
Automatic Test Case Generation
from UML State Chart Diagram:
A Survey

Yasir Dawood Salman and Nor Laily Hashim

Abstract The need for developing high-quality systems and applications with the
minimum faults and error in them has been increased recently. In addition, a
question of time and expenses that should be as low as possible always is con-
cerned. Thus, it needs to be updated with the testing techniques that are more
structured and automated which are used during the analysis and design phase. The
significant role of automated testing techniques is that it helps speeding up the
delivery of services of the products to the market with little chances of loss, and
increases the software value. If the purpose were to decrease the expenses and
getting closer to technology, then testing automation would be a crucial choice. The
aim of this survey is to improve the understanding of UML diagram based testing
techniques. Test case generation from state chart has been have focused on. Also,
classify the various research approaches to their methods. The issues of test cov-
erage associated with these methods have been discussed also.

1 Introduction

Testing is considered an essential part of the today’s software development and has
proven to be a useful tool to enhance the programming coding quality. Testing can
help to detect the software bugs which compilers are not usually able to detect [1].
However, whether a program is correct or not, its correctness can be guaranteed
through using the testing in order to enhance the quality of its code. The task of
testing in software is so complicated, that it includes the software evaluation to
show whether it meets the needs. Theoretically or practically, this is usually a
difficult task.

Y.D. Salman (&) � N.L. Hashim
Universiti Utara Malaysia, Kedah, Malaysia
e-mail: yasir.dawod@gmail.com

N.L. Hashim
e-mail: laily@uum.edu.my

© Springer International Publishing Switzerland 2016
H.A. Sulaiman et al. (eds.), Advanced Computer and Communication
Engineering Technology, Lecture Notes in Electrical Engineering 362,
DOI 10.1007/978-3-319-24584-3_12

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/42984905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Come as no surprise that for the past decade a great amount of research work has
been conducted over automatic test case generation [2–8]. Therefore, a great
amount of different techniques to generate the test case has been explored inten-
sively and propelled. In contrast, software systems have gotten to be progressively
complex, for instance, with components developed by diverse vendors, utilizing
distinctive techniques within diverse programming languages and actually running
on diverse platforms.

State chart diagrams in UML can be used to construct the dynamic aspects of a
system. This diagram consists of transitions, states, actions, and events [9] and by
emphasizing the flow of control from state to state as it shows a state machine. State
chart is comprehensive Finite State Machine (FSM) with concurrency, hierarchy,
and communication, and these extensions allow small diagrams to express complex
behavior in a modular method [10].

The purpose of generating test case using UML state chart diagram is to verify
the relations between the behavior, state transition, state, action, and event. This
technique is used to determine if one can fulfil the system specifications through the
state based motion of the system. In the state based system, there are three reasons
for the fault. The first is when the state diagram cannot accurately transfer the
system function specification. Secondly is when the state chart diagram configu-
ration is wrongly or unreliable. The final is when converting form a state chart
diagram to programmable code [11]. Several of surveys and reviews study have
been conducted on test case generation [12–18], where they cover in general the
generation of test cases a variety of inputs. This paper on the other hand focuses on
varies methods of test case generation from UML state chart diagram, where the
commonalties and trends in the methods used are explored. The following section
presents test case generation approaches using state chart diagram.

The paper is structured as follows. Section 2 a review related work of automatic
test case generation using UML state chart diagram. Section 3 presents the trends
and gaps identified from the survey. Finally, Sect. 4 outlines conclusion and future
research work.

2 Test Generation Approaches Using UML State
Chart Diagram

Researchers such as [19, 20] have paid considerable attentions to automatic test case
generation from UML diagrams. At the same time, there were more researchers who
work on generating test cases from UML state chart diagrams [21–23].

