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Highlights

• An outranking method for assigning a score to considered actions is proposed

• Actions are compared by means of an outranking with reference sets of actions

• A deck of the cards method is used to assign a value to reference sets of actions

• A range for its score is assigned to each action

• Conditions ensuring desirable properties for the proposed method are discussed
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Abstract

In this paper, we present (to the best of our knowledge) the first outranking method to assign a
score to each alternative. This method is part of the Electre family, and we will call it Electre-
Score. In contrast to the Multi-Attribute Value Theory methods, Electre-Score does not
construct a value function for each criterion to proceed then to the aggregation into a single value.
Instead, Electre-Score makes use of the outranking relations to make a comparison with sets
of reference actions (to which a score is assigned) and assigns a score range to each action and a
representative score in the range to each action. This is a more robust way of proceeding given the
fragility of a single score. The reference actions have similar nature and characteristics of limiting
profiles in Electre Tri-nB and the reference scores are assigned to them through the application
of the deck of cards technique. Because this method uses outranking relations, it makes also possible
to take into account the imperfect knowledge of data and to avoid systematic compensatory effects.
Some fundamental theoretical results guaranteeing the consistency of the method, an illustrative
example and a case study in the domain of healthcare system evaluation are also provided in this
paper.

Keywords: Multiple criteria analysis, Electre methods, Scoring methods, Outranking relations,
Decision support systems, Non-compensatory composite indicators, Healthcare system evaluation.

1. Introduction

Multiple criteria decision aiding (MCDA) is a discipline that comprises methods and techniques to
produce information to enable decision-makers to take better and informed decisions. Over the last
few years, there has been a tremendous growth in the development of new methods, strengthening
the maturity of the existing ones and increasing their application to deal with real-world decision
aiding situations of a crucial importance for organizations. One of the most promising features of
these methods is their diversity (see Greco et al., 2016, for an example of the vast array of these
methods).

According to Roy (1996) there are four main types of problem statements or problematics:
the choice problem (where the objective is to choose the best or a small set of best actions or
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alternatives, being the others automatically rejected), ranking problems (where the objective is to
rank the actions from the worst to the best), the sorting or ordinal classification problems (where
the objective is to assign actions to predefined and ordered categories or classes) and the descrip-
tion problem (where the actions and their consequences are described in a systematic way). In
approaching all these decision problems can be useful to define a score with a cardinal content per-
mitting to measure the distance between the comprehensive evaluations of considered actions. This
score permits the Decision Maker (DM) to be more comfortable in comparing the actions. In this
perspective, MCDA is more and more adopted in the construction of composite indicators (Com-
mission et al., 2008; Greco et al., 2019a), that are specific scores used for aggregating heterogeneous
individual indicators into a synthetic index to describe an overall complex phenomenon such as the
industrial competitiveness, the quality of life, the liveable cities and smart cities, the sustainable
development, and the globalization and innovation. An important discussion in this domain has
been related to the compensatory or non-compensatory nature of the aggregation procedure used to
obtain the composite indicator (Munda and Nardo, 2009). Indeed, the basic approach to construct
composite indicators is the linear aggregation among the elementary indicators formulated in terms
of an arithmetic mean, very often non-weighted. This implies substitutability among the various
indicators, in such a way that, bad performances on some elementary indices can be counterbal-
anced by good performances on other indices. These compensatory effects are not permitted in
non-compensatory aggregation procedures that, in simple words, take only into account the ordinal
nature of elementary indices. Consequently, they take into consideration that a is preferred to b
with respect to index i, but they do not consider cardinal contents such as a is twice better than b
(ratio scale), or the difference in evaluation between a and b is greater than the difference between
c and d (interval scale); for a discussion on different types of cardinal scales and meaningfulness
in their use see Roberts (1979). With respect to the output of the non-compensatory aggregation
procedures, Munda and Nardo (2009) proposes to provide a complete ranking between alterna-
tives obtained by the Kemeny rule (Kemeny, 1959; Young and Levenglick, 1978), which is in turn
based on the Condorcet majority principle (Condorcet, 1785). In the same perspective Attardi
et al. (2018) proposes to use an outranking method, in particular Electre III (Roy and Bouyssou,
1993; Dias et al., 2006), to obtain a partial pre-order, that is a ranking admitting some incompara-
bilities. However, if the scoring problem should be handled in these terms, it would coincide with
the ranking problem and there would not be any necessity to envisage some specific approach and
methodology. Instead, in the common sense interpretation, a composite indicator must assign to
each action a single value providing a meaningful synthesis of the information contained in the ele-
mentary indicators and, possibly, having a cardinal nature going beyond a mere ordinal comparison.
Therefore, the challenge of a non-compensatory composite index is to aggregate elementary indices
in terms of ordinal input to obtain a composite indicator in terms of cardinal output. This is the
point of view taken by (Greco et al., 2021) that adopts Promethee methods (Brans and Vincke,
1985) as a generalization of the Borda count (de Borda, 1781) to construct a non-compensatory
composite indicator. With the same aim, we propose Electre-Score, a new ELECTRE method
providing a non-compensatory scoring procedure that assigns a cardinal evaluation on a ratio or
an interval scale. Of course, Electre-Score can be applied beyond the domain of composite
indcators, in any decision problem in which a multicriteria score can be useful for the DM and the
analyst.

Let us remember the main characteristics of Electre methods (Roy, 1991) that suggests the
proposal of a new method in the family to handle scoring decision problem. Electre meth-
ods (Figueira et al., 2016) play a central role in the family of outranking approaches. Since their
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inception in the middle of the 1960s, they have been the object of several studies, extensions, gener-
alizations, new developments, and many applications in real-world situations. For a comprehensive
survey of these methods see Govindan and Jepsen (2016). The most relevant features of Elec-
tre methods that make them adequate to deal with several situations are the following (Figueira
et al., 2013): (1) they can deal with both the quantitative and the qualitative nature of the criteria
scales; (2) the scales can be of very heterogeneous types (meters, noisy, delay, costs, return, etc);
(3) the compensatory effects are not relevant in a systematic way (this is mainly due to the use of
the concordance index and the existence of veto thresholds that avoid some compensability); (4)
they are able to take into account the imperfect knowledge of data (uncertainty, imprecision, and
ill-determination) and the arbitrariness when building the criteria; and, finally, (5) they are very
adequate to take into account the reasons for and the reasons against an outranking.

Of course, as all the MCDA procedures, the methods from Electre family are not perfect and
they also suffer from some drawbacks, as follows: (1) the intransitivity phenomenon may occur
(and even worse, it may be quite frequent); (2) the phenomenon of the dependence with respect
to irrelevant alternatives may be present; (3) if all the criteria are of a quantitative nature and no
imperfect knowledge and arbitrariness are present, and in addition the decision-maker allows for
a systematic compensation, then we can use other methods, namely those of the Multi-Attribute
Value Theory (MAVT) family (Keeney and Raiffa, 1976); and (4) if it is necessary to assign a score
to considered actions, then these methods are not adequate.

In reality the compensation between criteria is not always allowed by decision-makers, and
imperfect knowledge and arbitrariness are often present when dealing with practical decision aiding
situations. Since it will be almost impossible to avoid the two other phenomena (i.e. intransitivities
and dependence with respect to irrelevant alternatives), and since they have a clear relevance for a
reliable score, the natural question is: is it be possible to build a scoring based Electre method?
The aim of this paper is just to propose such a scoring based Electre method, and, moreover,
we shall show that it does not suffer of any problem related to intransitivity or dependence with
respect to irrelevant alternatives.

Electre-Score, our new method, consists of following main steps:

1. Several sets of reference actions are built. We used the sets of limiting profiles as in Electre-
Tri-nB (Fernández et al., 2017) as our reference actions. These sets of reference actions must
fulfill some important separability conditions. Note that whichever procedure is used to define
a priori the set of reference actions, it must satisfy a certain number of conditions that should
be as weak as possible for the method to be fruitfully applied in a vast generality of cases.
To start, we consider rather restrictive conditions that must be relaxed as much as possible
in the following but only if these less restrictive conditions would maintain the validity of the
method.

2. With a deck of cards technique, we can assign a value to each set of limiting profiles after
choosing two reference values. This is a similar technique to the one proposed in Bottero
et al. (2018) or in Corrente et al. (2021) for building interval scales.

3. The last step consists of comparing each action to the reference sets and assigning a scoring
interval to it: more precisely, each action a is assigned an interval [sl(a), su(a)] of admissible
scores s(a), and a representative score s◦(a), sl(a) 6 s◦(a) 6 su(a), with

– the lower bound sl(a) of admissible score equal to the value x∗ assigned to the best sets
of limiting profiles Bx∗ for which there is a preference of a over Bx∗ , and
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– the upper bound su(a) of admissible score equal to the value x∗ assigned to the best sets
of limiting profiles Bx∗ for which there is a preference of Bx∗ over a,

– the representative score s◦(a) = α ·su(a)+(1−α) ·sl(a), with α, 0 6 α 6 1, representing
the degree of optimism of the decision-maker in the spirit of the Hurwicz decision rule
(Hurwicz, 1951), so that, the greater the value of α the closer the representative score
s◦(a) to the upper bound su(a).

Let us point out the following relevant points characterizing Electre-Score:

– The output of the method we are proposing is a score, which is of a cardinal nature, i.e., it is
a cardinal numerical representation of the goodness of the considered actions. The evaluation
supplied by Electre-Score is expressed on a ratio or on interval scale. Indeed, it is based
on the assessment of a value to each set of limiting profiles that through the deck of the cards
method can produce a ratio scale (Figueira and Roy, 2002) or an interval scale (Bottero et al.,
2018) (for a recent improved version of this method see Corrente et al. 2021). Therefore, for
example,

◦ in case the deck of the cards method assigns values in terms of a ratio scale to the sets of
limiting profiles, if an action a is assigned a score s(a) = 20 and an action b is assigned a
score s(b) = 10, it is meaningful to say that a has an evaluation twice than the evaluation
of b,

◦ in case the deck of the cards method assigns values in terms of an interval scale to the
sets of limiting profiles, if actions a, b, c and d are assigned scores s(a) = 90, s(b) =
50, s(c) = 40, s(d) = 20, respectively, it is meaningful to say that difference in evaluation
between a and b is twice the difference in evaluation between c and d.

– The method was particularly designed to supply a range [sl(a), su(a)] of admissible scores
s(a) for each action a. Indeed, the obtained ranges are very robust because they consider
the most pessimistic and the most optimistic evaluations sl(a) and su(a) obtained by taking
into account the outranking relation. Observe that the use of a range [sl(a), su(a)] is in line
with the representation of preference in terms of semi-orders (Luce, 1956) or interval orders
(Fishburn, 1973), that, to take into account not perfect discriminating utility, compare ob-
jects in terms of intervals of admissible evaluations. In the same perspective, in the ambit
of composite indicators, punctual evaluations have been substituted by probability distribu-
tions of the score taking into account the different evaluations obtained changing the weights
assigned to elementary indicators (Greco et al., 2018, 2019b). Observe also that in case the
decision-maker needs to assign a single score to each action a, a representative score s◦(a)
can be provided with a rather flexible and intuitive procedure based on the decision-maker’s
degree of optimism.

– Let us observe that, differently from typical MCDA methods supplying a score to considered
actions, such as Multiple Attribute Utility Theory (MAUT) methods (Keeney and Raiffa,
1976), Analytical Hierarchy Process (Saaty, 1990), MACBETH (Bana e Costa and Vansnick,
1994), Electre-Score does not consider any transformation of the scale for each criterion
into partial value functions expressed in a common commensurable scale to be then aggregated
into a single overall value function. Indeed, the score obtained with our procedure supplies a
comprehensive evaluation without using a procedure for converting each criterion into a value
function.
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– In general, scoring decision problems take into consideration a rather large number of actions
to be evaluated. This is the case of scoring procedures regarding countries all over the world
or in some continents, universities, cities, companies and so on. Sometimes it is reasonable
to assign a score to a small set of actions, so that the question arises if in these cases it is
reasonable to apply a methodology relatively complex as Electre-Score or if it is not the
case to assign directly a score to the considered actions. We believe that also in case there are
few actions can be reasonable to apply Electre-Score because it permits to obtain a scoring
which is coherent with the outranking relation, which makes the score more explainable and
justifiable (Amgoud and Prade, 2009), and, consequently, in agreement with the principles of
MCDA (Roy, 2010), more acceptable.

– Differently from other Electre methods, Electre-Score is not interested by the instran-
sitivity of the outranking relation. In fact, Electre-Score use outranking relation only to
compare each actions with the sets of limiting profiles, and as we shall show in next Section
3, some reasonable dominance conditions among the set of reference profiles prevent intran-
sitivity between sets of limiting profiles and actions to be evaluated. Observe also that for
each action a the range (sl(a), su(a)) of admissible scores s(a) and the representative score
s◦(a) depends only on the preference comparison of a with the sets of reference profiles. Con-
sequently, sl(a), su(a) and s◦(a) do not depend on the comparison of a with other actions,
which means that independence with respect to irrelevant alternatives holds for the scores
provided by Electre-Score.

