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Abstract
Advancing RNA structural probing techniques with next-generation sequencing has
generated demands for complementary computational tools to robustly extract RNA
structural information amidst sampling noise and variability. We present diffBUM-HMM,
a noise-aware model that enables accurate detection of RNA flexibility and
conformational changes from high-throughput RNA structure-probing data.
diffBUM-HMM is widely compatible, accounting for sampling variation and sequence
coverage biases, and displays higher sensitivity than existing methods while robust
against false positives. Our analyses of datasets generated with a variety of RNA
probing chemistries demonstrate the value of diffBUM-HMM for quantitatively
detecting RNA structural changes and RNA-binding protein binding sites.

Keywords: Hidden Markov model, High-throughput RNA structure probing, RNA
structural changes

Background
Understanding the structure of RNA is key to unravel its in vivo function, and it
is also highly relevant to biomedicine, drug discovery, and synthetic biology [1–4].
Recent years have witnessed a blossoming of high-throughput methods that couple next-
generation sequencing with biochemical assays to ‘probe’ the structure of thousands of
RNA molecules simultaneously, including whole transcriptomes [5–16]. The majority
of these biochemical assays use reagents such as SHAPE (selective 2′-hydroxyl acyla-
tion analyzed by primer extension) reagents [5–7, 16–20] and dimethyl sulfate (DMS)
[8, 10, 21]. These chemicals modify the 2′-hydroxyl (OH) group of riboses or bases of
flexible/single-stranded nucleotides, respectively, and the sites of modification can be
detected by performing a reverse transcription (RT) reaction. A major advantage of using
chemical probes is that some are also highly effective for probing RNA structure in liv-
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ing cells [16, 18, 22–24], making it possible to compare in vivo and in vitro struc-
tures, and reveal potential protein-binding sites [16, 22]. Depending on the RT enzyme
and the reaction chemistry used, the modification either causes the RT enzyme to ter-
minate transcription, resulting in truncated cDNAs, or to skip the adduct, frequently
introducing mutations (SHAPE-MaP; [5, 21]). Following on from this, the site and
degree of nucleotide modification can be extracted from NGS data by quantifying how
frequently the RT terminated at a given nucleotide position [6, 8–10] or by calculat-
ing mutation frequencies for each nucleotide [5, 21]. Although NGS has a number of
unprecedented advantages in terms of sensitivity and the number of molecules that
can be analyzed simultaneously, the analysis of the resulting data is not trivial and
exhibits significant challenges. Depending on the cDNA library preparation method
used, biases in sequence representation and read coverage can be introduced [25],
and there can also be quite significant inter-replicate variability in untreated (control)
and treated samples [26]. To specifically address these issues, we recently developed
a probabilistic modeling pipeline called beta-uniform mixture hidden Markov model
(BUM-HMM) [27]. One of the strengths of BUM-HMM is that it analyzes the inter-
replicate variability of samples in the treatment and control pools. Moreover, it adopts
an empirical statistical analysis method that obviates the need of conventional data
correction and normalization techniques that are used in the majority of the analysis
pipelines. Although BUM-HMM generates statistically sound estimates of nucleotide
accessibility at the nucleotide level, its probabilistic output does not represent an abso-
lute value that quantifies the degree of accessibility of RNA at a particular nucleotide.
Therefore, it is not immediately usable for differential analyses between different
treatments.
The ability to accurately detect nucleotide regions that differentially react with RNA

structure probing reagents under diverse conditions, or due to the effect of mutations,
is of great importance to researchers. As a consequence, the last few years have seen an
increase in the development of a number of bioinformatics tools to detect differentially
reactive nucleotides (DRNs) in RNA structure probing datasets. Amongst the available
tools are classSNitch [28], PARCEL [29], RASA [30], deltaSHAPE [22], StrucDiff [31],
and the recently published dStruct [32]. In particular, dStruct has been shown to perform
best by recording the lowest false-positive rate, while offering compatibility with a wide
range of existing RNA structure probing datasets. However, one possible limitation of
dStruct is that the pipeline uses a variety of statistical tests to predict DRNs. As a result,
dStruct corrects for multiple hypothesis testing, which likely makes it conservative with
its predictions. Hence, we reasoned that a method that does not rely on statistical tests
but rather on a model and posterior probability, such as BUM-HMM, would be prefer-
able, because it would be inherently less vulnerable to problems associated with multiple
hypothesis testing. In addition, dStruct uses SHAPE reactivity values as input, which
involves normalization and outlier elimination strategies on quantitative data to generate
a reactivity profile for each nucleotide. Since the distribution of quantitative data often
differs between probing experiments, such data normalization procedures might result in
useful data being removed. In contrast, the BUM-HMM model uses only the raw counts
for each nucleotide (i.e. read coverage and either total RT drop-offs or mutation counts).
It also employs empirical statistical analyses that preserves the independent distribution
of each dataset while being robust to outliers. To test whether the BUM-HMM algorithm
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could be useful for detecting DRNs, we extended the model to develop diffBUM-HMM
(differential BUM-HMM). We used diffBUM-HMM to compare a number of publicly
available RNA structure probing datasets and benchmarked the tool against dStruct [32].
Similar to dStruct, diffBUM-HMM effectively identified DRNs in the datasets; however,
consistent with our hypothesis, it exhibited higher sensitivity and, like dStruct, has a very
low false-positive rate. Because diffBUM-HMM is compatible with a wide variety of high-
throughput RNA structure probing methods, it should be of general interest to the RNA
community.