Kansomkeat and Rivepiboon [20] develop a transformation method from state
chart diagrams into intermediate diagrams that are used to generate test sequences.
The test cases are generated automatically from state chart diagrams created by the
Rational Rose tool. The testing coverage criterion is used to guide the generation of

124 Y.D. Salman and N.L. Hashim



test cases and to produce the intermediate model Testing Flow Graph (TFG) from
the all-state coverage and all transition coverage. Based on their fault detection
abilities, their test cases measured the effectiveness of test case generation. From the
generated test cases, results of simple test experiments revealed high effectiveness
in the test case generation. However, usually more than one object often participates
in the execution of a use case. Therefore, it will be difficult to test using this
approach with the chance of such behavior occurred. In addition, it does not gen-
erate multi test data due to the lack of coverage choices.

Offutt et al. [24] developed a method to automatically generate the test cases
from state chart diagrams, by changing events for Boolean class attributes. The
developments of many useful coverage criteria that were centered on the state chart
diagrams were effective. Class-level testing is the aim of their approach. This
method attains transition-pair coverage, transition coverage, and full predicate
coverage.

Gnesi et al. [19] offered a formal test case generation by providing a mathe-
matical basis for conformance testing and automatic test case generation for state
chart diagrams that was established on an operational semantic. With transitions
labelled by input/output pairs, they proposed a formal conformance testing relation
for input enabled transition systems. In order to succeed in the specified require-
ments, testing software is identified as conformance testing. Considering the formal
specification, a conformance relation defines the accuracy criterion of the imple-
mentation. However, in order to practice this technology proper test selection
strategies are needed to use the test generation algorithm practically.

Briand et al. [25] focused on creating a methodology using state chart diagram to
define the system state required for each event or transition, where parts of the
paths, input values for the parameter for all actions and events associated with
transitions have to be defined. Their work generates a test case specification
involving a possible sequence of transitions. A requested sequence tree is con-
structed and then it will be used to develop the test restraints for the transition
sequences to test it, to get the interactions among state dependent objects in their
work.

Li and Lam [26] presented an approach to generate test sequences from state
chart diagrams using ant colony optimization. A UML state chart diagram is
transformed into intermediate model called a directed graph. By exploring the
directed graph by a group of ants cooperatively, the test sequences are generated.
From this generation they achieve the all-state coverage in the coverage criteria.

Santiago et al. [27] presented a method to automate test case generation from
UML state chart diagrams using a software specification model. This method
converts the UML state chart diagrams model into an XML-based language table,
and by using the Perform Charts tool, and generates intermediate model from state
based on control flow. Their indication is to determine that by using a higher-level
technique, such as UML state chart diagrams; there will be possibility to repre-
sented complex software with clarity and rich details. UML state chart diagrams can
enable to model a complex system more realistically and provide hierarchy and
parallelism for it. Although these conditions are not enough in order to guarantee

Automatic Test Case Generation from … 125



that a test case generation approach is successful, but still they show an improve-
ment when they have been compared with the use of the Condado as an uncon-
nected tool with a FSM specification. In addition, the Condado implements the
switch cover method for the control part. A switch is a transition-to-transition pair,
and their method generates test cases to cover all pairs of transitions in the model in
the coverage criteria.

Murthy et al. [28] suggested a new foundation for generating test cases using the
UML state chart diagram as a base model of behavior. They also defined a test
ready state chart diagram, which indicates that the model is ready with data for a
test generator to generate test scripts automatically from it. To generate the paths,
they start from the start node with a state transition and reconnoitering each next
node subsequent of its state transitions, if any along a state transition is satisfied, it
provides guard condition. They solve the problem of generating test case from
UML state chart diagram by defining all the sentential forms derivable from an
equivalent extended context free grammar model. Additionally, coverage criteria
that were achieved are path coverage and basic path coverage.

Ali et al. [21] have projected a method for state-based integration testing. Their
work forms an intermediate test model named State Collaboration Test Model
(SCOTEM) from the corresponding state chart diagrams and UML collaboration
diagrams. SCOTEM copies all possible paths for object state changes that message
sequences may cause. Then SCOTEM produces test paths centered on several
coverage criteria. For them revealing the state-dependent interaction errors is the
goal behind the generated test cases. Their work reflects the analysis of all possible
states of cooperating levels in an interface.