The rest of this paper is organized as follows. Section 2 is devoted to some fundamental concepts,
their definitions, and corresponding notation. Section 3 presents the new Electre-Score method,
including the conditions for the construction of the reference set, the assignment of a scoring range
to each action, and the formal definitions of the lower and upper bounds of such a range. Section
4 is related to the conditions about the set of limiting profiles that allow the procedure to be in
accordance with the objectives. Section 5 is devoted to the theoretical results proving desirable
properties of the procedure. Section 6 presents the method by means of an illustrative example
along with some practical aspects. In Section 7 Electre-Score is applied to a real world case
study in the domain of the healthcare system evaluation. Finally, the last section provides the
main conclusions and some lines for future research.

2. Concepts, definitions, and notation

To start, we need to introduce a few notation. Let A = {a1, . . . , ai, . . . , am} denote the set of
actions to which an interval score must be assigned to each of them, G = {g1, . . . , gj , . . . , gn}
denote the set of criteria used to assess the performance of such actions, and gj(ai) denotes the
performance of action ai on criterion gj (with all the performances we can build a performance
table). Consider, without loss of generality, that the preference direction of the criteria is increasing.
Consider also the collection of sets of reference actions B = {Bx1 , . . . , Bxk , . . . , Bx`}, for which a
score is previously defined, and let X = {x1, . . . , xk, . . . , x`} the set of such scores. Each set is
composed of at least one limiting profile as in Electre Tri-nB (see Fernández et al., 2017),
i.e., Bxk = {bk1, . . . , bkp, . . . , bkpk}. As part of Electre methods a credibility degree between all
ordered pairs of actions, σ(a, b), must be computed. This credibility measures on a scale [0, 1] the
degree in which action a outranks action b. To pass from a fuzzy relation to a crisp one, we need to
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define what is called the cutting level λ ∈]0.5, 1]. A brief description of the way Electre methods
compute the degree of credibility is available in the Appendix.

The next three definitions are fundamental.

Definition 1 (Dominance). Consider two actions a and b. Action a dominates action b, whenever
gj(a) > gj(b), for all j = 1, . . . , n, with at least one strict inequality. Let a∆b denote such a binary
dominance relation.

Definition 2 (Fundamental outranking binary relation). Consider two actions a and b from set
A. Once we have fixed the cutting level λ, we say that action a outranks (or is at least as good
as) action b, denoted by a %λ b iff σ(a, b) > λ. It is easy to see that %λ is a reflexive, but not
necessarily symmetric and transitive binary relation. In what follows and with some abuse of the
mathematical language, we will use simply a % b instead of a %λ b to denote this λ−outranking
binary relation (the same applies for the binary relations introduced in the next definition).

Definition 3 (Derived binary relations). From the fundamental outranking binary relation %, we
can derive, for two actions a, b ∈ A, the following three binary relations (which correspond to all
possible combinations of the presence and non-presence of an outranking relation between a and b,
and b and a, respectively).

i) a � b ( preference in favor of a, which means that a is preferred to b) iff a % b and not(b % a);

ii) b � a ( preference in favor of b, which means that b is preferred to a) iff b % a and not(a % b);

iii) a ∼ b ( indifference, which means that actions, a and b, are indifferent) iff a % b and b % a;

iv) a ‖ b ( incomparability, which means that actions, a and b, are incomparable) iff not(a % b)
and not(b % a).

(� is irreflexive and asymmetric; ∼ is reflexive and symmetric; and, ‖ is irreflexive and symmetric.)

Remark 1. From Definitions 2 and 3, it is easy to see that a % b implies, either a � b or a ∼ b.
Taking into account the dominance relation of Definition 1, the following properties hold.

a∆b⇒ a % b (1.1)

a % b and b∆c⇒ a % c (1.2)

a∆b and b % c⇒ a % c (1.3)

a � b and b∆c⇒ a � c (1.4)

a∆b and b � c⇒ a � c (1.5)

3. Electre-Score

This section provides the basic foundations of the Electre-Score method; that is, the necessary
elements for the construction of a reference set, the conditions needed for assigning a score range
to each action, and the formal definition of the lower and upper bounds of such a range. Most
of the material presented in this section is closely related to the Electre Tri-nB method (see
Fernández et al., 2017).

7

                  



3.1. Constructing a reference set

The definition of the reference set and the basic assumption with respect to such reference set are
presented next. This subsection also provided some more results in the same line as in Fernández
et al. (2017).

Definition 4 (Set of reference actions). Let X = {x1, . . . , xk, . . . , x`} denote the set of values
considered as references scores, and Bxk = {bxk1, . . . , bxkp, . . . , bxkpk} denote the set of reference

actions used to characterize score xk. As a result B =
⋃`
k Bxk denotes a set containing all the

reference actions.

Condition 1 (Basic assumptions). The score xk is characterized by a set of reference actions,
Bxk = {bxk1, . . . , bxkp, . . . , bxkpk}, for k = 1, . . . , `, such that:

i) For all bkp, bkq ∈ Bxk there is no preference between bkp and bkq (this implies, there is only
the possibility to have either bkp ∼ bkq or bkp ‖ bkq);

ii) For all bkp ∈ Bxk and bhq ∈ Bxh (xk > xh), it is not possible to have bhq � bkp.

Definition 5 (Relations between an action and a reference set). Consider the following relations
between an action a, and a set of reference actions, Bxk (see Fernández et al., 2017).

i) a % Bxk iff, for all bkq ∈ Bxk , either a ‖ bkq or a % bkq, the latter relation being fulfilled by at
least one bkq ∈ Bxk (note that, for all bkq ∈ Bxk , it is not possible to have bkq � a);

ii) Bxk % a iff, for all bkq ∈ Bxk , either bkq ‖ a or bkq % a, the latter relation being fulfilled by at
least one bkq ∈ Bxk (note that, for all bkq ∈ Bxk , it is not possible to have a � bkq);

iii) a � Bxk iff, for all bkq ∈ Bxk , either a ‖ bkq or a ∼ bkq, or a � bkq, the latter relation being
fulfilled by at least one bkq ∈ Bxk (note that, for all bkq ∈ Bxk , it is not possible to have
bkq � a);

iv) Bxk � a iff, for all bkq ∈ Bxk , either bkq ‖ a or bkq ∼ a, or bkq � a, the latter relation being
fulfilled by at least one bkq ∈ Bxk (note that, for all bkq ∈ Bxk , it is not possible to have
a � bkq);

v) a ∼ Bxk iff, for all bkq ∈ Bxk , either a ‖ bkq or a ∼ bkq, the latter relation being fulfilled by at
least one bkq ∈ Bxk (note that, because ∼ is symmetric, for all bkq ∈ Bxk , it is not possible to
have bkq � a or a � bkq);

vi) a ‖ Bxk iff, for all bkq ∈ Bxk , either a ‖ bkq or, when a � bkq, for some bkq ∈ Bxk , bkp � a,
for some bkp ∈ Bxk , with bkq 6= bkp (note that, because ∼ is symmetric, it is not possible to
have Bxk % a or a % Bxk).

Remark 2. The following implications can be derived from Definitions 1 and 5 (see Fernández
et al., 2017).

i) a � Bxk implies a % Bxk ;

ii) a � Bxk implies not(Bxk % a), and consequently a � Bxk also implies not(Bxk � a);

iii) Bxk � a implies not(a % Bxk), and consequently Bxk � a also implies not(a � Bxk);
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iv) Bxk � a implies Bxk % a;

v) Bxk � a and a∆b implies Bxk � b;

vi) a∆b and b % Bxk implies a % Bxk ;

vii) a∆b and b � Bxk implies a � Bxk .

3.2. Conditions that guarantee the existence of a score range to each alternative

The aim of our ELECTRE score method is to identify a range, ]sl(a), su(a)[ for the score s(a) to be
assigned to actions a ∈ A. In an informal way the lower bound sl(a) can be defined as the highest
value, say x, for which action a is strictly preferred to the representative set Bx and there is no
other value, say x′, such that the representative set Bx′ is strictly preferred to a. For an informal
definition of the upper bound su(a) the reasoning is similar. Let us first discuss some conditions
that guarantee the existence of such a range ]sl(a), su(a)[. Since we only know the relations between
a and the elements of set B (see Definition 5), the lower bound, sl(a), and the upper bound, su(a),
of the range cannot be fixed a priori. However, it is easy to see that we cannot have Bx � a, for any
score x lower than or equal to the lower bound, sl(a). Otherwise, the lower bound was not properly
defined and we could move down (decrease) its value, which makes no sense. Analogously, it is easy
to see that we cannot have a � Bx for any score x greater than or equal to the upper bound, su(a).
Otherwise, the upper bound was not properly defined and we could move up (increase) its value,
which makes no sense. This reasoning led us to establish the following two necessary conditions for
the existence of the range ]sl(a), su(a)[.

Condition 2 (Lower bound necessary condition). If x 6 sl(a), then not(Bx � a), for all a ∈ A.

Condition 3 (Upper bound necessary condition). If x > su(a), then not(a � Bx), for all a ∈ A.

These two conditions are necessary for the existence of the range, but they are not sufficient
because we know nothing about the relations between Bx and a, for an x value strictly comprised
within the range ]sl(a), su(a)[. However, it is easy to see that we cannot have Bx � a, for any
score x strictly greater than the lower bound, sl(a). Otherwise, the lower bound was not properly
defined and we could move up (increase) its value, which makes no sense. Analogously, it is easy
to see that we cannot have a � Bx, for any score x strictly lower than the upper bound, su(a).
Otherwise, the upper bound was not properly defined and we could move down (decrease) its value,
which makes no sense. This reasoning led us to establish the following two sufficient conditions for
the existence of the range ]sl(a), su(a)[.

Condition 4 (No active preference condition of reference sets in the score range). If sl(a) < x <
su(a), then not(Bx � a), for all a ∈ A.

If this condition was violated, then no score s(a), such that sl(a) 6 s(a) < su(a), could be
justified.

Condition 5 (No passive preference condition of reference sets in the score range). If sl(a) < x <
su(a), then not(a � Bx), for all a ∈ A.

Analogously, if this condition was violated, then no score s(a), such that sl(a) < s(a) 6 su(a),
could be justified.

It is easy to see that Conditions 4 and 5 are fulfilled if and only if the next (equivalent) condition
holds.
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Condition 6 (No preference condition of reference sets in the interval). For all possible scores, x,
such that sl(a) < x < su(a), not(Bx � a) and not(a � Bx), for all a ∈ A.

This condition means that assigning to action a, any feasible score, i.e, any score x such that
sl(a) < x < su(a), is only possible when, either a ∼ Bx or a ‖ Bx.

Observe that Conditions 2 and 4 can be replaced by the following condition.

Condition 7 (Lower bound general condition). If x > sl(a), then not(a � Bx), for all a ∈ A.

Analogously, Conditions 3 and 5 can be replaced by the following condition.

Condition 8 (Upper bound general condition). If x < su(a), then not(Bx � a), for all a ∈ A.

Remark 3. By no means do Conditions 2 to 5 imply that the next condition is automatically
fulfilled.

Condition 9 (Indifference/incomparability). If a ∼ Bx or a ‖ Bx, then sl(a) < x < su(a), for all
a ∈ A.

Figure 1 illustrates the above conditions. Notation [Ck] is used instead of Condition k, for
k = 3, 4, 5, 6, 7, 8, 9.

x (score)s(a)

◦ ◦
sl(a) su(a)

not(a � Bx) [C3]◦not(Bx � a) [C2] ◦
not(Bx � a) [C4], not(a � Bx) [C5]

[C6]

a ∼ Bx or a‖Bx[C9]

not(Bx � a) [C8] ◦

not(a � Bx) [C7]◦

Figure 1: Illustration of the necessary and non active and passive preference conditions for the existence of a range
for s(a), ]sl(a), su(a)[

3.3. Definitions of the lower and upper bounds

The formal definitions of the lower and upper bound are as follows.

Definition 6 (Lower bound of the score range). The sl(a) value is the highest value x ∈ X, such
that

– a � Bx and

– not(Bx′ � a) for all x′ ∈ X such that x′ < x.

Definition 7 (Upper bound of the score range). The su(a) value is the lowest value x ∈ X, such
that

– Bx � a and

– not(a � Bx′), for all x′ > x.
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Remark 4. It is obvious that Definitions 6 and 7 ensure that Conditions 2 and 3 are automatically
fulfilled.

Definition 8 (Representative score).

s◦(a) = α · su(a) + (1− α) · sl(a)

with α, 0 6 α 6 1, representing the degree of optimism of the decision-maker.

3.4. Basic notation

The following basic notation should be considered in the rest of this paper, especially in the two
next sections.

– A = {a1, . . . , ai, . . . , am} is the set of actions.

– G = {g1, . . . , gj , . . . , gn} is the set of criteria.

– gj(ai) is the performance of action ai on criterion gj .

– X = {x1, . . . , xk, . . . , x`} is the set of scores, where xk is a real value.