Results
diffBUM-HMMModel

diffBUM-HMM is a natural extension of BUM-HMM (Fig. 1). An intermediate step of
BUM-HMM is the computation of an empirical P value for each treatment-control com-
parison at each nucleotide position. Each empirical P value is then passed onto a hidden
Markov model. BUM-HMM has a hidden state ht (t = 1, 2, 3, ..., T for T nucleotides)
representing the true binary state of the tth nucleotide (M = modified by the probe; U =
unmodified by the probe) and the observed variable vt , which is the empirical P value at
that position. For diffBUM-HMM, the hidden state is expanded to take on four potential
values instead of two: nucleotide is unmodified in both conditions (UU; hidden state 1);
nucleotide is unmodified in the 1st condition but modified in the 2nd (UM; hidden state
2); nucleotide is modified in the 1st condition, but unmodified in the 2nd (MU; hidden
state 3); nucleotide is modified in both conditions (MM; hidden state 4). In turn, the
observed variable at each state is now represented by two P values rather than one. As

Fig. 1 Overview of the diffBUM-HMM computational analysis pipeline. For each experimental condition (e.g.
conditions 1 and 2), the log-ratios of drop-off/mutation rates (LDRs/LMRs) at each nucleotide position are
computed for pairs of control samples to give a null distribution, in order to quantify variability in drop-off or
mutation rates observed by chance. LDRs/LMRs are also computed similarly for all possible treatment-control
comparisons. Coverage-dependent biases are then removed by applying a variance stabilization
transformation. Subsequently, per-nucleotide empirical P values are computed for all possible
treatment-control comparisons in each condition, by comparing the corresponding log-ratios to the null
distribution. diffBUM-HMM is run on P values associated with the two independent conditions as
observations, leaving out any nucleotides with missing data. The resulting output is a posterior probability of
modification for each nucleotide, ranging from 0 to 1. diffBUM-HMM reports whether nucleotides were
unmodified in both conditions, modified in either of the conditions or modified in both conditions
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the hidden state can take on four possible values, extending BUM-HMM to diffBUM-
HMM entails increasing the size of the transition matrix from 2 × 2 to 4 × 4 and
adapting its values. While in principle the expectation-maximization algorithm could be
used to identify directly this transition matrix from data, we found that adapting the orig-
inal BUM-HMM heuristic values to diffBUM-HMM by assuming independence of the
two conditions yielded good results. A sensitivity analysis confirmed the validity of this
approach (Additional file 1: Figure S1).

diffBUM-HMM prediction of structural changes in the 35S pre-rRNA of yeast ribosome

synthesis mutants

To test diffBUM-HMM, we first reanalyzed the high-throughput structure probing
datasets generated from two mutant Saccharomyces cerevisiae strains that express struc-
turally distinct pre-ribosomal RNA (pre-rRNA) precursors [33]. These ChemModSeq-
type [6] high-throughput datasets were selected because (a) the read coverage for the
pre-rRNAs analyzed was very high (i.e. >10,000 reads per nucleotide) and (b) some of
the regions that were predicted to be structurally distinct based on sequencing results
have been verified by primer extension (PE) analysis. Since PE analysis is still considered
to be one of the most reliable biochemical approaches for detecting sites of chemi-
cal modification, we used the PE data as ‘ground truth’ for evaluating the goodness
of the DRNs predicted by the tools benchmarked in this study, including diffBUM-
HMM, deltaSHAPE, and dStruct. Our analysis of these ChemModSeq data revealed
that diffBUM-HMM and deltaSHAPE reported a large number of DRNs, while dStruct
reported 32 differentially reactive regions (DRRs) throughout the length of the 35S
pre-rRNAwhen using a 5-nucleotide search length and a false discovery rate (FDR) cutoff
of 0.15 (Fig. 2A).
In our previous study [33], we validated some of the ChemModSeq results by perform-

ing PE analysis on several regions in the 5′ external transcribed spacer (5′ ETS) as well
as the 5′ end of 18S (Fig. 2B, regions highlighted in gray; Fig. 3). Here, the ChemModSeq
analyses predicted a high concentration of DRNs, which were largely confirmed by the PE
data (Fig. 3). deltaSHAPE and diffBUM-HMM identified many nucleotides as DRNs that
also showed differential reactivity in the PE data (Fig. 3A, B). In the 5′ ETS, the patterns of
the ChemModSeq SHAPE reactivity profiles and the regions verified by PEwere very sim-
ilar (Fig. 3A, B), suggesting that the ChemModSeq high-throughput data for the 5′ ETS is
of high quality. Both deltaSHAPE and diffBUM-HMM identified DRNs in these regions
of the 5′ ETS that also appeared differentially modified in the PE data. These regions
reportedly contain two U3 snoRNA base-pairing sites (281–291 and 464–479), which
plays an essential role in the processing of the 35S pre-rRNA and the maturation of the
90S pre-ribosome. These structure probing data analyses showed that deleting the fifth
RNA-binding domain in Mrd1 (Mrd1�5 mutation) significantly decreased SHAPE reac-
tivities in these U3 snoRNA base-pairing sites. This implied that in this Mrd1 mutant, the
U3 snoRNA remains base-paired to the 5′ ETS, and we concluded that Mrd1-dependent
remodeling of pre-ribosomes is required for the timely release of the U3 snoRNA from
these large complexes [33]. More specifically, the PE data showed that nucleotides 282
and 283 in the 35S pre-rRNA were more reactive in the strain expressing the wild-type
Mrd1 protein compared to theMrd1�5mutant. In the wild-typeMrd1 strain, nucleotides
470–479 in the 5′ ETS were noticeably more reactive compared to the �5 mutant. These
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Fig. 2 diffBUM-HMM effectively detects differentially reactive nucleotides in the earliest detectable yeast
pre-rRNA precursor. A The top panel shows the SHAPE reactivities [33] from the first biological replicate of
both wild-type Mrd1 and Mrd1�5 deletion mutant, which were used to identify DRNs with deltaSHAPE. The
deltaSHAPE values were calculated according to [22]. For the deltaSHAPE panel, positive values indicate the
position of nucleotides that are more reactive in pre-rRNA associated with wild-type Mrd1, whereas negative
values indicate the position of nucleotides that are more reactive in pre-rRNA associated with the Mrd1�5
mutant. The same data was reanalyzed using the diffBUM-HMM and dStruct algorithms (panels 4 and 5,
respectively). For the diffBUM-HMM results, the posterior probabilities for differential states were calculated
using the raw counts. For the dStruct analyses, 2–8% normalized RT drop-off rates were used, as
recommended by the authors [32]. B The same as in A but only for the 5′ ETS and 5′ end of 18S rRNA. We
additionally included the results from the PE analysis (panel 2). The gray areas indicate the regions validated
by PE analysis