Santiago et al. [29] presented an environment name automated Generated Test
case based on State Charts (GTSC) which allows a test designer to generate test
cases based on state charts test criteria and FSM methods. This interesting char-
acteristic allows test sequence generation from both state chart and FSM techniques
based on the same FSM. However, other comparisons needs to be made namely
all-paths-k-C0-onfiguration of the state chart Coverage Criteria Family (SCCF) as
well as the round-trip route testing offered by Binder [30] and all-paths-k-
configurations. Similarly, there can be more comparisons between the latest
FSM-based methods, such as state counting, and some SCCF criteria. Such an
analysis will be enabled with the help of mutation testing by GTSC in applying
these test criteria methods.

Kosindrdecha and Daengdej [22] proposed a new method to generate and pre-
pare both test data and test case based on state chart diagram, called “TGfMMD”
method. This method has been developed to verify the state chart diagram before
generation of both test cases, and test data from extended state chart diagram.
However, this method has not yet been tested with a complex state chart diagram.

Swain et al. [31] proposed a novel technique to generate test cases automatically
from UML state chart diagram and activity diagram. They construct it based on the
model an intermediate representation, that they named it state-activity diagram
(SAD). They generate the test case from the use of SAD generation, Depth First
Search (DFS) and mutation analysis. In addition, in order to detect harmonization of

126 Y.D. Salman and N.L. Hashim



state chart diagram as well as activity diagram faults within a use case of the system
exercise, an activity synchronization in the context of multiple state combinations
has been used. They also achieves transition coverage and state/activity path cov-
erage. For the testing, they have implemented a prototype tool based on their
approach. However, in their work the tester should select the test data for each test
case manually.

Shirole et al. [32] have also worked on the automatic generation of test case
using UML state chart diagram. They used the Genetic Algorithm (GA) as medium
for their tool by combining information from state chart diagram in it. They propose
a search-based approach to handle infeasible paths and test data generation. They
use the following steps to generate the test cases. First is to transform the UML
Specifications into Extended Finite State Machine (EFSM), secondly to transform
the EFSM into Extended Control Flow Graph, third is to generate test sequences
using GA and DFS, and finally, select the test cases using data-flow techniques. In
the coverage criteria, they focused on state cover, transition cover, all-definition
cover, and all du-path. However, the state chart diagrams that they considered are
very simple, what will lead to less coverage when dealing with scenarios that are
more complex. Also because of using DFS and fitness function, all path coverage is
not fully obtained.

Li et al. [33] presented a test case generation approach, which takes UML state
chart diagrams as inputs. They first construct the state chart diagram conforming to
system requirement. Then, analyze the .mdl file of state chart diagram, extract the
main information of the state chart diagram and convert it to a directed graph.
Finally, they designed an algorithm to construct the Euler circuit based on a directed
graph and generate test cases automatically by Euler circuit algorithm. Their
specified test coverage criteria are the state coverage and the transition coverage of
state chart diagram, also to minimize the number of test cases.

In an earlier study Swain et al. [23] proposed an approach to generate test cases
from UML state chart diagram. They have named their approach, Automatically
Generating Test cases from State Chart Diagram (AGeTeSC). First, they have
constructed the state chart diagram for a given object. Then the state chart diagram
is traversed, conditional predicates are selected and these conditional predicates are
transformed into source code. Then, the test cases are generated and stored by using
function minimization technique. From the state chart diagram, they perform a DFS
to select the associated predicates. After selecting the predicates, they guess an
initial dataset. They have generated test predicate conditions from a state chart
diagram, which are used to generate test cases. Their technique accomplishes little
coverage in test case like transition pair coverage, state coverage, action coverage,
and transition coverage. It also achieves fully predicate coverage by generating a
test data for each conditional clause. Besides that, it can handle transitions with
guards and achieves transition path coverage. Here the quantity of test cases is
minimized and they reach transition path coverage in testing the limitations decided
by simple predicates, but the test case needs to be optimized.