– B = {Bx1 , . . . , Bxk , . . . , Bx`} is the set of sets of reference actions.

– Bxk = {bk1, . . . , bkp, . . . , bkpk} is the set of references actions with score xk.

– a∆b is the dominance relation of a over b.

– a % b is the outranking relation in favor of a.

– b % a is the outranking relation in favor of b.

– a � b is the strict preference relation in favor o a.

– b � a is the strict preference relation in favor o b.

– a ∼ b is the indifference relation between a and b.

– a ‖ b is the incomparability relation between a and b.

– a % Bxk is the outranking relation in favor of action a.

– Bxk % a is the outranking relation in favor of set Bxk .

– a � Bxk is the strict preference relation in favor of action a.

– Bxk � a is the strict preference relation in favor of set Bxk .

– a ∼ Bxk is the indifference relation between a and Bxk .

– a ‖ Bxk is the incomparability relation between a and Bxk .

– s(a) is the score of action a.

– sl(a) is the lower bound for the score of action a.

– su(a) is the upper bound for the score of action a.

– s◦(a) is the representative score of action a.
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3.5. Flowchart of the method

In this subsection we present a flowchart of our method, see Figure 2. We shall consider the case in
which the score is expressed on an interval scale. The four phases of the method can be summarized
as follows.

1. The first phase consists of the basic input data. This includes the set of criteria, the set of
actions or alternatives (it contains those to be scored as well as the ones serving as dummy
or reference actions), and the performance table.

2. The second phase consists of the preference elicitation phase and it contains also input for
the next phase. It includes the following preference parameters:

(a) The weights of criteria that can be obtained through the application of the deck of card
method (see for example, Corrente et al. 2021).

(b) Two anchoring actions and scores, which will be used to obtain all the remaining scores.
These two scores are important to construct an interval scale.

(c) A set of reference actions, other than the anchoring ones, well separated through the
insertion of blank cards as in the deck of cards method.

(d) From the two previous preference parameters we compute, by using the deck of cards
method, the scores of the limiting profiles Bx. The decision-maker should be confronted
to the scores and adjusting them, if necessary.

(e) The veto thresholds, the cutting-off level λ and the degree of optimism α constitute the
last pieces of preference information from the decision-makers.

3. The third phase is related with the scoring procedure, which makes use of the information
provided in the performance table of Phase 1 and all the preference information from Phase
2. The objective of this phase is to build an outranking relation and making an exploration
of such a relation, in order to provide a score range and a representative score for each action.

4. The fourth phase provide a score range ]sl(a), su(a)[ and a representative score s◦(a) for each
alternative a ∈ A, which is the output of the model.

The participation of decision-maker and analyst in the above procedure for co-constructing
the preference parameters can be performed in the line of what is done to assess the weights of
criteria as in SRF method (see Figueira and Roy 2002) and to assess the veto thresholds, which
can be done in a similar way as the discriminating thresholds (see Roy et al. 2014). The only
difference now, is related with the additional preference information needed, which comes from the
definition of the reference actions corresponding to the limiting profiles and their reference scores.
The process is done as in the deck of cards method (see, Corrente et al. 2021), where the interaction
between analyst and decision-maker is even more intense to construct the most adequate reference
scores; inconsistent judgments can lead to revise the preference information and progress or make
evolve the decision aiding process. Even if the previous method was described in a linear way,
any feedback resulting in any phase of the procedure can have consequences that have to be taken
into consideration also in the other phases. In fact, a co-construction process between analyst
and decision-maker is based on the dialog between these two actors to construct the preference
parameters. This is quite different from a pure machine learning elicitation process, which can
make sense and be useful in other contexts.
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Set of criteria Set of actions

Performance
table

Input Data

Start

Criteria weights
Reference

actions

Anchoring levels Reference values

Vetoes and
lambda cut-

ting level

Preference
Information

Scoring procedureComputations

Score ranges and
repesentative scores

Output

End

Figure 2: Flowchart of Electre-Score
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4. Conditions on B, which guarantee the procedure is in accordance with the objec-
tives

This section presents the conditions of the set B that render the procedure or the new method
coherent; that is, in accordance with the objectives the method have been designed for. From these
conditions, a set of new results needed to be proven.

Condition 10 (Separability conditions). The following are the required separability conditions on
set B.

a Dominance based separability conditions.

a.1 Strong dominance. Consider xh > xk. For any two reference actions, bhq ∈ Bxh and
bkp ∈ Bxk , the relation bhq∆bkp holds.

a.2 Soft dominance.

a.2.p ( primal): Consider xh > xk. For all bkp ∈ Bxk , there is at least one bhq ∈ Bxh such
that bhq∆bkp.

a.2.d ( dual): Consider xh > xk. For all bhq ∈ Bxh, there is at least one bkp ∈ Bxk such
that bhq∆bkp.

b Preference based separability conditions.

b.1 Strong preference. Consider xh > xk. For any two reference actions, bhq ∈ Bxh and
bkp ∈ Bxk , the relation bhq � bkp holds.

b.2 Soft preference.

b.2.p ( primal): Consider xh > xk. For all bkp ∈ Bxk , there is at least one bhq ∈ Bxh such
that bhq � bkp.

b.2.d ( dual): Consider xh > xk. For all bhq ∈ Bxh, there is at least one bkp ∈ Bxk such
that bhq � bkp.

Proposition 1 (Comparisons of the actions against reference sets).

i) If the primal soft dominance separability condition holds for B, then for all a ∈ A, a % Bxh
implies not(Bxk � a), for all xh > xk;

ii) If the dual soft dominance separability condition holds for B, then for all a ∈ A, Bxk % a
implies not(a � Bxh), for all xh > xk;

iii) If the dual soft dominance separability condition holds for B, then for all a ∈ A, a � Bxh
implies not(Bxk % a), for all xh > xk;

iv) If the primal soft dominance separability condition holds for B, then for all a ∈ A, Bxk � a
implies not(a % Bxh), for all xh > xk;

v) If both the primal and the dual soft dominance separability condition hold for B, then for all
a ∈ A, a % Bxh implies a % Bxk , for all xh > xk;

vi) If both the primal and the dual soft dominance separability condition hold for B, then for all
a ∈ A, Bxk % a implies Bxh % a, for all xh > xk;
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vii) If both the primal and the dual soft dominance separability condition hold for B, then for all
a ∈ A, a � Bxh implies a � Bxk , for all xh > xk;

viii) If both the primal and the dual soft dominance separability condition hold for B, then for all
a ∈ A, Bxk � a implies Bxh � a, for all xh > xk.

Proof. We shall prove i), iii), v) and vii) because their proofs are analogous to ii), iv), vi) and
viii), respectively. Analogous results have been obtained with respect to sorting procedures in
(Fernández et al., 2017).

i) Suppose that the primal soft dominance separability condition holds for B, a % Bxh for
a ∈ A, and, by contradiction, Bxk � a with xh > xk. Bxk � a implies that there exists
bkp ∈ Bxk such that bkp � a. By primal soft dominance condition there exists bhq ∈ Bxk such
that bhq∆bkp, so that bhq � a, and, consequently, not(a � Bxh). But this is absurd because
contradicts the hypothesis a % Bxh .

iii) Suppose that the dual soft dominance separability condition holds for B and a � Bxh for
a ∈ A. a � Bxh implies that there exists bhp ∈ Bxh such that a � bhp. For xh > xk, by dual
soft dominance condition, there exists bkq ∈ Bxk , such that bhp∆bkq, so that a � bkq, and,
consequently, not(Bxk % a).

v) Suppose that the primal and the dual soft dominance separability condition hold for B and
a % Bxh for a ∈ A. a % Bxh implies that there exists bhp ∈ Bxh such that a % bhp. For
xh > xk, by dual soft dominance condition there exists bkq ∈ Bxk such that bhp∆bkq, so that
a % bhp implies a % bkq. By contradiction, suppose that there is bkr ∈ Bxk such that bkr � a.
By primal soft dominance there exists bhs∆bkr, so that bhs � a. But this is absurd because
contradicts the hypothesis a % Bxh . Thus we get that there is bkq ∈ Bxk for which a % bkq
and there is no bkr ∈ Bxk for which bkr � a, which imply a % Bxk .

vii) Suppose that the primal and the dual soft dominance separability condition hold for B and
a � Bxh for a ∈ A. With arguments analogous to those used in the proof of v), we get that
there is bkq ∈ Bxk for which a � bkq and there is no bkr ∈ Bxk for which bkr � a, which imply
a � Bxk .

Proposition 2 (Upper and lower bound sufficiency). If B fulfills both the primal and the dual
soft dominance separability conditions (see Condition 10, points a.2.p and a.2.d), then Conditions
4 and 5 are also fulfilled.

Proof. By contradiction, suppose that there exist xh ∈ X and a ∈ A such that xh < su(a) and
Bxh � a. By Definition 7, this would imply that there should exist xk > xh such that a � Bxk .
Thus, there would exist bkp ∈ Bxk such that a � bkp. By Condition a.2.p (primal), there should
exist bhq ∈ Bxh such that bkp∆bhq. Consequently, a � bhq, which would imply not(Bxh � a),
contradicting thus the hypothesis Bxh � a. Therefore, Condition 4 holds.

Analogously, by contradiction, suppose that there exists xh ∈ X and a ∈ A such that xh > sl(a)
and a � Bxh . By Definition 6, this would imply that there should exist xk < xh such that Bxk � a.
Thus, there would exist bkp ∈ Bxk such that bkp � a. By Condition a.2.d (dual), there should
exist bhq ∈ Bxh such that bhq∆bkp. Consequently, bhq � a which would imply not(a � Bxh),
contradicting thus the hypothesis a � Bxh . Therefore, Condition 5 holds.
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Proposition 3 (Implications of soft dominance in a preference of an action w.r.t. a set). If B
fulfills both the primal and the dual soft dominance separability conditions (see Points a.2.p and
a.2.d of Condition 10), then, for any a ∈ A, a � Bx for all x 6 sl(a).

Proof. By Definition 6, we have a � Bsl(a), and, because Points a.2.p and a.2.d (primal and dual)

of Condition 10 hold, by Proposition 1 vii), we obtain a � Bx, for all x < sl(a).

Proposition 4 (Implications of soft dominance in a preference of a set w.r.t. an action). If B
fulfills both the primal and the dual soft dominance separability conditions (see Points a.2.p and
a.2.d of condition 10), then, for any a ∈ A, Bx � a for all x > su(a).

Proof. By Definition 7, we have Bsu(a) � a and, because Points a.2.p and a.2.d (primal and dual)
of Condition 10 hold, by Proposition 1 viii), we obtain Bx � a, for all x > su(a).

Proposition 5 (Implications of soft dominance in the indifference/incomparability region). If B
fulfills both the primal and the dual soft dominance separability conditions (see Condition 10, points
a.2.p and a.2.d), then Conditions 9 is fulfilled. Moreover, in such a case, the value su(a) is simply
the highest value, such that a � Bx, for x < su(a), and sl(a) is the lowest value, such that Bx � a,
for x > sl(a), for all a ∈ A (i.e., the second parts of Definitions 6 and 7 can be neglected because
they are automatically fulfilled by themselves)

Proof. We have already noted that Conditions 4 and 5 are equivalent to Condition 6, in which,
for all a ∈ A and, for all values x such that sl(a) < x < su(a), not(Bx � a) and not(a � Bx).
Therefore, we have to prove only that if Points a.2.p and a.2.d of Condition 10 are satisfied, then
for all values x such that not(Bx � a) and not(a � Bx), we have sl(a) < x < su(a). This is true
because

– by Proposition 3, if x 6 sl(a), then a � Bx; and,

– by Proposition 4, if x > su(a), then Bx � a.

Consequently, we obtain that, under the same conditions, sl(a) is simply the highest value x such
that a � Bx, and, su(a) is simply the lowest value x such that Bx � a.

5. Theoretical results

This section will show the consistency of the method with respect to some fundamental and quite
natural requirements, namely the uniqueness, independence, monotonicity, conformity, homogene-
ity, and stability.

Definition 9 (Inserting and deleting operations). The following two operations are considered:

i) Inserting operation:

i.a) a new set Bx is inserted in B;

i.b) a new action b is inserted in Bx.

ii) Deleting operation.

ii.a) a set Bx is removed from B;
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ii.b) an action b is removed from Bx.

Definition 10 (Structural requirements). The following structural requirements of the method are
considered:

i) Uniqueness. For each action a ∈ A, there is a single value sl(a) and a single value su(a).

ii) Independence. The definition of the values sl(a) and su(a), for action a ∈ A, does not depend
on the other actions in A \ {a}.

iii) Monotonicity. If a∆a′, then sl(a) > sl(a′) and su(a) > su(a′).

iv) Conformity. If a ∈ Bxk , then sl(a) = xk−1 and su(a) = xk+1.

v) Homogeneity. If two actions, a and a′, compare the same way with respect to the reference
actions in B, then sl(a) = sl(a′) and su(a) = su(a′).

vi) Stability. For a ∈ A with xr = sl(a) < su(a) = xs, let sl∗(a) and su∗(a) be the new bounds in
consequence of one of the operations of Definition 9. Then

xr−1 6 sl∗(a) 6 xr+1

and
xs−1 6 su∗(a) 6 xs+1.