PE results closely corresponded with the diffBUM-HMM output. When using the rec-
ommended 5-nucleotide search window, dStruct reported 4 DRRs in the 5′ ETS (Fig. 3).
Two DRRs (298–306, 463–493) coincided with the regions that were indicated to be dif-
ferentially reactive by PE (268–352 and 405–502). The latter DRR overlaps with one of
the U3 snoRNA base pairing sites, but the length of the reported DRR is quite exten-
sive, without clear indication of which nucleotides are differentially reactive between the
two samples (Fig. 3B). The DRRs reported by dStruct were also reserved to regions that
have more considerable differences in reactivity, while diffBUM-HMM also identified
nucleotides with more modest but highly reproducible differences in SHAPE reactivity.
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Fig. 3 diffBUM-HMM detects differentially reactive nucleotides (DRNs) in the 5′ ETS of the 35S pre-rRNA
precursor. A, B SHAPE reactivities, deltaSHAPE, diffBUM-HMM, and dStruct analysis results for two regions
(positions 268–352 and 405–502) within the 5′ ETS. The top panel shows the SHAPE reactivities [33] from the
first biological replicate, which were used to identify DRNs with deltaSHAPE (deltaSHAPE panel). Positive
values indicate the 1M7 nucleotide reactivities in pre-rRNA associated with wild-type Mrd1, whereas negative
values indicate the reactivities in pre-rRNA associated with the Mrd1 deletion (�5) mutant. The second panel
shows the quantification of the PE analysis for these regions. The same data was reanalyzed using the
diffBUM-HMM and dStruct algorithms (panels 3 and 4, respectively). For the diffBUM-HMM results, the
posterior probabilites for differential reactivity were calculated using the raw counts. For the dStruct analyses,
2–8% normalized RT drop-off rates were used, as recommended by the authors [32]

dStruct only searches for DRRs that are longer than a user-specified threshold and lower
than a predefined FDR, and the outcome of the results was strongly influenced by what
settings were used for these parameters. For example, when we used an 11-nucleotide
search window, dStruct reported 3 DRRs with an FDR of ≤0.05. However, these DRRs
were quite extensive (23–60 nucleotides). With the aim of increasing the resolution of the
dStruct results, we also repeated the analyses using a 1-nucleotide search length. How-
ever, this did not result in any DRRs with an FDR of ≤0.15. We conclude that, compared
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to the current gold standard dStruct, diffBUM-HMM detects DRNs with much higher
sensitivity and resolution.

diffBUM-HMM calls no false positives in datasets generated from identically treated RNA

samples

Despite the fact that deltaSHAPE and diffBUM-HMM were able to detect more exper-
imentally verified DRNs in the 35S dataset, it is plausible that this apparent higher
sensitivity is, at least in part, the result of the low specificity of the methods. To test this
possibility, we were looking for ways to calculate false-positive rates for the diffBUM-
HMM algorithm. As the number of nucleotides in the 35S dataset that were verified
by PE were too low to perform a meaningful analysis of false-positive rates, we reana-
lyzed published in vivo S. cerevisiae DMS Structure-Seq [32] and ChemModSeq datasets.
The DMS Structure-Seq data was previously used to assess the false-positive rates of all
the currently available methods for identifying DRNs [32] (see Table 1). These datasets
contained biological replicates of DMS-modified and unmodified mature rRNA sam-
ples that were treated identically. Hence, the expectation would be that there would not
be any DRNs detected between replicates. We re-analyzed the raw data generated from
this experiment and generated drop-off rates for each nucleotide position in the four
rRNAs (18S, 25S, 5S, and 5.8S). Previously, it was shown that dStruct only called three
false-positive nucleotides in the DMS Structure-Seq rRNA data, whereas deltaSHAPE
reported a total of 97 false positives (Table 1; [32]). Strikingly, for all the datasets analyzed,
diffBUM-HMM did not report any nucleotide with posterior probability of differen-
tial modification higher than 0.4 (Fig. 4A), suggesting that diffBUM-HMM did not call
any spurious DRNs. dStruct and deltaSHAPE reported 0 and 16 false positives, respec-
tively, in the 18S rRNA ChemModSeq datasets (Table 1). DMS preferentially modifies
A’s and C’s in flexible and single-stranded regions. Indeed, many of the 18S nucleotides
called modified by diffBUM-HMM in these datasets were A’s and C’s that were located
in single-stranded regions in the 18S secondary structure (Fig. 4B, C, also see Figure 2
in [27]). Therefore, we conclude that these DMS RNA structure probing datasets are of
good quality and that diffBUM-HMM has a high specificity that is on par with dStruct
and RASA.

Table 1 Comparison of the capabilities of existing methods designed to detect differential reactive
nucleotides in rRNA molecules

Tool Reference Inter-replicate
variability?

Noise
considered?

Detection
level?