Additionally Swain et al. [34] proposed an approach for test cases generation
named, Test Generation and Minimization for O-O software with State Charts

Automatic Test Case Generation from … 127



(TeGeMiOOSc). It starts by analyzing the system, which is going to be tested and
accepted by user, then build the state chart diagram. After that, they convert the
given UML state chart diagram into an intermediate model, that they named it a
state transition graph. DFS is used to form test sequences and generating all the
possible paths. Then obtain all the valid sequences of the application until final edge
is reached. Finally, they minimize a set of test cases by calculating node coverage
for each test sequence. In the same year a work of Swain et al. [35] has performed a
similar experiment to generate test case from UML state chart diagram and they
have named it, Generation and Minimization of test cases from State Charts
(GeMiTefSc). Their approach at first build a state chart diagram model for SUT,
next, they conjugated state transition graph from state chart diagram. Then, by
using the graph, all the required information is extracted. Then, by applying Wang’s
algorithm [36] they generated the test cases. Finally, they minimized the set of test
cases by calculating node coverage for each test case and this help them to deter-
mine which test case are covered by other test cases. However in their works, after
creating the intermediate graph they rely on the DFS to generate the paths, what
will lead to less in coverage when the state chart diagram have loops and feedbacks
in it. Also by using minimization, they minimize a set of test cases what will cause
to overlap or ignoring some of the important data therefore will have less coverage.

Chimisliu and Wotawa [37] in their earlier work have proposed a method for
generating test cases automatically aiming at achieving transition coverage and state
coverage of the model. Their proposed approach presents an automatically trans-
formation of the system composed of communicating state charts diagram into a
Language of Temporal Ordering Specification (LOTOS). They also showed how to
generate test cases in semi-automatically way by making use of an input from the
user as explanations on the UML diagram. In their work, generated test cases
coverage criteria did not contain any reject transitions. Thus, the generation process
was not as efficient as in the case when the user provides explanations that can be
used as refuse transitions in the test purpose.

In their more recent work, Chimisliu and Wotawa [38] and Chimisliu and
Wotawa [39] proposed an improved tool for test case generating from UML state
chart diagram by using control, data and communication dependencies. They
generated the test cases by using the Test Generation with Verification
(TGV) technology [40], a test case generator from the analysis and the construction
of distributed processes toolbox. For the coverage criteria, their generation tech-
nique aimed at achieving transition coverage only. Therefore, the lack of coverage
will indicate to the need to enhance this method or obtaining a novel one.

3 Findings from the Survey

The following section presents the trends, gaps and commonalities found from the
21 studies that conducted test cases generation from UML start Chart diagram.

128 Y.D. Salman and N.L. Hashim



Table 1 reviews the past decade researchers and their studies. The input model
column shows that the current researchers use state chart diagram or combinations
of other diagrams and also the method they used to generate the test cases.
Furthermore, the intermediate models that are generated as intermediary between

Table 1 Test case generated methods using UML state chart diagram

Author(s) Input model Method Intermediate
model

Coverage criteria

Kansomkeat
and
Rivepiboon
[20]

State chart Parsing TFG,
mutation analysis

Testing flow
graph (TFG)

State and transition

Offutt
et al. [24]

State chart Spec test Specification
graph

Transition coverage
Full predicate
coverage
Transition-pair
coverage
Complete sequence

Gnesi
et al. [19]

State chart Input/output label
transition systems
(IOLTSs), random
test selection

– –

Briand
et al. [25]

State chart Normalization and
analysis of
operation contracts
and transition
guards

Invocation
sequence tree
(IST)

All transitions, all
transition pairs, full
predicate, and all
round-trip paths

Li and
Lam [26]

State chart Ant colony
optimization

Directed graph All states

Santiago
et al. [27]

State chart Perform charts and
Condado

FSM All pairs of
transitions

Murthy
et al. [28]

State chart Extended UML
state chart model

Context free
grammar
model

Path coverage,
Basic path coverage

Ali et al. [21] Collaboration
diagrams and
state chart

State collaboration
test model
(SCOTEM)

Testing flow
graph (TFG)

Single-path
coverage
All-transition
coverage,
N-path coverage
All-path coverage

(continued)

Automatic Test Case Generation from … 129



Table 1 (continued)

Author(s) Input model Method Intermediate
model

Coverage criteria

Santiago et al.
[29]

Finite state
Machines and
state
Charts

Switch cover,
distinguishing
Sequence and
unique
Input/output
methods

FSM All transitions

Kosindrdecha
and Daengdej
[22]

