,∀r ∈ [0, 1].

Theorem 2.9 ([23]). Let f̃ : [t0 + α, T ]→ Ẽ be Hukuhara differentiable and denote[
f̃ ′(t)

]
r

=
[
f ′ (t) , f

′
(t)
]
r

=
[
f ′ (t; r) , f

′
(t; r)

]
.

Then the boundary functions
f ′ (t; r) , f

′
(t; r)

are differentiable we can write for nth order fuzzy derivative[
f̃ (n)(t)

]
r

=

[(
f (n) (t; r)

)′
,
(
f
(n)

(t; r)
)′]

, ∀ r ∈ [0, 1].

3. Defuzzification of n-th order FIVP

Consider the n-th order FIVP

ỹ(n) (t) = f
(
t, ỹ (t) , ỹ′ (t) , ỹ′′ (t) , . . . ỹ(n−1) (t)

)
+ w̃(t), t ∈ [t0, T ]. (3.1)

Subject to the initial conditions

ỹ (t0) = ỹ0, y
′ (t0) = ỹ′0, . . . , y

(n−1) (t0) = ỹ
(n−1)
0 , (3.2)

where ỹ is a fuzzy function of the crisp variable t with f̃ being a fuzzy function of the crisp variable t, the
fuzzy variable ỹand the fuzzy Hukuhara-derivatives ỹ′ (t) , ỹ′′ (t) , . . . , ỹ(n−1) (t). Here y(n) is the fuzzy nth

order Hukuhara-derivative and ỹ (t0) , ỹ
′ (t0) , . . . ỹ

(n−1) (t0) are triangular fuzzy numbers. We denote the
fuzzy function y by ỹ = [y, y] for t ∈ [t0, T ] and r ∈ [0, 1] . It means that the r -level sets of ỹ (t) can be
defined as:

[ỹ (t)]r =
[
y (t; r) , y (t; r)

]
,
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[
ỹ′ (t)

]
r

=
[
y′ (t; r) , y′ (t0; r)

]
, . . .

[
ỹ(n−1) (t)

]
r

=
[
y(n−1) (t; r) , y(n−1) (t; r)

]
,

[ỹ (t0)]r =
[
y (t0; r) , y (t0; r)

]
,
[
ỹ′ (t0)

]
r

=
[
y′ (t0; r) , y

′ (t0; r)
]
, . . . ,

[
ỹ(n−1) (t0)

]
r

=
[
y(n−1) (t0; r) , y

(n−1) (t0; r)
]
,

where w (t) is crisp or fuzzy inhomogeneous term such that [w̃ (t)]r = [w (t; r) , w (t; r)]. Since

y(n) (t) = f
(
t, y (t) , y′ (t) , y′′ (t) , . . . y(n−1) (t)

)
+ w(t).

Let
Y (t) = y (t) , y′ (t) , y′′ (t) , . . . y(n−1) (t) ,

such that

Ỹ (t; r) =
[
Y (t; r) ,Y (t; r)

]
=
[
y (t; r) , y′ (t; r) , . . . , y(n−1) (t; r) , y (t; r) , y′ (t; r) , . . . , y(n−1) (t; r)

]
.

Also, we can write [
f̃
(
t, Ỹ
)]

r
=
[
f
(
t, Ỹ; r

)
, f
(
t, Ỹ; r

)]
.

By using Zadeh extension principles, we have

f̃
(
t, Ỹ (t; r)

)
=
[
f
(
t, Ỹ (t; r)

)
, f
(
t, Ỹ (t; r)

)
,
]
,

such that
f
(
t, Ỹ (t; r)

)
= F

(
t,Y (t; r) ,Y (t; r)

)
= F

(
t, Ỹ (t; r)

)
f
(
t, Ỹ (t; r)

)
= G

(
t,Y (t; r) ,Y (t; r)

)
= G

(
t, Ỹ (t; r)

)
.