False positives:
18S rRNA

False positives: 18S
rRNA dataset 2

classSNitch [28] ✗ ✓ Regional N/A N/A

PARCEL [29] ✓ ✗ Regional 61 N/A

RASA [30] ✓ ✓ Regional 4 N/A

deltaSHAPE [22] ✗ ✓ Regional 97 16

StructDiff [31] ✗ ✓ Regional N/A N/A

dStruct [32] ✓ ✓ Regional 3 0

diffBUM-HMM This work ✓ ✓ Regional
and
Nucleotide

0 0

The table shows the previously published results of the analyses on the identically DMS-treated yeast rRNA datasets [27, 32] as
well as the results from our diffBUM-HMM analysis of these datasets. The column displaying the number of false positives
indicates the number of nucleotides that were called differentially modified in DMS chemical probing data
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Fig. 4 diffBUM-HMM has a very high specificity. A diffBUM-HMM only reports nucleotides with posterior
probabilities of less than 0.4 on identically treated DMS-probed S. cerevisiae rRNA Structure-Seq (5.8S, 18S,
25S) and ChemModSeq 18S rRNA (18S#2) datasets. The box plot shows the distribution of the posterior
probabilities for each rRNA sample. Shown are the posterior probabilities that the nucleotides were called
modified in all replicates or differentially modified between replicates. B Base composition of nucleotides
called modified in all replicates of the yeast 18S rRNA Structure-Seq data, when considering only nucleotides
with posterior probabilities ≥0.95. C Nucleotides called modified in all replicates of the 18S rRNA
Structure-Seq data (posterior probabilities ≥0.95) are highlighted in red in the secondary structure of the
molecule. The names of the helices in the structure are indicated in blue

diffBUM-HMM analysis of differentially probed Xist lncRNA

The earliest studies that reported high-throughput RNA structure chemical probing anal-
yses relied on the reverse transcriptase falling off the modified RNA once the enzyme
encountered a chemically modified nucleotide [6, 8–10, 14, 15]. However, by changing
the conditions for the RT reaction, one can force a reverse transcriptase to incorporate
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non-complementary nucleotides or introduce deletions into the cDNA transcript instead
[5]. This approach, referred to as SHAPE-MaP (selective 2′-hydroxyl acylation analyzed
by primer extension and mutational profiling), maps sites of chemical modification by
analyzing the mutation frequencies of the nucleotides. To calculate SHAPE reactivities,
sequencing data generated from untreated (or solvent-treated) RNA and chemically mod-
ified denatured RNA are often included. However, it has been suggested that such controls
may not be essential for accurately predicting RNA structures [21, 34]. Since SHAPE-MaP
essentially relies on counting the number of mutations and diffBUM-HMM relies on
count data, we asked whether diffBUM-HMM can accurately detect sites of modification
from SHAPE-MaP data. To test this, we reanalyzed the mouse Xist SHAPE-MaP datasets
[23]. The 18-kb Xist lncRNA is essential for X-chromosome inactivation during the devel-
opment of female eutherian mammals [35]. Although previous studies have suggested
the importance of RNA structures in specific regions of Xist, the locations and struc-
tures of functional domains within Xist are still not well-defined. To identify Xist RNA
structural features as well as regions occupied by proteins, the Weeks lab has previously
performed a comprehensive SHAPE-MaP analysis of the Xist RNA that was probed in
living cells (in cell/in vivo) and in protein-free (ex vivo) conditions [23]. Analyses of these
data identified 33 regions in Xist that formed well-defined structures as well as many
regions that could be occupied by RNA-binding proteins (RBPs). Importantly, this dataset
contained two biological replicates for each condition for SHAPE-treated, untreated, and
SHAPE-treated denatured RNA samples. As it was unclear whether including the dena-
tured data in our calculations was essential, we performed the diffBUM-HMM analysis
with and without normalizing the data to the mutation rates of the denatured RNA
samples. An overview of the results is shown in Fig. 5. To compare our data to the
deltaSHAPE results, we applied the deltaSHAPE algorithm to the individual replicates
(Fig. 5A). When reactivities from the denatured data were not considered, diffBUM-
HMM detected 1164 DRNs in the ex vivo condition and 188 in the in vivo condition
(Fig. 5A, C). Interestingly, diffBUM-HMM reported a much larger number of DRNs in
the ex vivo data than in the in vivo data relative to deltaSHAPE (≈ 9-fold difference
with diffBUM-HMM and ≈ 1.4-fold with deltaSHAPE, as shown in Fig. 5A, C). Why
diffBUM-HMM calls many more DRNs in the ex vivo data is unclear; however, intu-
itively, one would expect that removing proteins from a very large ribonucleoprotein
(RNP) complex will substantially increase the flexibility of the RNA. This is because
when the RNP complex is deproteinized, those nucleotide positions normally bound by
RBPs may become more accessible and/or more flexible and therefore react more readily
with chemical probes. In this dataset, dStruct was also very conservative with its pre-
dictions: with a search length of 5 nt, dStruct reported 29 DRRs with a FDR of ≤0.15
(Fig. 5A) that range from 10 to 40 nt in size. The tool did not report regions with rela-
tively modest but reproducible differences in reactivity, such as the region 12,000–14,000,
which is enriched with FUS protein-binding sites amongst others. Remarkably, normal-
izing the data to the denatured samples further increased the number of DRNs detected
by diffBUM-HMM and dStruct (Fig. 5A, C), with dStruct now detecting more DRRs in
the 8000–9000 and 3′ regions of Xist (Fig. 5A). This confirms that including data from
SHAPE-treated denatured samples can improve the detection of DRNs in SHAPE-MaP
data.
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Fig. 5 diffBUM-HMM detects a larger number of differentially modified nucleotides in the ex vivo Xist lncRNA
data compared to deltaSHAPE and dStruct. A The differential reactivities of two deltaSHAPE replicate
experiments [23] compared to the diffBUM-HMM posterior probabilities and dStruct outputs, which show
the SHAPE reactivities of the regions it calls DRRs. The Xist RNA transcript was binned into 500 nucleotides
regions and the differential reactivities for each bin is plotted. Regions with negative reactivities or posterior
probability values are more reactive in vivo. Only those nucleotides that according to the deltaSHAPE
analyses had sufficient coverage are plotted. The normalized diffBUM-HMM posteriors and dStruct panels
indicate those nucleotides that were called differentially modified after normalizing the mutation rates in
treated and untreated samples based on the denatured data (denoted as “den norm” in D). B Overview of
the RNA-binding sites detected in the Xist transcript, as shown in [23]. C Overview of the number of DRNs
that overlap with RNA-binding protein (RBP) binding sites in Xist in the in vivo and ex vivo data. Total DRNs
indicates the total number of DRNs identified by diffBUM-HMM and deltaSHAPE in the datasets. “Den norm”
indicates the data where we normalized the mutation frequencies of treated and control samples based on
the denatured RNA data. D Enrichment of DRNs in RBP binding sites in Xist obtained from the CLIPdb
database. Statistical significance for enrichment was determined using a hypergeometric test. Color legend
indicates significance level, with binding sites for RBPs that are not statistically significant colored in gray