State chart TGfMMD method Sketch
diagram-based
technique

All nodes

Swain
et al. [31]

State chart
and activity
chart

SAD generation,
DFS, mutation
analysis

State activity
diagram (SAD)

Transition coverage
and activity path
coverage

Shirole
et al. [32]

State chart Genetic algorithm Extended
control flow
graph

State cover,
Transition cover,
All-definition
cover, and
All du-path

Li et al. [33] State chart Euler circuit
algorithm

Directed graph State coverage
criteria,
Transition coverage
criteria

Swain
et al. [23]

State chart Depth first search
(DFS),
Model J unit

State chart
graph

State coverage,
Transition
coverage,
Transition pair
coverage

Swain
et al. [34]

State chart Test generation and
Minimization for
O-O software with
state charts
(TeGeMiOOSc)

State graph State coverage,
Action coverage,
Transition
coverage,
Transition path
coverage,
Condition coverage

Swain
et al. [35]

State chart Generation and
minimization of test
cases from State
Charts
(GeMiTefSc)

State graph State coverage,
Action coverage,
Transition
coverage,
Ppath coverage,
Condition coverage

Chimisliu and
Wotawa [37]

State chart Test purpose Transition
coverage,
State coverage

(continued)

130 Y.D. Salman and N.L. Hashim



the input model and the generated paths, and coverage criteria are also clarified in
this table.

These studies illustrate the importance of integrating of UML state chart diagram
with other intermediate model to generate the test cases. The conclusion from these
studies describe that most of them need to translate UML state chart diagram into
another description, such as a graph or a table (intermediate model), which will be
used to derive the test cases. Furthermore, many studies worked on DFS algorithm
[23] to generate the test paths. However, this algorithm will lead to loss of paths,
especially for the loops [31]. Therefore, there is a need to redefine the path coverage
criterion through loop path coverage and generate an enhanced DFS algorithm or
other algorithm to generate the paths [8].

In generating test case using UML state chart diagrams very few studies reveal
their proposed algorithms or their testing implementation conducted during the
testing. Among the studies are [20, 22, 27, 29, 41]. This scenario will lead to
difficulties in updating their work or do enhancement on them. Furthermore, it is
hard to implement it in a larger scale or produce it to generate test case in a fully
automated way.

In rationalizing the generation of test case, the quality or the adequacy of test
cases is often described with coverage criteria. From these studies, the most
common coverage criteria are path coverage, transition coverage, and state cover-
age, what will be necessary to cover in future studies.

There are many approaches, like GA, model checking, or graph search algo-
rithms, that are used to cover such coverage criteria for graph based models.
However, there are few problems with the existing UML state chart diagrams test
generation approaches. One of them is selecting the right input graph that has
enough complexity to generate the accurate coverage percentage. Studies from [23,
34, 35] used very simple state chart diagrams. In addition, there are approaches by
[37–39] that selected very few coverage criteria, where they just cover the trans-
action coverage or unnecessary one.

Many of the test case tools were not integrated. The one that have been used for
test case generation, they demand several effort from the software testers since all
the testing steps require manual interference in order to make appropriate adjust-
ments on the output of a tool to be used as input to another tool [29].

Table 1 (continued)

Author(s) Input model Method Intermediate
model

Coverage criteria

Chimisliu and
Wotawa [38]

State chart Test generation with
Verification
technology (TGV)

Test purpose Transition coverage

Chimisliu and
Wotawa [39]

State chart Test purpose Transition coverage

Automatic Test Case Generation from … 131



4 Conclusion and Future Work

UML recently become a focused model in the field of software testing. New
techniques and methods for the generation of test case from these UML diagrams
needs to be identified. To identify them in this paper, a literature survey on gen-
erating test cases from UML state chart diagram has been conducted.

From this survey, it shows that existing methods on state chart test case gen-
eration methods mostly concentrate on the DFS algorithm, in which some do not
work for maximum test coverage, while some methods prepare and generate a
significant number of tests with less test coverage. In the future, we have planned to
develop a test case generation method that minimizes the size of tests, time and
cost, while preserving maximum test coverage using Modified Condition/Decision
Coverage criterion. In addition, this method will prove that this technique is more
capable of detecting more number of faults than compared to current existing
techniques.