Then we have
y(n) (t; r) = F

(
t, Ỹ (t; r)

)
+ w (t; r) (3.3)

y(n) (t; r) = G
(
t, Ỹ (t; r)

)
+ w (t; r) , (3.4)

where the membership function of

F
(
t, Ỹ (t; r)

)
+ w (t; r)

and
G
(
t, Ỹ (t; r)

)
+ w (t; r)

can be defined as follows:

F
(
t, Ỹ (t; r)

)
+ w (t; r) = min{ỹ(n) (t, µ̃(r)) : µ|µ ∈ [Ỹ (t; r)]r},

G
(
t, Ỹ (t; r)

)
+ w (t; r) = max{ỹ(n) (t, µ̃(r)) : µ|µ ∈ [Ỹ (t; r)]r}.

4. Analysis of RKM56 for n-th order FIVP

In this section we consider the six order Runge-Kutta method of order five as our proposed method to
obtain a numerical solution of n’th order FIVP. The structure of this method for solving crisp first order
initial value problem have been introduced in [10, 11, 25]. Also Jameel et al. [16] proposed RK56 to solve
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first order linear FIVPs In order to solve n-th order FIVPs, we need to fuzzify RKM56 then defuzzify it.
We consider the n-th order FIVP (3.1)–(3.2) in Section 3 and since RKM56 is numerical method we need
to reduce Eq. (3.1) in to system of first order FIVPs for all r ∈ [0, 1] as follows

ỹ′1 (t; r) = f̃1 (ỹ1 (t; r) , . . . , ỹn (t; r))

ỹ′2 (t; r) = f̃2 (ỹ1 (t; r) , . . . , ỹn (t; r))
...

ỹ′3 (t; r) = f̃n (ỹ1 (t; r) , . . . , ỹn (t; r))
ỹ1 (t0; r) = ỹ1,0 (r) = ã1,
ỹ2 (t0; r) = ỹ2,0 (r) = ã2, . . . , ỹn (t0; r) = ỹn,0 (r) = ãn,

(4.1)

where t ∈ [t0, T ] and a1, . . . , an are fuzzy numbers that defined Section 2 with r -level intervals

ỹi,0 (r) =
[
y
i,0

(r) , yi,0 (r)
]

= [ai, ai]

for i = 1, 2, . . . , n and r ∈ [0, 1]. We let

ỹ (t; r) = [ỹ1 (t; r) , ỹ2 (t; r) , . . . , ỹn (t0; r)]
t

be the fuzzy solution of Eq. (3.1) on [t0, T ] if

y
i
′ (t; r) = min

{
f̃i (ỹ1 (t; r) , . . . , ỹn (t; r)) ; ỹi (t; r) ∈

[
y
i
(t; r) , yi (t; r)

]
= f

i
(t; ỹ (t; r))

}
(4.2)

yi
′ (t; r) = max

{
f̃i (ỹ1 (t; r) , . . . , ỹn (t; r)) ; ỹi (t; r) ∈

[
y
i
(t; r) , yi (t; r)

]
= f i (t; ỹ (t; r))

}
(4.3)

and 
[
f
i
(t; ỹ (t; r))

]t
= F

(
t, y (t; r) , y (t; r)

)
= F (t, ỹ (t; r))[

f i (t; ỹ (t; r))
]t

= G
(
t, y (t; r) , y (t; r)

)
= G (t, ỹ (t; r)) .

(4.4)

With respect to the above mentioned indicators, system (4.1) can be written as with assumptions for the{
y′ (t; r) = F (t, ỹ (t; r))

y (t0; r) = y
0
∈ [t0, T ] ,

(4.5)

where

y (t0; r) =
[
y
i,0

(r)
]t

y′ (t; r) =
[
y′
i
(t; r)

]t
and {

y′ (t; r) = G (t, ỹ (t; r))
y (t0; r) = y0 ∈ [t0, T ] ,

(4.6)

where

y (t0; r) =
[
y
i,0

(r)
]t

y′ (t; r) =
[
y′i (t; r)

]t
.