DRNs detected in Xist using diffBUM-HMM are primarily single-stranded and enriched in

protein-binding sites

A key question that we wished to address was whether the large number of additional and
unique DRNs detected by diffBUM-HMM in the Xist ex vivo data were biologically mean-
ingful. Despite the high specificity of diffBUM-HMM,we could not rule out the possibility
that diffBUM-HMM simply called many false positives in this SHAPE-MaP dataset.
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Deproteinizing an RNP should make sites normally occupied by RBPs more accessi-
ble to chemical probes. Therefore, we first asked whether the diffBUM-HMM DRNs
were located in protein-binding sites previously identified by UV cross-linking or RNA
immunoprecipitation (CLIP/RIP) experiments. The CLIPdb database contains Xist bind-
ing sites for a large number of RBPs, including CELF1, PTBP1, HuR, TARDBP, FUS, and
RBFOX2 (Fig. 5B). Similar to what was previously observed in the Xist deltaSHAPE anal-
ysis [23], many of the DRNs in the ex vivo data detected by diffBUM-HMM overlapped
with RNA-binding sites of these RBPs (Fig. 5B, C). When compared to the deltaSHAPE
data, diffBUM-HMM identified more DRNs overlapping with FUS and TARDBP RNA-
binding sites in the ex vivo data, whereas the number of ex vivo DRNs overlapping
with other RBPs was comparable between the two datasets (Fig. 5C). This is presumably
because most of the deltaSHAPE signal concentrated around 2–3 regions within the Xist
RNA, whereas diffBUM-HMM detected DRNs throughout the transcript (Fig. 5A). We
also found that in the ex vivo data for both diffBUM-HMM and deltaSHAPE many of
the RBP binding sites were statistically significantly enriched for DRNs, with diffBUM-
HMM DRNs preferentially enriched in CELF1 and FUS binding sites (Fig. 5D). However,
diffBUM-HMM also detected many DRNs outside of these RBP binding sites, which may
explain why the -log(P values) for binding site enrichment are overall lower compared to
deltaSHAPE. This is not necessarily surprising sincemany other proteins bind Xist in vivo
[36], and therefore, diffBUM-HMMcould also be picking up binding sites from other pro-
teins in addition to the ones reported in the CLIPdb database. As a second measure for
determining whether these unique DRNs could be biologically meaningful, we performed
a motif search analysis to assess whether enriched sequence motifs could be detected in
regions containing DRNs. For this purpose, we grouped together DRNs located within 5
nt from each other into genomic intervals, extended these to 30 nt and analyzed sequence
motif enrichment using MEME [37]. MEME detected three highly enriched motifs in the
CLIPdb binding sites for CELF1, HuR and PTBP1 (Additional file 1: Figure S2). Inter-
estingly, similar motifs could also be detected in the diffBUM-HMM and deltaSHAPE
data. In the in vivo data, only a motif resembling the CELF1 binding site was significantly
enriched. However, in the ex vivo data, sequences resembling HuR and PTBP1 binding
sites could be detected. Moreover, diffBUM-HMM again recovered a CELF1-like motif as
well as another sequence motif that was not detected in the deltaSHAPE analysis. Thus,
these data strongly suggest that the DRNs dectected by diffBUM-HMM are frequently
located in or near protein-binding sites.
One possible explanation for why deltaSHAPE calls fewer DRNs in the ex vivo data

is because it looks within 5 nucleotide windows and only calls a given nucleotide as
DRN if at least three nucleotides within that window fit the required criteria. diffBUM-
HMM also assumes that DRNs are present in up to 5 nucleotide stretches; however, the
algorithmwill call single nucleotide DRNs if it is very clear from the data that only a single
nucleotide was differentially modified. Indeed, we found that deltaSHAPE preferentially
reports three nucleotide stretches, whereas diffBUM-HMM also frequently reports sin-
gle nucleotide DRNs (Fig. 6A). If the DRNs uniquely detected by diffBUM-HMM indeed
represent real changes in RNA flexibility, one would expect that many of these would be
A’s or U’s as these are more frequently located in single-stranded regions such as loops
or bulges. This was indeed the case (Fig. 6B). We observed the same trend in the data
normalized to the data from the denatured RNA control as well as for those DRNs that
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Fig. 6 diffBUM-HMM detects more differentially reactive nucleotides (DRNs) in the Xist lncRNA that are
preferentially single-stranded A’s and U’s. A diffBUM-HMM calls more single nucleotide stretches as DRNs.
The barplots show the distribution of the length of stretches of nucleotides that were called DRNs by
diffBUM-HMM and deltaSHAPE in the in vivo data and ex vivo data. B The comparison between all the DRNs
called by diffBUM-HMM, including the data normalized to the denatured data, those uniquely detected by
diffBUM-HMM, and the results from the deltaSHAPE analyses on the two replicates individually. diffBUM-HMM
DRNs are mostly A’s and U’s and enriched in regions predicted to be single-stranded in Xist. DRNs identified
by diffBUM-HMM are preferentially located in Xist single-stranded regions. “Den norm” indicates the data
where we normalized the mutation frequencies of treated and control samples based on the denatured RNA
data. “diffBUM-HMM (unique)” indicates those DRNs that were uniquely detected by diffBUM-HMM