References

1. Patwa, S., Malviya, A.K.: Impact of coding phase on object oriented software testing.
Covenant J. Inform. Commun. Technol. (CJICT) 2, 57–67 (2014)

2. Cartaxo, E.G., Neto, F.G.O., Machado, P.D: Test Case Generation by Means of UML
Sequence Diagrams and Labeled Transition Systems. In SMC, pp. 1292–1297 (2007)

3. Mingsong, C., Qiu, X., Xu, W., Wang, L., Zhao, J., Li, X.: UML activity diagram-based
automatic test case generation for Java programs. Comput. J. 52, 545–556 (2009)

4. Javed, A.Z., Strooper, P.A., Watson, G.: Automated generation of test cases using
model-driven architecture. In: Automation of Software Test, AST’07. Second International
Workshop on, pp. 3–3 (2007)

5. Kim, H., Kang, S., Baik, J., Ko, I.: Test Cases Generation from UML Activity Diagrams. In:
Eighth ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, SNPD, pp. 556–561 (2007)

6. Kundu, D., Samanta, D.: A novel approach to generate test cases from UML activity diagrams.
J. Object Technol. 8, 65–83 (2009)

7. Lilly, R., Uma, U.G.: Reliable Mining of Automatically Generated Test Cases from Software
Requirements Specification. IJCSI, pp. 87–91 (2010)

8. Mingsong, C., Xiaokang, Q., Xuandong, L.: Automatic test case generation for UML activity
diagrams. In: Proceedings of the 2006 International Workshop on Automation of Software
Test, pp. 2–8 (2006)

9. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual.
Pearson Higher Education, New York (2004)

10. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann, US (2010)

11. Kim, W.Y., Son, H.S., Kim, R.Y.C.: A study on test case generation based on state diagram in
modeling and simulation environment. In: Advanced Communication and Networking.
Springer, Berlin, pp. 298–305 (2011)

12. Karambir, Kuldeep, K.: Survey of software test case generation techniques. Int. J. Adv. Res.
Comput. Sci. Softw. Eng., pp. 937–942 (2013)

132 Y.D. Salman and N.L. Hashim



13. Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., et al.: An
orchestrated survey of methodologies for automated software test case generation. J. Syst.
Softw. 86, 1978–2001 (2013)

14. Shirole, M., Kumar, R.: UML behavioral model based test case generation: A survey.
ACM SIGSOFT Softw. Eng. Notes 38, 1–13 (2013)

15. Rafi, D.M, Moses, K.R.K., Petersen, K., Mäntylä, M.V.: Benefits and limitations of automated
software testing: Systematic literature review and practitioner survey. In: Proceedings of the
7th International Workshop on Automation of Software Test, pp. 36–42 (2012)

16. Prasanna, M., Sivanandam, S., Venkatesan, R., Sundarrajan, R.: A survey on automatic test
case generation. Acad. Open Internet J. 7:1–6(2005)

17. Pahwa, N., Solanki, K.: UML based test case generation methods: A review. Int. J. Comput.
Appl. 95, 1–6 (2014)

18. Shamsoddin-Motlagh, E.: A review of automatic test cases generation. Int. J. Comput. Appl.
57 (2012)

19. Gnesi, S., Latella, D., Massink, M.: Formal test case generation for UML statecharts. In:
Proceedings of Ninth IEEE International Conference on Engineering Complex Computer
Systems, pp. 75–84 (2004)

20. Kansomkeat, S., Rivepiboon, W.: Automated generating test case using UML statechart
diagrams. In: Proceedings of the 2003 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on Enablement Through
Technology, pp. 296–300 (2003)

21. Ali, S., Briand, L.C., Rehman, M.J.-U., Asghar, H., Iqbal, M.Z.Z., Nadeem, A.: A state-based
approach to integration testing based on UML models. Inf. Softw. Technol. 49, 1087–1106
(2007)