Now we show that under the assumption for the fuzzy functions f̃ i, for i = 1, 2, . . . , n we can obtain a
unique fuzzy solution for system (4.1) for each r -level set (see [2]). For finding an approximate solution for
(4.1) with RKM56, we first define the approximate numerical solution of systems (4.1) by

ỹ (t; r) = [ỹ1 (t; r) , ỹ2 (t; r) , . . . , ỹn (t0; r)]
t
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such that s̃1 = ỹ1 (t; r) , s̃2 = ỹ2 (t; r) , . . . , s̃n = ỹn (t; r) , where s̃j ∈
[
sj , sj

]
for 1 ≤ i, j ≤ n

Ki1

(
t; y (t; r)

)
= min

{
f̃i (t, s̃1, s̃2, . . . , s̃n) ; s̃j ∈

[
y
j

(t; r) , yj (t; r)
]}

Ki1 (t; y (t; r)) = max
{
f̃i (t, s̃1, s̃2, . . . , s̃n) ; s̃j ∈

[
y
j

(t; r) , yj (t; r)
]}

Ki2

(
t; y (t; r)

)
= min

{
f̃i

(
t+

h

2
, s̃1, s̃2, . . . , s̃n

)
; s̃j ∈

[
zj1
(
t, y (t; r) , h

)
, zj1 (t, y (t; r) , h)

]}
Ki2 (t; y (t; r)) = max

{
f̃i

(
t+

h

2
, s̃1, s̃2, . . . , s̃n

)
; s̃j ∈

[
zj1 (t, ỹ (t; r) , h) , zj1 (t, y (t; r) , h)

]}
Ki3

(
t; y (t; r)

)
= min

{
f̃i

(
t+

h

4
, s̃1, s̃2, . . . , s̃n

)
; s̃j ∈

[
zj2 (t, y (t; r) , h) , zj2 (t, y (t; r) , h)

]}
Ki3 (t; y (t; r)) = max

{
f̃i

(
t+

h

4
, s̃1, s̃2, . . . , s̃n

)
; s̃j ∈

[
zj2 (t, y (t; r) , h) , zj2 (t, y (t; r) , h)

]}
Ki4

(
t; y (t; r)

)
= min

{
f̃i

(
t+

h

2
, s̃1, s̃2, . . . , s̃n

)
; s̃j ∈

[
zj3 (t, y (t; r) , h) , zj3 (t, y (t; r) , h)

]}
Ki4 (t; y (t; r)) = max

{
f̃i

(
t+

h

2
, s̃1, s̃2, . . . , s̃n

)
; s̃j ∈

[
zj3 (t, y (t; r) , h) , zj3 (t, y (t; r) , h)

]}
Ki5

(
t; y (t; r)

)
= min

{
f̃i

(
t+

3h

4
, s̃1, s̃2, . . . , s̃n

)
; s̃j ∈

[
zj4 (t, y (t; r) , h) , zj4 (t, y (t; r) , h)

]}
Ki5 (t; y (t; r)) = max

{
f̃i

(
t+

3h

4
, s̃1, s̃2, . . . , s̃n

)
; s̃j ∈

[
zj4 (t, y (t; r) , h) , zj4 (t, y (t; r) , h)

]}
Ki6

(
t; y (t; r)

)
= min

{
f̃i (t+ h, s̃1, s̃2, . . . , s̃n) ; s̃j ∈

[
zj5 (t, y (t; r) , h) , zj5 (t, y (t; r) , h)

]}
Ki6 (t; y (t; r)) = max

{
f̃i (t+ h, s̃1, s̃2, . . . , s̃n) ; s̃j ∈

[
zj5 (t, y (t; r) , h) , zj5 (t, y (t; r) , h)