were uniquely called by diffBUM-HMM. The deltaSHAPE results were slightly more vari-
able but still showed a modest nucleotide preference. Because the SHAPE reagents used
to modify Xist preferentially react with nucleotides in single-stranded or flexible regions,
the DRNs called by diffBUM-HMM, including those uniquely detected by the tool, should
be primarily located in regions that are predicted to be single-stranded in Xist. Indeed,
over 80% of all the DRNs called by diffBUM-HMM in the deproteinized data were located
in single-stranded regions (Fig. 6B). A few examples showing DRNs in Xist secondary
structures is shown in Fig. 7. In those cases where deltaSHAPE results between repli-
cate samples did not agree, diffBUM-HMM frequently calls the nucleotide unmodified
in both conditions. However, as evident from the figures, many of the DRNs reported by
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diffBUM-HMM were not detected by deltaSHAPE. Collectively, these data suggest that
the DRNs detected by diffBUM-HMM in Xist represent bona fide changes in nucleotide
flexibility that in many cases are located in single-stranded regions and overlap with or
are located near protein-binding sites. In conclusion, all the available data strongly sug-
gest that diffBUM-HMMoutperforms deltaSHAPE and dStruct in both sensitivity and/or
specificity.

Discussion
diffBUM-HMM exhibits promising advantages and functionality compared to existing

methods

Over the past several years, there has been an explosion in the number of methodolo-
gies that make it possible to analyze RNA structure both in vivo and in vitro. However,
the analysis of the resulting data is notoriously difficult. To be able to extract all the rele-
vant information from the high-throughput sequencing data, many variables need to be
taken into consideration. This include sequence coverage, biological variability between
experiments (i.e. noise), background signal observed in untreated samples, and sequence
representation bias introduced during the preparation of NGS libraries. Adding to the
complexity, research groups have now started focusing on the analysis of RNA struc-
tural changes introduced by SNPs or the absence of protein binding, etc. This therefore
prompted a number of labs to develop bioinformatics tools that would enable users to
detect differences in RNA flexibility by comparing datasets generated under different
conditions (see Table 1 for examples and references). The Aviran Lab recently published
a thorough review of the pros and cons of the various methods and tested them on a
variety of datasets [32], so we will not discuss this in detail here. However, that study
showed that dStruct was the best performing approach, particularly when it comes to
specificity. One of the great strengths of dStruct is that it is compatible with a wide
variety of RNA structure probing methodologies and takes into consideration biological
variability. However, as outlined above, dStruct uses a variety of statistical tests to pre-
dict DRNs within a certain sequence window. The correction for multiple hypothesis
testing that dStruct employs likely also makes the tool conservative with its predictions.
Indeed, our analysis of rRNA and mouse Xist SHAPE-MaP data showed that dStruct
generally calls few DRRs. This prompted us to develop a tool that was based on a prob-
abilistic graphical model as this should be less vulnerable to problems associated with
multiple hypothesis testing. Here, we demonstrate that our approach (diffBUM-HMM)
is indeed much more sensitive in calling DRNs compared to dStruct on all the datasets
tested. However, this high sensitivity does not mean that diffBUM-HMM compromises
on specificity: like dStruct, diffBUM-HMM has a very low false-positive rate. In fact,
our analysis on identically treated rRNA samples probed with DMS (including rRNAs
up to ≈ 3400 nucleotides long; [32]) revealed that diffBUM-HMM did not call any false
positives.
One of the challenges we faced was the lack of datasets that would enable us to perform

a more quantitative comparison between diffBUM-HMM and dStruct and other tools.
The problem we have (as well as the rest of the field) is that we currently do not have a
good ‘ground truth’ dataset that would enable us to do a meaningful statistical analysis.
Although many high-throughput RNA structure probing datasets are now available, the
number of datasets that describe analysis of RNA structures under different conditions
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Fig. 7 Differentially reactive nucleotides detected by diffBUM-HMM are preferentially localized in
single-stranded regions and at the base of stems. A A secondary structure for a region in the Xist lncRNA
containing CELF1, TARDBP, and HuR binding sites. The red dots indicate the nucleotides called modified only
in the ex vivo data by diffBUM-HMM, while the violet lines indicate binding sites for RNA-binding proteins
that were identified by CLIP/RIP (left). Also shown is the same secondary structure with the deltaSHAPE results
from the two replicates individually (right). Those nucleotides called differentially modified in replicates 1 and
2 are colored red and cyan, respectively. B The same as in A but now for the FUS interaction domain of Xist

is still very limited. Additionally, diffBUM-HMM requires replicates (the more the mer-
rier) for both treated and untreated samples, which are not readily available. For example,
DMS-MaP protocols do not consider untreated control samples as the background signals
that are generated under the library preparation conditions seem to be mostly stochastic
and therefore not very useful [21]. To be able to perform ameaningful quantitative assess-
ment of the available tools, we would need to have SHAPE-Seq or SHAPE-MaP data from
a large RNP or macromolecular complex that was analyzed under two different condi-
tions, and for which high-resolution structures were also generated under the exact same
conditions. Unfortunately, such datasets were not yet available at the time of writing.
Our reanalysis of the Xist data revealed that diffBUM-HMM also called many more