The latter requirement means that single inserting or deleting operations according to Definition
9 imply a minimal perturbation on the score range of each action.

Note that uniqueness, independence, monotonicity and homogeneity are clearly satisfied. We
only focus our attention on conformity and stability.

Theorem 1 (Conformity). If B fulfills both the primal and the dual soft dominance and preference
separability conditions (see Points a.2.p, a.2.d, b.2.p, and b.2.d of Condition 10), then the conformity
property of Definition 10 is fulfilled.

Proof. By Points b.2.p and b.2.d of Condition 10, for each a ∈ Bxk there exist bk−1p ∈ Bxk−1
, such

that
a � bk−1p (2)

and bk+1q ∈ Bxk+1
, such that

bk+1q � a. (3)

By contradiction, let us suppose that there exists bk−1r ∈ Bxk−1
, such that

bk−1r � a. (4)

By Point a.2.p of Condition 10, there would exist bks ∈ Bxk such that bks∆bk−1r that, together
with (4), would imply bks � a, which is impossible because we cannot have a limiting profile of
a class preferred to another limiting profile of the same class. Consequently, there cannot be any
profile from Bxk−1

preferred to bks, which, together with (2), implies that

a � Bxk−1
. (5)
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Again, by contradiction, let us suppose that there exists bk+1t ∈ Bxk+1
, such that

a � bk+1t. (6)

By Point b.2.d of Condition 10, there would exist bku ∈ Bxk such that bk+1t∆bku that, together
with (6) would imply a � bku, which is impossible because we cannot have a limiting profile of a
class preferred to another limiting profile of the same class. Consequently, a cannot be preferred
to any profile from Bxk+1

, which, together with (3), implies that

Bxk+1
� a. (7)

Based on these considerations and taking any a ∈ Bxk , we can say that

– due to Proposition 1 vii) and (5) for any xh < xk,

a � Bxh , (8)

– from Point i) of Condition 1,

not(a � Bxk) and not(Bxk � a), (9)

– due to Proposition 1) viii) and (7) for any xh > xk,

Bxh � a. (10)

Therefore,

◦ k − 1 is the maximum value of h, for which a � Bxh and, consequently, by Proposition
5, sl(a) = xk−1,

◦ k + 1 is the minimum value of h, for which, Bxh � a and, consequently, by Proposition
5, su(a) = xk+1.

Lemma 1 (Inserting a reference set: consequences w.r.t. lower bound). If B fulfills both the primal
and the dual soft dominance separability conditions (see Points a.2.p and a.2.d of Condition 10)
and if a set of limiting profiles Bx is inserted in B in such a way that these conditions are still
fulfilled, and sl(a) = xs we have either

xs < sl∗(a) = x < xs+1

or
sl∗(a) = sl(a).

Moreover, sl∗(a) = x if and only if

– xs < x < xs+1; and.

– a � Bx.

Proof. If a set Bx is added we can have the following cases:
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1. x < sl(a): in this case, by Proposition 3, we obtain a � Bx. Consequently, the highest value z
from X ∪{x} such that a � Bz is again sl(a), which, by Proposition 5, implies sl∗(a) = sl(a);

2. sl(a) = xs < x < xs+1 and not(a � Bx): also in this case the maximal value z from X ∪ {x}
such that a � Bz is sl(a), which, again by Proposition 5, implies sl∗(a) = sl(a);

3. sl(a) = xs < x < xs+1 and a � Bx: in this case the highest value z from X ∪ {x}, such that,
a � Bz is x, which, again by Proposition 5, implies sl∗(a) = x;

4. sl(a) = xs < xs+1 < x: in this case we cannot have a � Bx because from Condition 7 (that
is, by the joint consideration of Conditions 2 and 4) not(a � Bxs+1), but, by Proposition 1
vii), a � Bx would imply a � Bxs+1 .

Lemma 2 (Inserting a reference set: consequences for the upper bound). If B fulfills both the
primal and the dual soft dominance separability conditions (see Points a.2.p and a.2.d of Condition
10), and if a set of limiting profiles Bx is inserted in B in such a way that these conditions are still
fulfilled, and su(a) = xt we have either

xt−1 < su∗(a) = x < xt

or
su∗(a) = su(a).

Moreover, su∗(a) = x if and only if

– xt−1 < x < xt; and,

– Bx � a.

Proof. If a set Bx is added, then we can have the following cases:

1. x > su(a): in this case, by Proposition 3, we obtain Bx � a. Consequently, the lowest
value z from X ∪ {x} such that Bz � a is again su(a), which, from Proposition 5, implies
su∗(a) = su(a);

2. su(a) = xt > x > xt−1 and not(Bx � a): also in this case the lowest value z from X ∪ {x}
such that Bz � a is su(a), which, again by Proposition 5, implies su∗(a) = su(a);

3. su(a) = xt > x > xt−1 and Bx � a: in this case the lowest value z from X ∪ {x}, such that,
Bz � a is x, which, again by Proposition 5, implies su∗(a) = x;

4. su(a) = xt > xt−1 > x: in this case one cannot have Bx � a because by Condition 8 (that is,
by the joint consideration of Conditions 3 and 5) not(Bxt−1 � a), but, by Proposition 1 viii),
Bx � a would imply Bxt−1 � a.

Remark 5 (Deleting a reference set). If both the primal and the dual soft dominance separability
conditions (see Points a.2.p and a.2.d of Condition 10) hold for B and a set of limiting profiles Bx
is deleted from B, clearly the primal and the dual soft dominance separability conditions continue
to be fulfilled.
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Lemma 3 (Deleting a reference set: consequences w.r.t. lower bound). If B fulfills both the primal
and the dual soft dominance separability conditions (see points a.2.p and a.2.d of Condition 10), a
set of limiting profiles Bx is removed from B, and sl(a) = xs, then

– sl(a) = xs = x and sl∗(a) = xs−1; or

– sl(a) = xs 6= x and sl∗(a) = sl(a).

Proof. According to Remark 5, Points a.2.p and a.2.d of Condition 10 hold also after Bx is removed
from B. Consequently, from Proposition 5, sl∗(a) continues to be the highest value z ∈ X \ {x}
such that a � Bz. We can have two cases

sl(a) = xs = x: from Proposition 3 we get that the highest value z ∈ X \ {x} such that
a � Bz becomes xs−1 and, consequently, sl∗(a) = xs−1;

sl(a) = xs 6= x: the highest value z ∈ X \ {x} such that a � Bz continues to be xs and,
consequently, sl∗(a) = sl(a) = xs.

Lemma 4 (Deleting a reference set: consequences w.r.t. upper bound). If B fulfills both the primal
and the dual soft dominance separability conditions (see Points a.2.p and a.2.d of Condition 10), a
set of limiting profiles Bx is removed from B, and su(a) = xt, then

– su(a) = xt = x and su∗(a) = xt+1; or,

– su(a) = xt 6= x and su∗(a) = su(a).

Proof. Remember that from Remark 5, Points a.2.p and a.2.d of Condition 10 hold also after Bx
is removed from B, and, taking into account Proposition 5, su∗(a) continues to be the lowest value
z ∈ X \ {x} such that Bz � a. We can have two cases:

1. su(a) = xt = x: from Proposition 4 we get the lowest value z ∈ X \ {x} such that Bz � a
becomes xt+1 and, consequently, su∗(a) = xt+1;

2. su(a) = xt 6= x: the lowest value z ∈ X \ {x} such that Bz � a continues to be xt and,
consequently, su∗(a) = su(a) = xt.

Lemma 5 (Inserting a reference action: consequences w.r.t. lower bound). If B fulfills both the
primal and the dual soft dominance separability conditions (see Points a.2.p and a.2.d of Condition
10), and if a limiting profile bkp is added to Bxk in such a way that these conditions are still fulfilled,
and sl(a) = xs, then

– sl∗(a) = xs−1 if and only if bkp � a and sl(a) = xs = xk;

– sl∗(a) = xs+1, if and only if a � bkp, xk = xs+1 and there is no bs+1q ∈ Bxs+1 such that
bs+1q � a;

– sl∗(a) = sl(a), otherwise.
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Proof. If bkp � a and sl(a) = xs = xk, after adding bkp,we have not(a � Bxs). Consequently,
taking into consideration Proposition 3, the highest value z such that a � Bz becomes xs−1, so
that sl∗(a) = xs−1.

If a � bkp, xk = xs+1 and there is no other bkq ∈ Bxs+1 such that bkq � a, after adding bkp, we
have a � Bxs+1 . In this case, the highest value z such that a � Bz is no more xs and it becomes
xs+1, in such a way that, according to Proposition 5, we obtain sl∗(a) = xs+1.

All of the other possible cases are as follows:

1. xk < sl(a): because a � Bsl(a) and after adding bkp, Points a.2.p and a.2.d of Condition 10

are still satisfied, then the highest z such that a � Bz remains sl(a), which, from Proposition
5, leads to sl∗(a) = sl(a);

2. xk = sl(a), but not(bkp � a): in this case, after adding the limiting profile bkp, we continue
to have a � Bxk , in such a way that the highest z such that a � Bz remains sl(a), which,
from Proposition 5, leads to sl∗(a) = sl(a);

3. xk = xs+1, but not(a � bkp) or there is at least one bkq ∈ Bxs+1 , such that, bkq � a: in this
case, after adding the reference action bkp, we continue to have not(a � Bxs+1), in such a
way that the highest z, such that, a � Bz remains sl(a), which, from Proposition 5, leads to
sl∗(a) = sl(a);

4. xk > xs+1: because not(a � Bxs+1) and because after adding bkp, Points a.2.p and a.2.d of
Condition 10 are still satisfied, then, from Proposition 1 vii), we obtain not(a � Bxk), in
such a way that the highest z such that a � Bz remains sl(a) which, by Proposition 5, leads
to sl∗(a) = sl(a).

Lemma 6 (Inserting a reference action: consequences w.r.t. upper bound). If B fulfills both the
primal and the dual soft dominance separability conditions (see Points a.2.p and a.2.d of Condition
10), and if a limiting profile bkp is added to Bxk in such a way that these conditions are still fulfilled,
and su(a) = xt, then

– su∗(a) = xt+1, if a � bkp and su(a) = xt = xk;

– su∗(a) = xt−1, if bkp � a, xk = xt−1 and there is no bkq ∈ Bxt−1 such that a � bkq;

– su∗(a) = su(a), otherwise.

Proof. If a � bkp and su(a) = xt = xk, then, after adding bkp, we have not(Bxk � a). Consequently,
taking into consideration Proposition 3, the lowest value z such that Bz � a becomes xt+1, in such
a way that su∗(a) = xt+1.

If bkp � a, xk = xt−1 and there is no other bkq ∈ Bxt−1 such that a � bkq, after adding bkp, we
have Bxt−1 � a. In this case, the lowest value z such that Bz � a is no more xt and it becomes
xt−1, in such a way that, according to Proposition 5, we obtain su∗(a) = xt−1.

All of the other possible cases are as follows:

1. xk > su(a): because Bsu(a) � a and after adding bkp, Points a.2.p and a.2.d of Condition 10
are still satisfied, the lowest z such that Bz � a remains su(a), which, by Proposition 5, leads
to su∗(a) = su(a);
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2. xk = su(a), but not(a � bkp): in this case, after adding the reference action bkp, we continue
to have Bxk � a, in such a way that the lowest z such that Bz � a remains su(a), which, by
Proposition 5, leads to su∗(a) = su(a);

3. xk = xt−1, but not(bkp � a) or there is at least one bkq ∈ Bxt−1 such that a � bkq: in this
case, after adding the reference action bkp, we continue to have not(Bxt−1 � a), in such a
way that the lowest z such that Bz � a remains su(a), which, by Proposition 5, leads to
su∗(a) = su(a);

4. xk < xt−1: because not(Bxt−1 � a) and because after adding bkp Points a.2.p and a.2.d of
Condition 10 are still satisfied, then, by Proposition 1 viii), we obtain not(Bxk � a), in such
a way that the lowest z such that Bz � a remains su(a), which, by Proposition 5, leads to
su∗(a) = su(a).

Lemma 7 (Deleting a reference action: consequences w.r.t. lower bound). If B fulfills both the
primal and the dual soft dominance separability conditions (see Points a.2.p and a.2.d of Condition
10), and if a limiting profile bkp is removed from Bxk , in such a way that, these conditions are still
fulfilled, and sl(a) = xs, then

– sl∗(a) = xs−1, if sl(a) = xk, a � bkp and there is no other bkq ∈ Bxk such that a � bkq,

– sl∗(a) = xs+1, if bkp � a, xk = xs+1, there is no other bkq ∈ Bxs+1 such that bkq � a and
there exists at least one reference action bkr ∈ Bxs+1 such that a � bkr;

– sl∗(a) = sl(a), otherwise.