22. Kosindrdecha, N., Daengdej, J.: A test generation method based on state diagram. JATIT
pp. 28–44 (2010)

23. Swain, R.K., Panthi, V., Behera, P., Mohapatra, D.: Automatic test case generation from UML
state chart diagram. Int. J. Comput. Appl. pp. 26–36 (2012)

24. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-based
specifications. Softw. Test. Verification Reliab. 13, 25–53 (2003)

25. Briand, L.C., Labiche, Y., Cui, J.: Automated support for deriving test requirements from
UML statecharts. Softw. Syst. Model. 4, 399–423 (2005)

26. Li, H., Lam, C.P.: An ant colony optimization approach to test sequence generation for
state-based software testing. In: Fifth International Conference on Quality Software, (QSIC
2005), pp. 255–262 (2005)

27. Santiago, V., do Amaral, A.S.M, Vijaykumar, N., Mattiello-Francisco, M.F., Martins, E.,
Lopes, O.C.: A practical approach for automated test case generation using statecharts. In:
30th Annual International Computer Software and Applications Conference, 2006
(COMPSAC’06), pp. 183–188 (2006)

28. Murthy, P., Anitha, P., Mahesh, M., Subramanyan, R.: Test ready UML statechart models. In:
Proceedings of the 2006 International Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools, pp. 75–81 (2006)

29. Santiago, V., Vijaykumar, N.L., Guimarães, D., Amaral, A.S., Ferreira, É.: An environment
for automated test case generation from statechart-based and finite state machine-based
behavioral models. In IEEE International Conference on Software Testing Verification and
Validation Workshop, 2008 (ICSTW’08), pp. 63–72 (2008)

30. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley
Professional, Boston (2000)

31. Swain, S.K., Mohapatra, D.P., Mall, R.: Test case generation based on state and activity
models. J. Object Technol. 9, 1–27 (2010)

32. Shirole, M., Suthar, A., Kumar, R.: Generation of improved test cases from UML state
diagram using genetic algorithm. In: Proceedings of the 4th India Software Engineering
Conference, pp. 125–134 (2011)

Automatic Test Case Generation from … 133



33. Li, L., He, T., Wu, J.: Automatic test generation from UML statechart diagram based on euler
circuit. Int. J. Digit. Content Technol. Appl. 6 (2012)

34. Swain, R.K., Behera, P.K., Mohapatra, D.P.: Minimal Test Case Generation for
Object-Oriented Software with State Charts. arXiv preprint arXiv:1208.2265 (2012)

35. Swain, R.K., Behera, P.K., Mohapatra, D.P.: Generation and Optimization of Test cases for
Object-Oriented Software Using State Chart Diagram. arXiv preprint arXiv:1206.0373 (2012)

36. Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., Guoliang, Z.: Generating test
cases from UML activity diagram based on gray-box method. 11th Asia-Pacific Presented at
the Software Engineering Conference (2004)

37. Chimisliu, V., Wotawa, F.: Model based test case generation for distributed embedded
systems. In: IEEE International Conference on Industrial Technology (ICIT), pp. 656–661
(2012)

38. Chimisliu, V., Wotawa, F.: Improving test case generation from UML statecharts by using
control, data and communication dependencies. In: 13th International Conference on Quality
Software (QSIC), pp. 125–134 (2013)

39. Chimisliu, V., Wotawa, F.: Using dependency relations to improve test case generation from
UML statecharts. In: IEEE 37th Annual Computer Software and Applications Conference
Workshops (COMPSACW), pp. 71–76 (2013)

40. Claude, J., Thierry, J.: TGV: Theory, principles and algorithms: A tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems. Softw. Tools
Technol. Transf. 7, 297–315 (2002)

41. Hartmann, J., Imoberdorf, C., Meisinger, M.: UML-based integration testing. In:
ACM SIGSOFT Software Engineering Notes, pp. 60–70 (2000)

134 Y.D. Salman and N.L. Hashim


	12 Automatic Test Case Generation from UML State Chart Diagram: A Survey
	Abstract
	1 Introduction
	2 Test Generation Approaches Using UML State Chart Diagram
	3 Findings from the Survey
	4 Conclusion and Future Work
	References