DRNs in the ex vivo data compared to deltaSHAPE and dStruct, many of which were
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uniquely detected in the diffBUM-HMM analyses. We believe that the majority of these
represent bona fide changes in RNA flexibility: SHAPE reagents preferentially react with
single-stranded or flexible nucleotides, and over 80% of the DRNs detected in the depro-
teinized data were in regions that are single-stranded in the Xist secondary structure
model (Figs. 6 and 7). Moreover, motif analyses revealed that these DRNs were also
enriched in sequence motifs recognized by RNA-binding proteins (Additional file 1:
Figure S2). Our analyses as well as the original Xist SHAPE-MaP paper [23] nicely illus-
trate how comparing in vivo and ex vivo conditions can not only help with the detection of
differences in RNA structure, but also the identification of potential protein-binding sites.
The observation that specific RNA-binding motifs could be detected in the deltaSHAPE,
and diffBUM-HMM DRNs analyses suggests that it should even be possible to use such
data to predict where on the RNA certain sequence-specific RBPs bind.

Interpreting the output of diffBUM-HMM

Although the available evidence suggests that diffBUM-HMM is currently the best per-
formingmethod for detecting DRNs, it does have a few drawbacks: the method provides a
posterior probability for differential modification, which does not inform about how large
the difference in chemical reactivity was between the two samples (i.e. no absolute mea-
sure of modification). To get a general impression of reactivity changes, one could inspect
the drop-off rates (DORs) for the different conditions or variants alongside the output of
diffBUM-HMM. For example, those regions in the 5′ ETS that reproducibly showed large
changes in DORs between the wild-type and mutant Mrd1 samples (Additional file 1:
Figure S6A) also had high diffBUM-HMM posterior probabilities (e.g., nt 470–480).
There could still be diffBUM-HMM predictions that at first glance may not seem to be

consistent with the DORs. Two examples are nucleotides 462 and 474 in the 5′ ETS region
of 35S pre-rRNA (Fig. 3B and Additional file 1: Figure S6A). In such cases, it is impor-
tant to inspect the P values generated by diffBUM-HMM since these values informs us
on variability in the modified samples and how different they were to the control samples
(Additional file 1: Figure S6B). The beta-uniform model tends to assign a higher
likelihood of modification to P values of ≈ 0.2 or smaller. Looking at position 462
in the 5′ ETS region, three of the four P values in the wild-type Mrd1 data are
lower compared to the values found in the Mrd1 mutant data, indicating higher
reactivity in the pre-rRNA samples isolated from the strain expressing the wild-type
Mrd1 (Additional file 1: Figure S6B). As for nucleotide position 474, it is predicted
to be most likely modified in both variants (Additional file 1: Figure S6A, fourth
panel from the top, probability ≈ 0.8), while the probability of differential modifi-
cation is insignificant (≈ 0.19). The P values for both variants are all small enough
to be assigned a high likelihood of modification, but looking more closely there
is also a discernible difference between the two different molecules, where the P
values for the wild-type Mrd1 are in a higher quantile than Mrd1�5 (Additional
file 1: Figure S6B). However, the advantage of diffBUM-HMM is that it does not only
report positions that have differential activity, it also reports whether nucleotides from the
two samples are modified in both conditons or not significantly reactive to the chemical.
If a nucleotide is clearly modified in both conditions, albeit at different levels, it tends to
predict modification in both variants/conditions. Ultimately, it is the comparative magni-
tude, as well as the inter-replicate consistency of the P values within and across conditions
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that pushes the algorithm towards a specific decision, so considering the aforementioned
pieces of information in tandemwould be useful when understanding the diffBUM-HMM
output in this and subsequent studies.
In certain instances, there could be discrepancies between diffBUM-HMM and other

measurements of differential reactivity, like deltaSHAPE. This could be because diffBUM-
HMM accounts for inter-replicate variability on two different levels: the tool uses
control replicates to account for background noise, and it also compares replicate
samples, before proceeding to analyze for reactivity differences. On the other hand,
deltaSHAPE only represents the differential reactivity detected between a single pair
of samples, and does not account for inter-replicate variability with real data. Thus,
the prediction of the diffBUM-HMM DRNs is based on a more comprehensive set of
experimental data than a typical deltaSHAPE analysis. Hence, discrepancies in results
generated by these tools could arise from variability between the biological replicates
that were regarded as experimental noise by diffBUM-HMM. For example, there were
two regions in the 35S pre-rRNA ChemModSeq data where the two tools did not agree
(3750–3950 and 6300–6500; Fig. 2A). However, the deltaSHAPE results for each repli-
cate were also very different in these regions, demonstrating that chemical probing
data for these regions is noisy (Additional file 1: Figure S7). Similarly, there were also
several regions in the Xist RNA molecule where deltaSHAPE only called differential
nucleotides in one of the replicates (e.g., FUS interaction domain in Fig. 7B), and in
many cases, diffBUM-HMM gave these regions low posterior probabilities of differential
modification.

Recommended input for the diffBUM-HMM algorithm

As diffBUM-HMMsolely relies on nucleotide count data, it is compatible with a wide vari-
ety of high-throughput RNA structure probing methods that either measure RT drop-off
or mutations (SHAPE-MaP). However, it is important to point out that diffBUM-HMM
will only work well with structure probing libraries that are paired-end sequenced, as
in order to quantify and correct for local variability in coverage, the precise start and
end position of each cDNA in the library needs to be determined [6, 26, 27]. In our
analyses, we therefore only consider reads that are properly paired (i.e. the forward
and the reverse read are mapped within a specified distance on the same chromo-
some). Hence, diffBUM-HMM will not generate reliable results with RNA structure
probing methods that rely on single-end sequencing. Paired-end sequencing is also rec-
ommended for SHAPE-MaP analysis as it would enable the selection of high-confidence
mutations.