Proof. If sl(a) = xk, a � bkp and there is no other bkq ∈ Bxk such that a � bkq, then after bkp is
removed we have not(a � Bxk). Consequently, taking into consideration Proposition 3, the highest
value z such that a � Bz becomes xs−1, in such a way that sl∗(a) = xs−1.

If bkp � a, xk = xs+1, there is no other bkq ∈ Bxs+1 such that bkq � a and there exists at least
one limiting profile bkr ∈ Bxs+1 such that a � bkr, after removing bkp we have a � Bxs+1 , in such
a way that the highest z such that a � Bz becomes xs+1 and, consequently, from Proposition 5,
sl∗(a) = xs+1.

All the other possible cases are as follows:

1. xk < sl(a): because after removing bkp the highest z such that a � Bz remains sl(a) and Points
a.2.p and a.2.d of Condition 10 are still satisfied, by Proposition 5, we obtain sl∗(a) = sl(a);

2. xk = sl(a), and not(a � bkp) or there is at least another bkq ∈ Bxk such that a � bkq: in this
case, after removing the limiting profile bkp, we continue to have a � Bsl(a), and, therefore,

sl∗(a) = sl(a);

3. xk = xs+1, but not(bkp � a) or there is at least another bkq ∈ Bxs+1 such that bkq � a or
there does not exist any reference action bkr ∈ Bxs+1 such that a � bkr: in this case, after
removing the limiting profile bkp, we continue to have not(a � Bxs+1), in such a way that the
highest z such that Bz � a remains sl(a), which gives sl∗(a) = sl(a);
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4. xk > xs+1: because not(a � Bxs+1) and because after removing bkp Points a.2.p and a.2.d of
Condition 10 are still satisfied, then, by Proposition 1 vii) we obtain not(a � Bxk), in such
a way that the highest z such that a � Bz remains sl(a), which leads to sl∗(a) = sl(a).

Lemma 8 (Deleting a reference action: consequences w.r.t. upper bound). If B fulfills both the
primal and the dual soft dominance separability conditions (see Points a.2.p and a.2.d of Condition
10) and if a limiting profile bkp is removed from Bxk in such a way that these conditions are still
fulfilled, and su(a) = xt, then

– su∗(a) = xt+1, if su(a) = xk, bkp � a and there is no other bkq ∈ Bxk such that bkq � a,

– su∗(a) = xt−1, if a � bkp, xk = xt−1, there is no bkq ∈ Bxt−1 such that a � bkq and there is at
least one reference action bkr ∈ Bxt−1 such that bkr � a;

– sl∗(a) = su(a), otherwise.

Proof. If su(a) = xk, bkp � a and there is no other bkq ∈ Bxk such that bkq � a, then after bkp is
removed one has not(Bxk � a). Consequently, taking into consideration Proposition 3, the lowest
value z such that Bz � a becomes xt+1, in such a way that su∗(a) = xt+1.

If a � bkp, xk = xt−1, there is no other bkq ∈ Bxt−1 such that a � bkq and there is at least
one limiting profile bkr ∈ Bxt−1 such that bkr � a, after removing bkp one has Bxt−1 � a, in such
a way that the lowest z such that a � Bz becomes xt−1 and, consequently, from Proposition 5,
su∗(a) = xt−1.

All the other possible cases are as follows:

1. xk > su(a): because after removing bkp the lowest z such that Bz � a remains su(a) and Points
a.2.p and a.2.d of Condition 10 are still satisfied, by Proposition 5, we obtain su∗(a) = su(a);

2. xk = su(a), and not(bkp � a) or there is at least another bkq ∈ Bxk such that bkq � a: in this
case, after removing the reference action bkp, we continue to have Bsu(a) � a, and, therefore,
su∗(a) = su(a);

3. xk = xt−1, but not(a � bkp) or there is at least another bkq ∈ Bxt−1 such that a � bkq, or
there does not exist any reference action bkr ∈ Bxt−1 such that bkr � a: in this case, after
removing the reference action bkp, we continue to have not(Bxt−1 � a), in such a way that
the lowest z such that Bz � a remains su(a), which leads to su∗(a) = su(a);

4. xk < xt−1: because not(Bxt−1 � a) and because after removing bkp Points a.2.p and a.2.d of
Condition 10 are still satisfied, then, by Proposition 1 viii), we obtain not(Bxk � a), in such
a way that the lowest z, such, that Bz � a remains su(a), which leads to su∗(a) = su(a).

Putting together the results of Lemmas 1-8 we get the following general result.

Theorem 2 (Stability). If B fulfills both the primal and the dual soft dominance separability
conditions (see Points a.2.p and a.2.d of Condition 10) then the stability condition holds.

With respect to the representative score s◦(a) the following requirements seem interesting.
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Definition 11 (Structural requirements for the representative score). The following structural
requirements are considered:

i) Uniqueness. For each action a ∈ A, there is a single score s◦(a).

ii) Independence. The definition of the score s◦(a) for action a ∈ A does not depend on the
other actions in A \ {a}.

iii) Monotonicity. If a∆a′, then s◦(a) > s◦(a′).

iv) Homogeneity. If two actions, a and a′, compare the same way with respect to the reference
actions in B, then s◦(a) = s◦(a′).

Clearly all the above requirements are satisfied by the representative score s◦(a).

6. Practical issues and an illustrative example

This section presents some practical aspects of the method and an illustrative example

6.1. Building the set of reference actions

Let us start by observing that in defining the collection of sets of references actions

B = {Bx1 , . . . , Bxk , . . . , Bx`}

it is necessary to take care that all actions a from A the following condition is satisfied

Bx` � a � Bx1 . (11)

Condition (11) permits us to compare all actions a from A with sets Bx of reference actions, so
that a range ]sl(a), su(a)[ for the score s(a) is assigned to each a ∈ A.
There are several different ways of building the set of reference actions. Next we present two
possible procedures.

Direct method. We ask the decision-maker to propose a set of reference actions that are used to
characterize some scoring levels, for example, 20, 40, 60, and 80. Several reference actions can be
proposed a priori to characterize the same scoring level. We assume that the scales are bounded
from below and from above in such a way that we can consider reference the actions b0 and b100,
characterizing the scores of 0 and 100 with actions having, on each considered criterion, the lower
bound performances and the upper bound performances, respectively.

A deck of cards based technique. We can also ask the decision-maker to propose a set of actions
to be taken as reference actions and use the deck of cads method in a similar way as in Figueira
and Roy (2002). These actions must be ordered from the worst to the best, with the possibility of
some ties. The decision-maker is required to put some blank cards between these equivalent sets of
reference actions to assign a score to each equivalence class, on the basis of the extreme scores 0 and
100. The scores thus obtained are not necessarily equally spaced. It should be noticed that other
values different from 0 and 100 can be used (this is also true when using the previous method).
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6.2. The method

The method is now presented in a very simple way. Remember that to assign a score s(a) to the
action a ∈ A, we should firstly choose a λ cutting level to transform the fuzzy outranking relation
into a crispy relation.

1. Find the set of reference actions, Bx, with the highest score x, such that a � Bx and, for all
x′ < x, we have either a � Bx′ or a ‖ Bx′ . It is then natural to consider a score s(a) such that
s(a) > x = sl(a), and indeed, according Definition 6, we have sl(a) = x. Let us remember also
that by Proposition 5, if both the primal and the dual soft dominance separability conditions
(see Condition 10, points a.2.p and a.2.d) hold, then sl(a) is simply the highest value, such
that a � Bx.

2. Find the set of reference actions, Bx, with the lowest score x, such that Bx � a and, for
all x′ > x, we have either Bx′ � a or a ‖ Bx′ . It is then natural to consider a score s(a)
such that s(a) < x = su(a), and indeed, according Definition 7, we have su(a) = x. Let
us remember also that by Proposition 5, if both the primal and the dual soft dominance
separability conditions (see Condition 10, points a.2.p and a.2.d) hold, then su(a) is simply
the lowest value, such that Bx � a.

6.3. Illustrative example

We consider the example in Figueira et al. (2009) regarding the evaluation of some sites for the
location of a new hotel. The set of criteria is as follows:

1. Investment costs (Scale unit: Ke; Code: ICOST; notation: g1; preference direction: minimiza-
tion). This criterion comprises the land purchasing costs, as well as the costs for building the
new hotel.

2. Annual costs (Scale unit: Ke; Code: ACOST; notation: g2; preference direction: minimiza-
tion). This criterion comprises the hotel operating costs.

3. Recruitment (Scale unit: verbal levels (seven); Code: RECRU; notation: g3; preference direc-
tion: maximization). This criterion models the possibility of recruiting workers.

4. Image (Scale unit: verbal levels (seven); Code: IMAGE; notation: g4; preference direction:
maximization). This criterion models the perceptions of the clients about the district where
the new hotel will be located.

5. Access (Scale unit: verbal levels (seven); Code: ACCES; notation: g5; preference direction:
maximization). This criterion models the possibility of recruiting workers.

The verbal scale used for the last three criteria comprises the following levels (in between paren-
thesis we used a numerical code for each level): very bad[1]; bad[2]; rather bad[3]; average[4];
rather good[5]; good[6]; very good[7].

There are five potential sites for the location of the new hotel. The performance table can be
presented as follows (Table 1).

The weights, discriminating (indifference and preference) thresholds used in the method are the
following (see Table 2). Let us consider an ordered pair of actions (a, b) ∈ A×A. The performance
of b is assumed to be worse than the performance of a. This means that the variable thresholds
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a ICOST (g1) ACOST (g2) RECRU (g3) IMAGE (g4) ACCES (g5)

a1 13 000 3 000 4 4 4
a2 15 000 2 500 6 2 7
a3 10 900 3 400 6 6 1
a4 15 500 3 500 6 6 6
a5 15 000 2 600 6 1 2

Table 1: Performance table

presented in the next table with respect to criteria g1 and g2 are direct variable thresholds (see Roy
et al., 2014). For the sake of simplicity, no veto thresholds are considered in this example. For the
remaining criteria, the thresholds are constant (the numbers represent the differences of levels, not
the scale levels. Thus, the indifference threshold is a difference of one performance level, while the
preference threshold corresponds to a difference of two performance levels).

Parameters ICOST (g1) ACOST (g2) RECRU (g3) IMAGE (g4) ACCES (g5)

kj 5 4 3 3 3

qj(gj(b)) 250 + 0.03g1(b) 50 + 0.05g2(b) 1 1 1
pj(gj(b)) 500 + 0.05g1(b) 100 + 0.07g2(b) 2 2 2

Table 2: Parameters table

Our set of limiting profiles is composed of seven subsets; that is, B = {Bx1 , Bx2 , Bx3 , Bx4 , Bx5 , Bx6 ,
Bx7}. This means that will be defined seven reference values X = {x1, x2, x3, x4, x5, x6, x7}. These
values were obtained with the deck of cards method proposed in Bottero et al. (2018) to build
interval scales, by fixing two reference levels. In this work, and without loss of generality, we will
put x1 = 0 and x7 = 100.

The B sets are characterized by at least a single limiting profile as follows.

Bx1=0 = {b11 = (18 00, 4 000, 1, 1, 1)};

Bx2 = {b21 = (17 000, 3 500, 2, 2, 1), b22 = (16 500, 3 700, 1, 2, 1)};

Bx3 = {b31 = (15 350, 3 200, 3, 1, 2)};

Bx4 = {b41 = (14 250, 2 850, 3, 4, 3), b42 = (13 750, 3 150, 4, 3, 3)};

Bx5 = {b51 = (12 650, 2 650, 4, 4, 5)};

Bx6 = {b61 = (11 500, 2 100, 5, 6, 5), b62 = (11 000, 2 500, 6, 5, 7)};

Bx7=100 = {b71 = (10 000, 2 000, 7, 7, 7)};

The deck of cards method applied to this problem works as follows.

1. Suppose the decision-maker provides the following strict order on the subsets of reference
profiles (≺ means “strictly less preferred than”):

Bx1 ≺ Bx2 ≺ Bx3 ≺ Bx4 ≺ Bx5 ≺ Bx6 ≺ Bx7 .
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2. We then call the attention of the decision-maker to the fact that if the difference between
two consecutive sets is bigger than the difference of other pair of consecutive subsets, she/he
should add more blank cards in the first two consecutive ones than in the second ones (for
more details see Bottero et al., 2018). We may obtain the following ranking of the subsets
with the blank cards in between consecutive ones (in brackets):

Bx1 [1] Bx2 [2] Bx3 [0] Bx4 [1] Bx5 [0] Bx6 [2] Bx7 .

Zero blank cards between two consecutive sets of limiting profiles does not mean that the
limiting profiles of the two consecutive sets have the same value, but only that the difference
is minimal. We know that the number of units between Bx1 and Bx7 is h = (1 + 1) + (2 +
1) + (0 + 1) + (1 + 1) + (0 + 1) + (2 + 1) = 12.

3. In this step we should define the two reference levels. As stated before, we considered that
the value of all the limiting profiles in Bx1 is 0; that is, x1 = 0 and that the value of all the
limiting profiles in Bx7 is 100, i.e., x7 = 100.