]}
,

where

zj1
(
t, y (t; r) , h

)
= y

j
(t; r) +

h

2
Ki1 (r) , zj1 (t, y (t; r) , h) = yj (t; r) +

h

2
Ki1 (r)

zj2
(
t, y (t; r) , h

)
= y

j
(t; r) +

h

16
(3Ki1 (r) +Ki2 (r))

zj2 (t, y (t; r) , h) = yj (t; r) +
h

16

(
3Ki2 (r) +Ki2 (r)

)
zj3
(
t, y (t; r) , h

)
= y

j
(t; r) +

h

2
Ki3 (r) , zj3 (t, y (t; r) , h) = yj (t; r) +

h

2
Ki3 (r)

zj4
(
t, y (t; r) , h

)
= y

j
(t; r) +

h

16
(−3Ki2 (r) + 6Ki3 (r) + 9Ki4 (r))

zj4 (t, y (t; r) , h) = yj (t; r) +
h

16

(
−3Ki2 (r) + 6Ki3 (r) + 9Ki4 (r)

)
zj5
(
t, y (t; r) , h

)
= y

j
(t; r) +

h

7

(
Ki1 (r) + 4Ki2 (r) + 6Ki3 (r)− 12Ki4 (r) + 8Ki5 (r)

)
zj5 (t, y (t; r) , h) = yj (t; r) +

h

7

(
Ki1 (r) + 4Ki2 (r) + 6Ki3 (r)− 12Ki4 (r) + 8Ki5 (r)

)
,

where
Kij

(
t; y (t; r) , h

)
= Kij (r)

and
Kij (t; y (t; r) , h) = Kij (r) .



A. Jameel, et al. , J. Nonlinear Sci. Appl. 9 (2016), 627–640 634

Now if we can consider the following

F i
(
t, y (t; r) , h

)
= 7Ki1 (r) + 32Ki3 (r) + 12Ki4 (r) + 32Ki5 (r) + 7Ki6 (r)

Gi (t, y (t; r) , h) = 7Ki1 (r) + 32Ki3 (r) + 12Ki4 (r) + 32Ki5 (r) + 7Ki6 (r) ,

where t ∈ [t0, T ]and r ∈ [0, 1]. If the exact and approximate solution in the i-th r cut at tm for
0 ≤ m ≤ N are denoted by

Ỹi (t; r) =
[
Y i (t; r) , Y i (t; r)

]
ỹi (t; r) =

[
y
i
(t; r) , yi (t; r)

]
respectively, then the numerical method for solution approximation in the i -th coordinate r level set, with
RKM56 is

y
i
[m+1] (t; r) = y

i
[m] (t; r) +

1

90
F i

(
tm, ỹ

[m] (t; r) , h
)
, y
i
[0] (r) = Y i

[0] (r) (4.7)

yi
[m+1] (t; r) = yi

[m] (t; r) +
1

90
Gi

(
tm, ỹ

[m] (t; r) , h
)
, yi

[0] (r) = Y i
[0]

(r) , (4.8)

where

ỹ[m] (t; r) =
[
y[m] (t; r) , y[m] (t; r)

]
, y[m] (r) =

[
y
1
[m] (r) , y

2
[m] (r) , . . . ., y

n
[m] (r)

]t
y[m] (r) =

[
y1

[m] (r) , y2
[m] (r) , . . . , yn

[m] (r)
]t
.