4. Consequently, we can compute the value of the unit as follows.

u =
x7 − x1

h
=

100− 0

12
= 8.33.

5. The computations of the remaining values in X is easy because we know the number of units
separating two consecutive sets of limiting profiles. We have thus,

x1 = 0, x2 = 16.67, x3 = 41.67, x4 = 50, x5 = 66.67, x6 = 75.00, x7 = 100.

Let us consider now the comparison table of all of our five sites against the limiting profiles
(Table 3).

b a1 � b a2 � b a3 � b a4 � b a5 � b b � a1 b � a2 b � a3 b � a4 b � a5
b11 � � � � �
b21 � � � � �
b22 � � � � �
b31 � � � � �
b41 � � �
b42 � �
b51 � �
b61 � � � � �
b62 � � � � �
b71 � � � � �

Table 3: Comparison table

Now, for the definition of the score range of each alternative, we can take advantage of this
table. Let us consider action a1 and try to identify sl(a1) < s(a) < su(a1). For the lower bound, it
is provided by x3 and the upper bound is provided by x6. Thus, the range for score of a1 becomes.

41.67 < s(a1) < 75.

With the same procedure we can derive the range for all the five actions:
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41.67 < s(a1) < 75;

50 < s(a2) < 75;

50 < s(a3) < 75;

50 < s(a4) < 66.67;

50 < s(a5) < 66.67.

Adopting a degree of optimism α = 0.7, we obtain the following representative scores:

s◦(a1) = 65, s◦(a2) = 67.5, s◦(a3) = 67.5, s◦(a4) = 61.67, s◦(a5) = 61.67.

7. A case study: Measuring performances of Healthcare Access and Quality Index

Assessing the performances of healthcare systems are becoming more and more important; see e.g.
(Organization, 2000; Nolte and McKee, 2004, 2008; Radley et al., 2015). Overall healthcare system
assessment can benefit from a non-compensatory approach partially or completely preventing that
bad performances on some criteria could be outweighed by a combination of relatively better
performances on some other criteria. In this perspective, we applied Electre-Score to the
assessment of the Healthcare Access and Quality (HAQ) index (Fullman et al., 2018) build on the
basis of Global Burden of Disease Study 2016 (Vos et al., 2017). HAQ uses 32 causes from which
death should not occur in the presence of effective care. Each cause is transformed into a scale of
0100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th
percentile (best). HAQ overall index is obtained applying principal components analysis using all
scaled cause values. We applied our methodology on the first 60 best ranked countries in the HAQ
2016 index.

The list of the 32 causes considered is the following: g1, Tuberculosis; g2, Diarrhoeal diseases;
g3, LRIs; g4, URIs; g5, Diphtheria; g6, Whooping cough; g7, Tetanus; g8, Measles; g9, Maternal
disorders; g10, Neonatal disorders; g11, NM skin cancer (SCC); g12, Breast cancer; g13, Cervical
cancer; g14, Uterine cancer; g15, Colon cancer; g16, Testicular cancer; g17, Hodgkins lymphoma; g18,
Leukaemia; g19, Rheumatic HD; g20, Ischaemic HD; g21, Stroke; g22, Hypertensive HD; g23, Chronic
respiratory; g24, Peptic ulcer; g25, Appendicitis; g26, Hernia; g27, Gallbladder; g28, Epilepsy; g29,
Diabetes; g30, Chronic kidney; g31, Congenital heart; g32, Adverse med treat. These 32 causes
constitutes the set of criteria we considered.

We fixed ten reference actions with the following procedure. For each criterion gj , j = 1, . . . , 32,
we considered the worst (minimal) and the best (maximal) performances denoted b1j and b10j ,
respectively, in the set of 60 considered countries. After we fixed the values of the performances of
the other reference actions as follows:

brj = int

[
b1j +

(b1j − b10j ) · (r − 1)

9

]
, r = 1, . . . , 32,

where int(x) is the approximation of x to the closest integer value. The reference actions obtained
with this procedure are presented in Table 4.

For all criteria gj , j = 1 . . . , 32, we considered indifference threshold qj = 2, preference threshold
pj = 5 and veto threshold vj = 10, respectively. To show the versatility of the proposed approach
we considered two basic scenarios:

28

                  



brj g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19 g20 g21 g22 g23 g24 g25 g26 g27 g28 g29 g30 g31 g32
b1 51 73 41 100 100 67 100 83 78 46 20 55 33 53 43 39 26 16 54 15 24 24 68 51 69 69 51 48 42 25 28 30

b2 56 76 47 100 100 70 100 84 80 52 28 60 40 58 49 45 34 25 59 24 32 32 71 56 72 72 56 53 48 33 36 37

b3 61 79 54 100 100 74 100 86 82 58 37 65 47 63 55 52 42 34 64 33 40 40 75 61 75 75 61 59 54 41 44 45

b4 67 82 60 100 100 78 100 88 85 64 46 70 55 68 62 59 50 44 69 43 49 49 78 67 79 79 67 65 61 50 52 53

b5 72 85 67 100 100 81 100 90 87 70 55 75 62 73 68 66 58 53 74 52 57 57 82 72 82 82 72 71 67 58 60 61

b6 78 88 73 100 100 85 100 92 90 76 64 80 70 79 74 72 67 62 79 62 66 66 85 78 86 86 78 76 74 66 68 68

b7 83 91 80 100 100 89 100 94 92 82 73 85 77 84 81 79 75 72 84 71 74 74 89 83 89 89 83 82 80 75 76 76

b8 89 94 86 100 100 92 100 96 95 88 82 90 85 89 87 86 83 81 89 81 83 83 92 89 93 93 89 88 87 83 84 84

b9 94 97 93 100 100 96 100 98 97 94 91 95 92 94 93 93 91 90 94 90 91 91 96 94 96 96 94 94 93 91 92 92

b10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 4: Reference actions

1. Scenario 1:

– all criteria were assigned equal weights, that is wj = 1
32 = 0.03125;

– the cutting-off threshold was fixed at λ = 0.75;

– the ten reference actions b1, . . . , b10 were assigned a values x1, . . . , x10 by using the deck
of the cards method, considering no blank card between each two consecutive reference
actions and by fixing x1 = 0 and x10 = 100; consequently, we obtained the following
values:

x1 = 0, x2 = 11.11, x3 = 22.22, x4 = 33.33, x5 = 44.44,

x6 = 55.56, x7 = 66.67, x8 = 77.78, x9 = 88.89, x10 = 100;

– the representative score s◦1(a) was computed by considering a degree of optimism α = 0.5,
so that, for each country a,

s◦1(a) = 0.5 · sl1(a) + 0.5 · su1(a).

.

2. Scenario 2:

– the 32 criteria were assigned a weight increasing with the standard deviation of their
performances with the deck of cards method (SRF version); more precisely the following
procedure was applied:

◦ the criteria were split in four classes:

* class A: criteria with standard deviation equal to 0;

* class B: criteria with standard deviation greater than 0, but not greater than
10;

* class C: criteria with standard deviation greater than 10, but not greater than
20;

* class D: criteria with standard deviation greater than 20;

◦ the following blank cards were added to represent difference in importance between
criteria of different classes: no blank cards between class A and class B, one blank
card between class B and class C, two blank cards between class C and class D;

◦ the ratio between the weights of the most important criteria (those ones in class D)
and the least important criteria (those ones in class A) was given a value z = 20;
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◦ the following weights were obtained: criteria of classes A, B, C and D obtained
weights wA = 0, 0032, wB = 0, 0134, wC = 0, 034, wD = 0, 0644. The weights wj
together with its standard deviation σj of each criterion gj , j = 1, . . . , 32, are shown
in Table 5.

– the cutting-off threshold was λ = 0.65;

– the ten reference actions b1, . . . , b10 were assigned values x1, . . . , x10 with the same pro-
cedure of scenario 1, but considering the following blank cards: no blank cards between
b1 and b2, b2 and b3, b3 and b4; one blank card between b4 and b5, b5 and b6, b6 and b7; 2
blank cards between b8 and b9, and b9 and b10. Consequently, we obtained the following
values:

x1 = 0, x2 = 5.88, x3 = 11.76, x4 = 17.65, x5 = 29.41,

x6 = 41.18, x7 = 52.94, x8 = 64.71, x9 = 82.35, x10 = 100.

– the representative score s◦2(a) was computed by considering a degree of optimism α =
0.25, so that, for each country a,

s◦1(a) = 0.75 · sl1(a) + 0.25 · su1(a).

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19 g20 g21 g22 g23 g24 g25 g26 g27 g28 g29 g30 g31 g32
σj 14.56 7.63 16.39 0.00 0.00 6.98 0.00 2.66 5.20 13.85 19.38 12.54 14.83 11.78 15.50 15.81 20.50 25.34 13.02 22.55 22.72 21.58 8.67 14.90 7.18 7.74 11.40 11.88 13.84 19.06 18.24 15.99

wj 0.0338 0.0134 0.0338 0.0032 0.0032 0.0134 0.0032 0.0134 0.0134 0.0338 0.0338 0.0338 0.0338 0.0338 0.0338 0.0338 0.0644 0.0644 0.0338 0.0644 0.0644 0.0644 0.0134 0.0338 0.0134 0.0134 0.0338 0.0338 0.0338 0.0338 0.0338 0.0338

Table 5: Weights of criteria in scenario 2

Let us explain the rational supporting the weighting procedure in Scenario 2. The idea is that
the standard deviation σj measures the variability of the performances on criterion gj , j = 1, . . . , 32.
As, in general, the greater the variability the greater the difference between the performances of
the best health systems and the others, it is reasonable to assign a greater importance to criteria
with greater standard deviation.

The score assigned to each country is shown in Table 6 having the following content:

– the first column shows the countries;

– the second column presents the HAQ index (Fullman et al., 2018);

– the third, fourth and fifth column presents the lower bound sl1(a), the upper bound su1(a) and
the representative score s◦1(a) assigned to country a in Scenario 1 by Electre-Score;

– the sixth, seventh and eighth column present the lower bound sl2(a), the upper bound su2(a)
and the representative score s◦2(a) assigned to country a in Scenario 2 by Electre-Score;

– the nineth, tenth and eleventh column show the ranking position of each country accord-
ing with HAQ index, Electre-Score in Scenario 1 and Electre-Score in Scenario 2,
respectively.

To interpret the score provided by Electre-Score and compare it with the HAQ score, it is
useful to remember that

– slr(a) = xk, r = 1, 2, means that a � bk and not(a � bh) for all h = k + 1, . . . , 10;

– sur (a) = xk, r = 1, 2, means that bk � a and not(bh � a) for all h = k − 1, . . . , 1.
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Country HAQ sl1(a) su1(a) s◦1(a) sl2(a) su2(a) s◦2(a) HAQ ES1 ES2
Iceland 97 66.67 100.00 83.33 52.94 100.00 64.71 1 4 5