Now we let

F
(
t, ỹ[m] (r) , h

)
=

1

90

(
F 1

(
t, ỹ[m] (r) , h

)
, . . . , Fn

(
t, ỹ[m] (r) , h

))t
(4.9)

G
(
t, ỹ[m] (r) , h

)
=

1

90

(
G1

(
t, ỹ[m] (r) , h

)
, . . . , Gn

(
t, ỹ[m] (r) , h

))t
. (4.10)

The RK5 for solutions approximation r -level sets of Eqs. (4.7)–(4.8) are as follows

y[m+1] (r) = y[m] (r) + h F
(
t, ỹ[m] (r) , h

)
, y[0] (r) = Y [0] (r) (4.11)

y[m+1] (r) = y[m] (r) + h G
(
t, ỹ[m] (r) , h

)
, y[0] (r) = Y

[0]
(r) (4.12)

and

F
(
t, ỹ[m] (r) , h

)
=

1

90
[7Ki1 (r) + 32Ki3 (r) + 12Ki4 (r) + 32Ki5 (r) + 7Ki6 (r)] (4.13)

G
(
t, ỹ[m] (r) , h

)
=

1

90
[7K

i1
(r) + 32Ki3 (r) + 12Ki4 (r) + 32Ki5 (r) + 7Ki6 (r)], (4.14)

where in Eqs. (4.13)–(4.14)

K̃ij (r) = K̃j

(
tm, ỹ

[m] (r) , h
)

=
(
K̃1j

(
tm, ỹ

[m] (r) , h
)
, . . . , K̃1j

(
tm, ỹ

[m] (r) , h
))t

. (4.15)

5. Stability, convergence and error analysis

According the definition given in [2] we can define the following:

Definition 5.1. A one-step method for approximating the solution of differential Eqs. (4.5) and (4.6) is a
method which can be written in the form
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[
w[n+1]

]
r

=
[
w[n]

]
r

+ hφ
(
tn,
[
w̃[n]

]
r
, h; r

)
, (5.1)

where the increment function φ is determined by F in Eq. (4.5). Also from Eq. (4.6) we have[
w[n+1]

]
r

=
[
w[n]

]
r

+ hφ
(
tn,
[
w̃[n]

]
r
, h; r

)
, (5.2)

where the increment function φ is determined by G in Eq. (4.5).
According to Theorems 5.2 and 5.3 in [18] we can define the Theorems 5.2 and 5.3 as follows:

Theorem 5.2. If φ
(
tn,
[
w̃[n]

]
r
, h; r

)
and φ

(
tn,
[
w̃[n]

]
r
, h; r

)
satisfies a Lipschitz condition in ỹ (t; r) then

the method given by Eqs. (5.1)–(5.2) is stable.

Theorem 5.3. From Eqs. (10-11), if F (t, ỹ (t; r)) and G (t, ỹ (t; r)) satisfies a Lipschitz condition in ỹ (t; r)
then the method given by Eqs. (4.7)–(4.8) is stable.

Lemma 5.4 ([4]). If the sequence of non-negative numbers {Wn}Nn=0 satisfy

|Wn+1| ≤ A |Wn|+B , 0 ≤ n ≤ N − 1,

for the given positive constants A and B, then

|Wn| ≤ An |W0|+B
An − 1

A− 1
, 0 ≤ n ≤ N.

Lemma 5.5 ([4]). If the sequence of non-negative numbers {Wn}Nn=0, and {Vn}Nn=0 satisfy

|Wn+1| ≤ |Wn|+Amax {|Wn| , |Vn|}+B

|Vn+1| ≤ |Vn|+Amax {|Wn| , |Vn|}+B

for the given positive constants A and B, then

|Un| = |Wn|+ |Vn| , 0 ≤ n ≤ N,

then we have

Un ≤ ÂnU0 + B̂
Ân − 1

Â− 1
, 0 ≤ n ≤ N,

where Â = 1 + 2A and B̂ = 2B.

Now let
ỹ (t; r) =

[
y (t; r) , y (t; r)

]
= [U ,V]

such that
F̂
(
t, Ỹ (t; r) ;h

)
= F̂ (t,U ,V;h) , Ĝ (t, ỹ (t; r) ;h) = Ĝ (t,U ,V;h) ,

then the domain of F̂ (t,U ,V;h) and Ĝ (t, ỹ (t; r) ;h) is give by the set all nonempty fuzzy sets RF such that

Ẽ {(t,U ,V) | t ∈ [0, T ] ,−∞ < V <∞,−∞ < U ≤ V } .

According to the Theorem 5.4 that was mentioned in [2] convergence of fourth order Runge–Kutta methods
followed by Theorem 4.3 in [1] for the convergence of p order Taylor’s method, we can define the following
theorem related to the convergence of RKM56 in Section 3.

Theorem 5.6. Let F̂
(
t, Ỹ (t; r) ;h

)
and Ĝ

(
t, Ỹ (t; r) ;h

)
belong to C5(Ẽ) and the partial derivatives of F̂

and Ĝ are bounded on RF. Then, for arbitrarily fixed r ∈ [0, 1] the numerical y (t; r) , y (t; r) solutions of Eqs.

(4.5)–(4.6) converge to the exact solutions Y (t; r) , Y (t; r) of Eq. (3.1).
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Proof. It is sufficient to show

lim
h→∞

y (T ; r) =Y (T ; r) , lim
h→∞

y (T ; r) =Y (T ; r)

for 0 ≤ i ≤ N . Using the Taylor theorem in formulas (4.7)–(4.8) with RKM56 formulas (4.13)–(4.14) we get Y (ti+1; r) = Y (ti; r) + h F̂
(
ti, Ỹ (ti; r) ;h

)
+ h6

6! Y
(6) (θi,1; r)

Y (ti+1; r) = Y (ti; r) + h Ĝ
(
ti, Ỹ (ti; r) ;h

)
+ h6

6! Y
(6)

(θi,2; r) ,
(5.3)

where θi,1, θi,2 ∈ (ti, ti+1). Denoting

Wi = Y (ti; r)− y (ti; r) ,Z i = Y (ti; r)− y (ti; r) ,

from (4.7)–(4.8) and (5.3) we have

Wi+1 =Wi + h
{
F̂
(
ti, Ỹ (ti; r) ;h

)
− F̂ (ti, ỹ (ti; r) ;h)

}
+
h6

6!
Y (6) (θi,1; r) ,

Z i+1 = Z i + h
{
Ĝ
(
ti, Ỹ (ti; r) ;h

)
− Ĝ

(
ti, Ỹ (ti; r) ;h

)}
+
h6

6!
Y

(6)
(θi,2; r) .

Hence

|Wi+1| ≤ |Wi|+ 2Lhmax {|Wi| , |Zi|}+
h6

6!
M

|Zi+1| ≤ |Zi|+ 2Lhmax {|Wi| , |Zi|}+
h6

6!
M,

where M = max
{
M,M

}
for t ∈ [t0, T ] such that

M = min
∣∣∣Y (6) (t; r) , Y

(6)
(t; r)

∣∣∣ ,M = max
∣∣∣Y (6) (t; r) , Y

(6)
(t; r)

∣∣∣
and L > 0 is a bound for the partial derivatives of F̂and Ĝ. Therefore, from Lemma 5.4–5.5 we obtain

|Wi| ≤ (1 + 4Lh)i |U0|+
2h6

6!
M

(1 + 4Lh)i − 1

4lh
,

|Zi| ≤ (1 + 4Lh)i |U0|+
2h6

6!
M

(1 + 4Lh)i − 1

4lh
,

where |U0| = |W0|+ |Z0|. In particular, according to Lemma 1.2 in [32] we have

|WN | ≤ (1 + 4Lh)N |U0|+
h6

6!
M

(1 + 4Lh)
T
h − 1

2lh
,

|ZN | ≤ (1 + 4Lh)N |U0|+
h6

6!
M

(1 + 4Lh)
T
h − 1

2lh
.

Since W0 = Z0 = 0 and from Proposition 4 in [27] we have

|WN | ≤M
e4LT − 1

1440L
h6, |ZN | ≤M

e4LT − 1

1440L
h6.