Norway 97 66.67 100.00 83.33 52.94 100.00 64.71 1 4 5

Netherlands 96 77.78 100.00 88.89 64.71 100.00 73.53 3 1 1

Luxembourg 96 66.67 100.00 83.33 52.94 100.00 64.71 3 4 5

Australia 96 66.67 100.00 83.33 52.94 100.00 64.71 3 4 5

Finland 96 66.67 100.00 83.33 52.94 100.00 64.71 3 4 5

Switzerland 96 77.78 100.00 88.89 64.71 100.00 73.53 3 1 1

Sweden 95 77.78 100.00 88.89 64.71 82.35 69.12 8 1 3

Italy 95 66.67 100.00 83.33 52.94 100.00 64.71 8 4 5

Andorra 95 44.44 100.00 72.22 29.41 100.00 47.06 8 13 18

Ireland 95 77.78 88.89 83.33 64.71 82.35 69.12 8 4 3

Japan 94 11.11 100.00 55.56 5.88 100.00 29.41 12 29 28

Austria 94 33.33 100.00 66.67 17.65 82.35 33.82 12 21 25

Canada 94 55.56 100.00 77.78 41.18 82.35 51.47 12 11 12

Belgium 93 55.56 88.89 72.22 41.18 82.35 51.47 15 13 12

New Zealand 92 55.56 88.89 72.22 41.18 82.35 51.47 16 13 12

Denmark 92 44.44 88.89 66.67 29.41 82.35 42.65 16 21 21

Germany 92 33.33 88.89 61.11 17.65 82.35 33.82 16 27 25

Spain 92 44.44 100.00 72.22 29.41 100.00 47.06 16 13 18

France 92 55.56 100.00 77.78 41.18 100.00 55.88 16 11 11

Slovenia 91 33.33 100.00 66.67 17.65 82.35 33.82 21 21 25

Singapore 91 11.11 100.00 55.56 5.88 82.35 25.00 21 29 34

UK 90 55.56 88.89 72.22 41.18 82.35 51.47 23 13 12

Greece 90 55.56 88.89 72.22 41.18 64.71 47.06 23 13 18

South Korea 90 11.11 88.89 50.00 5.88 82.35 25.00 23 38 34

Cyprus 90 44.44 88.89 66.67 29.41 82.35 42.65 23 21 21

Malta 90 55.56 88.89 72.22 41.18 82.35 51.47 23 13 12

Czech Republic 89 55.56 88.89 72.22 41.18 82.35 51.47 28 13 12

USA 89 44.44 88.89 66.67 29.41 82.35 42.65 28 21 21

Croatia 87 33.33 88.89 61.11 17.65 64.71 29.41 30 27 28

Estonai 86 11.11 88.89 50.00 5.88 64.71 20.59 31 38 42

Portugal 86 22.22 88.89 55.56 11.76 64.71 25.00 31 29 34

Lebanon 86 33.33 77.78 55.56 17.65 64.71 29.41 31 29 28

Taiwan 85 11.11 88.89 50.00 5.88 64.71 20.59 34 38 42

Israel 85 22.22 88.89 55.56 11.76 82.35 29.41 34 29 28

Slovakia 83 33.33 77.78 55.56 17.65 64.71 29.41 36 29 28

Bermuda 83 44.44 88.89 66.67 29.41 82.35 42.65 36 21 21

Puerto Rico 83 11.11 77.78 44.44 5.88 64.71 20.59 36 43 42

Poland 82 11.11 66.67 38.89 5.88 41.18 14.71 39 53 50

Hungary 82 22.22 77.78 50.00 11.76 64.71 25.00 39 38 34

Qatar 82 22.22 88.89 55.56 11.76 64.71 25.00 39 29 34

Montenegro 81 22.22 88.89 55.56 11.76 52.94 22.06 42 29 40

Latvia 81 22.22 77.78 50.00 11.76 52.94 22.06 42 38 40

Kuwait 81 22.22 66.67 44.44 11.76 41.18 19.12 42 43 46

Lithuania 80 11.11 77.78 44.44 5.88 41.18 14.71 45 43 50

Belarus 79 11.11 77.78 44.44 5.88 41.18 14.71 46 43 50

Romania 78 22.22 66.67 44.44 11.76 41.18 19.12 47 43 46

China 78 11.11 66.67 38.89 5.88 41.18 14.71 47 53 50

Chile 78 33.33 55.56 44.44 17.65 41.18 23.53 47 43 39

Serbia 77 22.22 66.67 44.44 11.76 41.18 19.12 50 43 46

Bulgaria 77 11.11 55.56 33.33 5.88 41.18 14.71 50 57 50

Saudi Arabia 77 11.11 77.78 44.44 5.88 29.41 11.76 50 43 58

Brunei 76 11.11 66.67 38.89 5.88 52.94 17.65 53 53 49

Oman 76 11.11 77.78 44.44 5.88 41.18 14.71 53 43 50

Cuba 76 22.22 88.89 55.56 11.76 82.35 29.41 53 29 28

Albania 75 0.00 88.89 44.44 0.00 82.35 20.59 56 43 45

Macedonia 75 11.11 55.56 33.33 5.88 29.41 11.76 56 57 58

Russia 75 11.11 55.56 33.33 5.88 41.18 14.71 56 57 50

Ukraine 75 11.11 66.67 38.89 5.88 17.65 8.82 56 53 60

Turkey 74 11.11 55.56 33.33 5.88 41.18 14.71 60 57 50

Table 6: Health care score

This permits to give an answer to the questions: Why Iceland and Norway are the first in the
HAQ ranking and only the fourth and the fifth in the ranking supplied by Electre-Score in
the Scenarios 1 and 2, respectively? And why, the Netherlands are the third in HAQ ranking and
the first both in the Scenarios 1 and 2 of Electre-Score? Since sur (Iceland) = sur (Norway) =
sur (Netherlands) = 100, r = 1, 2, we have to conclude that the different representative scores s◦1(a)
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depend on slr(a). In fact,

– sl1(Iceland) = sl1(Norway) = 66.67 = x7 and consequently, in scenario 1, Iceland � b7 and
Norway � b7, but neither Iceland � bh nor Norway � bh, h = 8, 9, 10;

– sl2(Iceland) = sl2(Norway) = 52.94 = x7 and consequently, in scenario 2, Iceland � b7 and
Norway � b7, but neither Iceland � bh nor Norway � bh, h = 8, 9, 10;

– sl1(Netherlands) = 77.78 = x8 and consequently Netherlands � b8 in Scenario 1;

– sl2(Netherlands) = 64.71 = x8 and consequently Netherlands � b8 in Scenario 2.

Therefore, Electre-Score ranks the Netherlands better than Iceland and Norway because the
Netherlands are preferred to the reference action b8 while this is not the case of Iceland and Norway.
Similar arguments hold for the ranking assigned by Electre-Score to other countries. Since
the preference relation provided by Electre-Score is based on an outranking relation having a
noncompensatory content, this shows that we can consider the value assigned by Electre-Score
a noncompensatory composite indicator. Observe that the explanation of the score obtained by
Iceland and Norway has important policy implications. Indeed Iceland is not preferred to the
reference action b8 because a certain deficiency of its performances with respect to b8 on LRIs and
NM skin cancer having as a consequence a veto effect (more precisely, Iceland has scaled cause
values 76 and 72 on LRIs and NM skin cancer, respectively, while b8 has scaled cause values 86
and 82 on the same criteria). Analogously, Norway is not preferred to the reference action b8 for a
veto on Epilepsy (more precisely Norway has a scaled cause values of 78 on Epilepsy, while b8 has
a scaled cause values of 88 on the same criterion). This suggest adequate interventions on policies
related to RIs and NM skin cancer for Iceland and Epilepsy for Norway.

Finally, taking into account robustness concerns, it can be interesting to investigate how the
score changes when perturbing the parameters of the model such as weights, indifference, preference,
and veto thresholds, value assigned to the reference actions, optimism coefficient α or cuting-off
threshold λ. As an example of such type of analysis, let us observe the consequences on the
score of the threshold λ for the Scenario 1 as shown in Table 7. We considered the values of
λ = 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, and for each one of these values we computed
the representative score s◦λ(a) and the ranking positions ESλ. The last two columns of Table
7 show the best and worst ranking position for each country. We can observe that no country
maintains the same ranking position for all the considered λ values. More precisely, the width of
the interval of ranking positions taken by a country varies from a minimum of 3, being the case of
the Netherlands, Switzerland and Sweden that stay between the first and the third ranking position,
to a maximum of 25, being the case of Albania that stays between the 31st and 55th position. The
large variability of the ranking with respect to the value of λ suggests to select with care this
parameter. Consequently, in case it is possible to interact with one or more decision-makers, the
cutting-off threshold should be discussed with the involved decision makers. Instead, in case the
score is aimed to supply a more “neutral” evaluation, it is reasonable to fix some central value of
λ in its value range [0.5,1]. In this perspective, to fix λ = 0.75 seems an acceptable option.

8. Conclusions

In this paper we have presented a new method to assign a score range ]sl(a), su(a)[ and a represen-
tative score s◦(a) to each action a ∈ A. The theoretical soundness of the method has been proven;
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Country s◦0.5(a) s◦0.55(a) s◦0.6(a) s◦0.65(a) s◦0.7(a) s◦0.75(a) s◦0.8(a) s◦0.85(a) s◦0.9(a) s◦0.95(a) s◦1(a) ES0.5(a) ES0.55(a) ES0.6(a) ES0.65(a) ES0.7(a) ES0.75(a) ES0.8(a) ES0.85(a) ES0.9(a) ES0.95(a) ES1(a) Best Worst

Iceland 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 77.78 1 2 3 3 4 4 5 5 3 1 6 1 6

Norway 77.78 77.78 77.78 83.33 83.33 83.33 83.33 83.33 83.33 83.33 77.78 6 7 8 3 4 4 5 5 3 1 6 1 8

Netherlands 83.33 83.33 88.89 88.89 88.89 88.89 88.89 88.89 83.33 83.33 83.33 1 2 1 1 1 1 1 1 3 1 1 1 3

Luxembourg 77.78 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 77.78 6 2 3 3 4 4 5 5 3 1 6 1 6

Australia 77.78 77.78 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 77.78 6 7 3 3 4 4 5 5 3 1 6 1 7

Finland 77.78 77.78 77.78 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33 6 7 8 3 4 4 5 5 3 1 1 1 8

Switzerland 83.33 88.89 88.89 88.89 88.89 88.89 88.89 88.89 83.33 83.33 83.33 1 1 1 1 1 1 1 1 3 1 1 1 3

Sweden 83.33 83.33 83.33 83.33 88.89 88.89 88.89 88.89 88.89 83.33 83.33 1 2 3 3 1 1 1 1 1 1 1 1 3

Italy 77.78 77.78 77.78 83.33 83.33 83.33 83.33 83.33 83.33 77.78 77.78 6 7 8 3 4 4 5 5 3 10 6 3 10

Andorra 66.67 66.67 66.67 66.67 66.67 72.22 72.22 72.22 72.22 72.22 61.11 18 18 18 19 20 13 15 17 19 16 23 13 23

Ireland 83.33 83.33 83.33 83.33 83.33 83.33 88.89 88.89 88.89 83.33 83.33 1 2 3 3 4 4 1 1 1 1 1 1 4

Japan 50.00 50.00 55.56 55.56 55.56 55.56 55.56 55.56 55.56 55.56 55.56 31 31 28 28 29 29 30 33 35 36 34 28 36

Austria 61.11 61.11 61.11 61.11 66.67 66.67 66.67 66.67 66.67 66.67 61.11 25 25 25 25 20 21 24 23 23 23 23 20 25

Canada 72.22 72.22 72.22 72.22 72.22 77.78 77.78 77.78 77.78 72.22 72.22 11 11 11 11 11 11 11 11 11 16 11 11 16

Belgium 72.22 72.22 72.22 72.22 72.22 72.22 72.22 77.78 77.78 77.78 72.22 11 11 11 11 11 13 15 11 11 10 11 10 15

New Zealand 72.22 72.22 72.22 72.22 72.22 72.22 77.78 77.78 77.78 77.78 72.22 11 11 11 11 11 13 11 11 11 10 11 10 13

Denmark 66.67 66.67 66.67 66.67 66.67 66.67 72.22 72.22 72.22 72.22 72.22 18 18 18 19 20 21 15 17 19 16 11 11 21

Germany 61.11 61.11 61.11 61.11 61.11 61.11 66.67 66.67 66.67 66.67 61.11 25 25 25 25 26 27 24 23 23 23 23 23 27

Spain 66.67 66.67 66.67 66.67 72.22 72.22 72.22 72.22 72.22 72.22 72.22 18 18 18 19 11 13 15 17 19 16 11 11 19

France 72.22 72.22 72.22 72.22 72.22 77.78 77.78 77.78 77.78 77.78 72.22 11 11 11 11 11 11 11 11 11 10 11 10 11

Slovenia 61.11 61.11 61.11 61.11 61.11 66.67 66.67 66.67 66.67 66.67 66.67 25 25 25 25 26 21 24 23 23 23 21 21 26

Singapore 50.00 50.00 50.00 50.00 50.00 55.56 55.56 55.56 55.56 55.56 50.00 31 31 33 34 35 29 30 33 35 36 40 29 40

UK 72.22 72.22 72.22 72.22 72.22 72.22 72.22 77.78 77.78 72.22 72.22 11 11 11 11 11 13 15 11 11 16 11 11 16

Greece 66.67 66.67 66.67 72.22 72.22 72.22 77.78 77.78 77.78 77.78 72.22 18 18 18 11 11 13 11 11 11 10 11 10 18

South Korea 50.00 50.00 50.00 50.00 50.00 50.00 50.00 55.56 55.56 55.56 50.00 31 31 33 34 35 38 40 33 35 36 40 31 40

Cyprus 66.67 66.67 66.67 66.67 66.67 66.67 72.22 72.22 72.22 72.22 66.67 18 18 18 19 20 21 15 17 19 16 21 15 21

Malta 72.22 72.22 72.22 72.22 72.22 72.22 72.22 72.22 77.78 72.22 72.22 11 11 11 11 11 13 15 17 11 16 11 11 17

Czech Republic 72.22 72.22 72.22 72.22 72.22 72.22 72.22 72.22 77.78 77.78 72.22 11 11 11 11 11 13 15 17 11 10 11 10 17

USA 66.67 66.67 66.67 66.67 66.67 66.67 72.22 66.67 66.67 66.67 61.11 18 18 18 19 20 21 15 23 23 23 23 15 23

Croatia 50.00 50.00 55.56 55.56 61.11 61.11 61.11 61.11 66.67 66.67 61.11 31 31 28 28 26 27 28 29 23 23 23 23 31

Estonai 38.89 38.89 44.44 50.00 50.00 50.00 50.00 50.00 55.56 55.56 50.00 41 43 39 34 35 38 40 43 35 36 40 34 43

Portugal 44.44 44.44 50.00 50.00 55.56 55.56 55.56 55.56 55.56 61.11 61.11 38 38 33 34 29 29 30 33 35 29 23 23 38