Thus, if h → 0, we get WN → 0 and ZN → 0. Thus absolute error bound of RKM56 for the numerical
approximate solution of the FIVP (3.1)–(3.2) can be defined as:[

Ei+1

]
r

=
∣∣Y (ti+1; r)− y (ti+1; r)

∣∣ ≤ ε, (5.4)[
Ei+1

]
r

=
∣∣Y (ti+1; r)− y (ti+1; r)

∣∣ ≤ ε, (5.5)

where ε ≈M e4LT−1
1440L h

6 , ε ≈M e4LT−1
1440L h

6 for 0 =i = N and t ∈ [0, T ], with

M = max
∣∣∣Y 6 (t; r) , Y

6
(t; r)

∣∣∣ ,M = max
∣∣∣Y 6 (t; r) , Y

6
(t; r)

∣∣∣ ,
which completes the proof.
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6. Numerical example

Consider the circuit model problem [23] shown in Figure 2, where L = 1h, R = 2Ω, C = 0.25f and
E(t) = 50 cos t. If Q(t) is the charge on the capacitor at time t > 0.

Figure 2: Electric circuit model

Thus the FIVP of this model is given as follows:

Q̃′′ (t; r) + 2Q̃′ (t; r) + 4Q̃ (t; r) = 50cos t, t > 0 (6.1)

Q̃ (0; r) = [4 + r, 6− r]
Q̃′ (0; r) = [r, 2− r] , r ∈ [0, 1].

According to Section 2 Eq. (6.1) can be written into first order system as follows
Q̃′1 (t; r) = Q̃2 (t; r)

Q̃1 (t; r) = [4 + r, 6− r]
Q̃′2 (t; r) = 50cos t− 4Q̃1 (t; r)− 2Q̃2 (t; r)

Q̃2 (t; r) = [r, 2− r] .

The exact analytical solution of Eq. (6.1) was given in [5]. According to RK56 in Section 4, we have:

U1

(
t, Q̃′1 (t; r) , Q̃2 (t; r)

)
= U1

(
t, Q̃1, Q̃2

)
= Q̃2 (t; r)

U2

(
t, Q̃′1 (t; r) , Q̃2 (t; r)

)
= U2

(
t, Q̃1, Q̃2

)
= 50cos t − 4Q̃1 (t; r)− 2Q̃2 (t; r)

then

K̃1 (r) = hU1

(
ti, Q̃1, Q̃2

)
D̃1 (r) = hU2

(
ti, Q̃1, Q̃2

)
K̃2 (r) = hU1

(
ti +

h

2
, Q̃1 +

K̃1 (r)

2
, Q̃2 +

D̃1 (r)

2

)

D̃2 (r) = hU2

(
ti +

h

2
, Q̃1 +

K̃1 (r)

2
, Q̃2 +

D̃1 (r)

2

)
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K̃3 (r) = hU1

(
ti +

h

4
, Q̃1 +

3K̃1 (r) + K̃2 (r)

2
, Q̃2 +

3D̃1 (r) + D̃2 (r)

2

)

D̃3 (r) = hU2

(
ti +

h

4
, Q̃1 +

3K̃1 (r) + K̃2 (r)

16
, Q̃2 +

3D̃1 (r) + D̃2 (r)

16

)

K̃4 (r) = hU1

(
ti +

h

2
, Q̃1 +

K̃4 (r)

2
, Q̃2 +

D̃4 (r)

2

)

D̃4 (r) = hU2

(
ti +

h

2
, Q̃1 +

K̃3 (r)

2
, Q̃2 +

D̃3 (r)

2

)

K̃5 (r) = hU1

(
ti +

3h

4
, Q̃1 +

−3K̃1 (r) + 6K̃3 (r) + 9K̃4 (r)

16
, Q̃2 +

−3D̃1 (r) + 6D̃3 (r) + 9D̃4 (r)

16

)