Lebanon 50.00 50.00 50.00 55.56 55.56 55.56 61.11 66.67 66.67 61.11 55.56 31 31 33 28 29 29 28 23 23 29 34 23 34

Taiwan 33.33 38.89 44.44 44.44 44.44 50.00 50.00 50.00 55.56 55.56 50.00 46 43 39 41 43 38 40 43 35 36 40 35 46

Israel 55.56 55.56 55.56 55.56 55.56 55.56 55.56 55.56 61.11 61.11 55.56 28 28 28 28 29 29 30 33 30 29 34 28 34

Slovakia 55.56 55.56 55.56 55.56 55.56 55.56 55.56 61.11 61.11 66.67 61.11 28 28 28 28 29 29 30 29 30 23 23 23 30

Bermuda 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 61.11 61.11 18 18 18 19 20 21 24 23 23 29 23 18 29

Puerto Rico 44.44 44.44 44.44 44.44 44.44 44.44 44.44 50.00 50.00 55.56 50.00 38 38 39 41 43 43 49 43 46 36 40 36 49

Poland 33.33 33.33 33.33 38.89 38.89 38.89 50.00 50.00 55.56 55.56 50.00 46 49 50 46 50 53 40 43 35 36 40 35 53

Hungary 50.00 50.00 50.00 50.00 50.00 50.00 50.00 55.56 55.56 55.56 55.56 31 31 33 34 35 38 40 33 35 36 34 31 40

Qatar 38.89 44.44 44.44 50.00 50.00 55.56 55.56 61.11 61.11 61.11 61.11 41 38 39 34 35 29 30 29 30 29 23 23 41

Montenegro 44.44 44.44 44.44 44.44 50.00 55.56 55.56 61.11 61.11 61.11 61.11 38 38 39 41 35 29 30 29 30 29 23 23 41

Latvia 33.33 38.89 44.44 44.44 50.00 50.00 55.56 55.56 55.56 61.11 61.11 46 43 39 41 35 38 30 33 35 29 23 23 46

Kuwait 38.89 38.89 38.89 38.89 44.44 44.44 55.56 55.56 61.11 55.56 55.56 41 43 46 46 43 43 30 33 30 36 34 30 46

Lithuania 27.78 33.33 33.33 38.89 44.44 44.44 44.44 50.00 50.00 55.56 50.00 53 49 50 46 43 43 49 43 46 36 40 36 53

Belarus 27.78 33.33 38.89 38.89 38.89 44.44 50.00 50.00 50.00 55.56 50.00 53 49 46 46 50 43 40 43 46 36 40 36 53

Romania 33.33 38.89 38.89 38.89 38.89 44.44 50.00 55.56 55.56 50.00 50.00 46 43 46 46 50 43 40 33 35 52 40 33 52

China 27.78 33.33 33.33 38.89 38.89 38.89 44.44 50.00 50.00 50.00 50.00 53 49 50 46 50 53 49 43 46 52 40 40 53

Chile 38.89 44.44 44.44 44.44 44.44 44.44 50.00 50.00 55.56 55.56 55.56 41 38 39 41 43 43 40 43 35 36 34 34 43

Serbia 38.89 38.89 38.89 38.89 38.89 44.44 44.44 50.00 50.00 55.56 50.00 41 43 46 46 50 43 49 43 46 36 40 36 50

Bulgaria 33.33 33.33 33.33 33.33 33.33 33.33 33.33 38.89 50.00 50.00 50.00 46 49 50 53 56 57 60 59 46 52 40 40 60

Saudi Arabia 27.78 27.78 27.78 33.33 44.44 44.44 44.44 50.00 50.00 50.00 50.00 53 56 57 53 43 43 49 43 46 52 40 40 57

Brunei 22.22 27.78 33.33 33.33 38.89 38.89 44.44 44.44 38.89 44.44 50.00 58 56 50 53 50 53 49 55 60 60 40 40 60

Oman 33.33 33.33 33.33 33.33 44.44 44.44 50.00 50.00 50.00 50.00 50.00 46 49 50 53 43 43 40 43 46 52 40 40 53

Cuba 55.56 55.56 55.56 55.56 55.56 55.56 55.56 55.56 50.00 55.56 50.00 28 28 28 28 29 29 30 33 46 36 40 28 46

Albania 50.00 50.00 50.00 50.00 50.00 44.44 44.44 44.44 50.00 50.00 50.00 31 31 33 34 35 43 49 55 46 52 40 31 55

Macedonia 27.78 27.78 27.78 33.33 33.33 33.33 44.44 50.00 50.00 55.56 50.00 53 56 57 53 56 57 49 43 46 36 40 36 57

Russia 22.22 27.78 27.78 33.33 33.33 33.33 38.89 38.89 50.00 50.00 50.00 58 56 57 53 56 57 57 59 46 52 40 40 59

Ukraine 22.22 22.22 27.78 33.33 33.33 38.89 38.89 44.44 50.00 50.00 50.00 58 60 57 53 56 53 57 55 46 52 40 40 60

Turkey 33.33 33.33 33.33 33.33 33.33 33.33 38.89 44.44 50.00 55.56 50.00 46 49 50 53 56 57 57 55 46 36 40 36 57

Table 7: Health care score variation with respect to cutting-off level λ

that is, the fundamental requirements of uniqueness, independence, monotonicity, conformity, ho-
mogeneity, and stability with respect to insertion and deletion operations, became properties of the
method, which provide some consistency to the method.

All of the main strengths of the Electre methods are present in this new method: it deals
with different types of scales without the need of converting them into a single unit; it is able to
cope with the imperfect knowledge of data and arbitrariness when building the criteria; it takes into
account the reasons for and against an outranking; and, it avoids the compensatory phenomenon in
a systematic way. In addition, the method is able to provide a score for each action (more precisely
score range and a representative score), which was previously considered a weak point of Electre
methods.

We believe that future research could start from software development and real-world applica-
tions. Also several extensions are possible, such as,

– The design of a hierarchical Electre-Score method, as in Corrente et al. (2013, 2016) and
Del Vasto-Terrientes et al. (2015), allowing in our case to assign scores to different macro-
criteria in the hierarchical trees of criteria;

– The application of Monte-Carlo based pseudo-robustness analysis in the same line as in Cor-
rente et al. (2017) to provide more accurate score ranges;

– The use of robust ordinal techniques and other robustness techniques in the same line of
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Greco et al. (2011) and Kadziński and Ciomek (2016).
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A. Appendix

In this Appendix we will present the main concepts and steps that lead to the construction of a
credibility degree, σ(a, b) for the pair of actions (a, b).

State-of-the art versions of Electre methods make use of the so-called pseudo-criterion model
(Figueira et al., 2016; Roy, 1996; Roy and Bouyssou, 1993; Roy and Vincke, 1984) when comparing
two actions, a and b, on criterion gj , from their performances, gj(a) and gj(b), respectively. This
model associates with each criterion function, gj(·), two threshold functions: an indifference thresh-
old function, denoted by qj(·), and a preference threshold function, denoted by pj(·). Assume that
gj is a criterion to be maximized and that the performance gj(a) is better than the performance
gj(b). The threshold functions or simply thresholds can be constant or may vary in a direct way,
i.e., with respect to the worst performance, qj(gj(b)) and pj(gj(b)), or in an inverse way, i.e., with
respect to the best performance, qj(gj(a)) and pj(gj(a)). For the sake of simplicity and without
loss of generality, we consider in the following that the thresholds are constant and use the simple
notation qj and pj , for the indifference and preference thresholds, respectively.

It is very important to note that the main purpose of these thresholds is not to model the
preferences, but rather the imperfect knowledge of data as it can be seen in Roy et al. (2014).

The choice of a pseudo-criterion model for the comparison of two actions, a and b, from their
performances on criterion gj , leads to the definition of three per -criterion binary relations, as
follows.

– A per-criterion indifference binary relation, which is used to model a situation in which a is
indifferent to b on criterion gj , denoted by a ∼j b; this occurs whenever |(gj(a)− gj(b))| 6 qj .
In other words, a situation where no one of the two actions, a and b, has a significant advantage
over the other on the considered criterion. Let C(a ∼ b) denote the set or coalition of criteria
for which a is indifferent to b.

– A per-criterion strict preference binary relation, which is used to model a situation in which
a is strictly preferred to b on criterion gj , denoted by a �j b; this occurs whenever (gj(a) −
gj(b)) > pj . In other words, a situation where action a has a significant advantage over b on
the considered criterion. Let C(a � b) denote the set or coalition of criteria for which a is
strictly preferred to b.

– A per-criterion weak preference binary relation, which is used to model hesitation situations
of a with respect to b on criterion gj , denoted by a %?

j b; this occurs whenever qj < (gj(a)−
gj(b)) 6 pj . In other words, a situation where there is an ambiguity zone between indifference
and strict preference of a over b on the considered criterion. Let C(a %? b) denote the set
or coalition of criteria for which a is weakly preferred to b. Note that the word “weak” has
nothing to do with intensities of preferences, it models hesitation or ambiguity (due to the
imperfect knowledge of data), not preferences.

Whenever a is indifferent, weak, or strict preferred to b, on criterion gj , we say that “a outranks
b” because a is at least as good as b in a stricto sensu on this criterion. This situation thus occurs,
when a ∼j b, a �j b, or a %?

j b, and can be denoted by a %j b. In a more lato sensu we can also say

that “a outranks b” when b %?
j a because there is hesitation between b ∼j a and b �j a on criterion

gj .
As in all outranking-based methods, Electre methods also make use of the per -criterion

outranking relations to build one or several comprehensive outranking relations. In the method
proposed in this paper only one comprehensive outranking relation is considered, which allows to
conclude whether or not “a comprehensively outranks b”, denoted by a % b. More precisely, to
conclude about the assertion “a outranks b”, the strength of the coalition in its favor of should
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be powerful enough to overcome the opposition effect of the coalition against this assertion. How
should the power of the coalition in favor (or concordant with the assertion) and the effects of
the coalition against (or discordant with the assertion) be measured? To model the power of the
concordant coalition is modeled and measured in Electre methods through what is called in these
methods a comprehensive concordance index, while the opposition effect of each criterion is modeled
and measured to what is called a per-criterion discordance index. Both will be combined to devise
a credibility (outranking) index for each ordered pair of alternatives, (a, b) ∈ A×A. Next, we will
present the three main steps to obtain the credibility index.

1. Computing the comprehensive concordance index c(a, b). Again, for the sake of simplicity,
the formula we present next, for this index, is the classical one as in Roy and Bouyssou
(1993). A more sophisticated and recent version of the concordance index, which takes into
account the interaction between criteria can also be used in this context (see Figueira et al.,
2009) with no additional changes in the method proposed in this paper. As stated previously,
the concordance index is used to measure the power of the concordant coalition, where each
criterion gj contributes with its relative importance coefficient or weigh, wj , for j = 1, . . . , n
(we assume w.l.o.g. that

∑n
j=1wj = 1). The formula for the index can thus be stated as

follows.
c(a, b) =

∑

C(a{∼,%?,�}b)
wj +

∑

C(b%?a)

ϕjwj ,

where

ϕ =
(gj(a)− gj(b)) + pj

pj − qj
∈ [0, 1].

This means that if a criterion gj belongs to the concordant coalition stricto sensu, i.e., gj ∈
C(a{∼,%?,�}b its contribution to the coalition power corresponds to its total weight, wj ,
but if this criterion belongs to C(b %? a) it only contributes with a fraction of its weight,
ϕjwj .

2. Computing the per-criterion discordance indices dj(a, b), j = 1, . . . , n. To model the opposi-
tion effect of each criterion against the concordant coalition lato sensu, i.e., when gj ∈ C(b �
a), it is necessary to introduce another concept and preference parameter, the veto threshold
vj(·). This threshold can also be constant or vary in a direct or indirect way as in case of indif-
ference and preference thresholds. To render things simple and without loss of generality we
will keep its value constant and will denote it simply by vj . A criterion gj is discordant with
the assertion “a outranks b”, when the difference of performances (gj(b)−gj(a)) is considered
significantly large to validate such an assertion. The more or less degree of discordance of
each criterion can be measured through a per -criterion discordance index of the form,

dj(a, b) =





1 if vj > (gj(a)− gj(b))
(gj(a)− gj(b)) + pj

pj − vj
if −vj 6 (gj(a)− gj(b)) < −pj

0 if (gj(a)− gj(b)) > −pj

3. Computing the credibility index σ(a, b). This index measures the credibility degree of the
outranking relation; that is, the degree in which a outranks b. This can be modeled though

36

                  



the following formula.

σ(a, b) = c(a, b)
n∏

j=1

Tj(a, b),

where

Tj(a, b) =





1− dj(a, b)
1− c(a, b) if gj(a, b) > c(a, b)

1 otherwise

It is thus a fuzzy measure. It can be converted into a crispy by making use of a cutting-off
level, denote by λ as in Section 2.

For the main features, advantages, and drawbacks of Electre the reader can refer to Figueira
et al. (2013).
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