D̃5 (r) = hU2

(
ti +

3h

4
, Q̃1 +

−3K̃1 (r) + 6K̃3 (r) + 9K̃4 (r)

16
, Q̃2 +

−3D̃1 (r) + 6D̃3 (r) + 9D̃4 (r)

16

)
K̃6 (r) = hU1 (ti + h,A2, A3)

D̃6 (r) = hU2 (ti + h,A4, A5) ,

where

A2 = Q̃1 +
K̃1 (r) + 4K̃2 (r) + 6K̃3 (r)− 12K̃4 (r) + 9K̃8 (r)

7

A3 = Q̃2 +
D̃1 (r) + 4D̃2 (r) + 6D̃3 (r)− 12D̃4 (r) + 9D̃5 (r)

7

A4 = Q̃1 +
K̃1 (r) + 4K̃2 (r) + 6K̃3 (r)− 12K̃4 (r) + 9K̃8 (r)

7

A5 = Q̃2 +
D̃1 (r) + 4D̃2 (r) + 6D̃3 (r)− 12D̃4 (r) + 9D̃5 (r)

7

then

Q̃1 (ti+1; r) = Q̃1 (ti; r) +
7K̃1 (r) + 32K̃3 (r) + 12K̃4 (r) + 32K̃5 (r) + 7K̃6 (r)

90
(6.2)

Q̃2 (ti+1; r) = Q̃2 (ti; r) +
7D̃1 (r) + 32D̃3 (r) + 12D̃4 (r) + 32D̃5 (r) + 7D̃6 (r)

90
, (6.3)

where

Q̃1 (ti; r) =
[
Q

1
(ti; r) , Q1 (ti; r)

]
,

U1

(
ti, Q̃1, Q̃2

)
=
[
U1

(
ti, Q1

, Q
2

)
, U1

(
ti, Q1, Q2

)]
,

U2

(
ti, Q̃1, Q̃2

)
=
[
U2

(
ti, Q1

, Q
2

)
, U2

(
ti, Q1, Q2

)]
,

K̃j (r) =
[
Kj (r) ,Kj (r)

]
, D̃j (r) =

[
Dj (r) , Dj (r)

]
and ti+1 = ti+h for j = 1, . . . , 6, i = 1, . . . , n and r ∈ [0, 1]. From Eqs. (6.2)–(6.3), the results obtained and
represented in Table 1 and Figure 3. One can note that RKM56 approximate solution with 100 iterations
at t=1 and for all 0=r=1 satisfy the fuzzy numbers properties in Section 2 by taking the triangular shape.
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r RK5 y (1; r) E RK5 RK5 y (1; r) RK5 E

0 9.959398084113598 6.13553× 10−12 10.679826444068837 3.26849× 10−12

0.2 10.031440920109120 5.84776× 10−12 10.607783608073317 3.55981× 10−12

0.4 10.103483756104641 5.55822× 10−12 10.535740772077789 3.84225× 10−12

0.6 10.175526592100164 5.27222× 10−12 10.463697936082266 4.12825× 10−12

0.8 10.247569428095690 4.98623× 10−12 10.391655100086743 4.41779× 10−12

1 10.319612264091214 4.69846× 10−12 10.319612264091214 4.69840× 10−12

Table 1: RKM56 solution and accuracy of Eq. (6.1) at t = 1 with step size h = 0.01
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Figure 3: Exact and RKM56 solutions of Eq. (6.1) at t = 1 with step size h = 0.01

7. Conclusions

In this paper, we presented and developed a numerical method for solving fuzzy ordinary differential equa-
tions. The scheme is based on the six stages Runge-Kutta method of order five for solving n-th order FIVP.
The stability, convergence and error analysis of RKM56 have been presented and proved. The numerical ex-
ample involving second-order linear FIVP model showed that the RKM56 is a capable and accurate method
for n-th order FIVP. Also the obtained results by RKM56 satisfy the properties of fuzzy numbers by taking
triangular shape.
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