Recent advancements in detecting RNA structural heterogeneity

diffBUM-HMM provides a nucleotide-level measure of differential accessibility; how-
ever, to obtain insights into global changes in structure, suitably constrained RNA-folding
algorithms need to be used. An alternative approach called DREEM was recently pro-
posed [34], which instead relies on a priori selecting a set of plausible structures based on
the chemical probe reactivity profiles, and then determines relative shifts in abundance
of the different structures via a read-clustering approach. Hence, DREEM and diffBUM-
HMM perform different tasks but provide complementary information from structure
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probing data sets; due to this, a direct comparison in performance between the two
methods is not straightforward nor necessarily meaningful.

Conclusions
We describe a novel modeling approach (diffBUM-HMM) for detecting changes in
RNA flexibility from high-throughput RNA structure probing datasets. Our results show
that diffBUM-HMM exhibits a higher sensitivity compared to the current gold stan-
dard dStruct as well as deltaSHAPE and calls very few false positives. We envision that
diffBUM-HMM will be very useful for a variety of analytical tasks that pertain to differ-
ent domains ranging from biomedical science to molecular genomics. diffBUM-HMM
could be used to predict novel RNA regulatory elements, or study the effects of mutations
on RNA structure, to pinpoint crucial functional domains in RNA or to identify novel,
potential protein-binding sites within RNA. The knowledge from these studies can then
be potentially applied to synthetic biology, such as the design and screen for regulators
that will allow fine-tuning of arbitrary functions in synthetic gene circuits.

Methods
Analysis of the ChemModSeq dataset

Drop-off and read counts were generated using the pyCRAC package (https://git.ecdf.
ed.ac.uk/sgrannem/pycrac) and the CRAC_pipeline_PE pipeline (https://git.ecdf.ed.ac.
uk/sgrannem/crac_pipelines). Briefly, Flexbar (version 3.4.0) was used to remove adapter
sequences and subsequently the reads were collapsed (pyFastqDuplicateRemover.py) to
remove putative PCR duplicates. PyReadCounters from the pyCRAC package was used
to calculate drop-off counts and coverage for each nucleotide position in the yeast
pre-ribosomal RNAs (pre-rRNAs). These were subsequently fed to diffBUM-HMM.

DiffBUM-HMMmodel

Differential BUM-HMM (diffBUM-HMM) is a variant of the beta-uniform mixture hid-
den Markov model (BUM-HMM) [27], and most of the modeling assumptions made
for BUM-HMM also hold for diffBUM-HMM. For example, the transition probabilities
are defined based on single- and double-stranded nucleotide stretches derived empiri-
cally to be of length 5 and 20, respectively. Emission probabilities follow a beta-uniform
mixture model. This design is based on the expectation that nucleotides that are not
modified under a given condition are associated with P values that follow a uniform dis-
tribution [38]. On the other hand, accessible nucleotides are associated with P values
that follow a beta distribution, as they would exhibit LDR or LMR values that are
greater than most values in the null distribution. In practice, adherence to this assump-
tion can be easily monitored by plotting empirical P value distributions as in Additional
file 1: Figure S3-S5. It should be pointed out that, occasionally, saturation phenomena
might result in the presence of two beta peaks; for example, Additional file 1: Figure S3
shows a peak of P values near zero, corresponding to nucleotides which have signifi-
cantly higher drop-off/mutation rates in treatment (and hence are likely modified), as
well as an additional peak near 1. This peak is likely the result of saturation in the treated
sample, resulting in abnormally few drop-off reads in unmodified nucleotides; the BUM-
HMM likelihood will in any case assign a very low probability of modification to such

https://git.ecdf.ed.ac.uk/sgrannem/pycrac
https://git.ecdf.ed.ac.uk/sgrannem/pycrac
https://git.ecdf.ed.ac.uk/sgrannem/crac_pipelines
https://git.ecdf.ed.ac.uk/sgrannem/crac_pipelines
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nucleotides, effectively eliminating any problem that might arise from this mismatch of
hypotheses.
The α and β parameters of the beta distribution were chosen heuristically to be 1 and

10, respectively. This allows to assign approximately equal likelihood under both P value
distribution hypotheses to nucleotides that have LDR/LMR falling in the highest quan-
tiles of the empirical distribution. Like for BUM-HMM, it is possible to optimise the
parameters of the beta-uniform distribution of diffBUM-HMM for a dataset using the
expectation-maximization (EM) algorithm andNewton’s optimizationmethod. Although
we provide an implementation of the EM algorithm in diffBUM-HMM, we did not use
it to generate the results of this manuscript, as manual optimization already yielded very
good results. The hidden Markov model takes as input continuous regions of nucleotides
that satisfy a user-specified coverage threshold (i.e. non-negative threshold for all the
experiments in this manuscript) and non-zero LDR/LMR for at least one treatment-
control comparison. The novel aspect of diffBUM-HMM is that inference is performed
based on two independent observed P values, each representing a different condition.
The forward-backward algorithm is the inference method for computing the posterior
marginals of all hidden states.

Analysis of enriched sequence motifs in regions containing DRNs

The Multiple EM for Motif Elicitation (MEME) tool searches for novel, recur-
ring, and untapped motifs in given sequences [37]. To detect enriched RBP bind-
ing motifs in Xist, DRNs in the ex vivo data that were located within a win-
dow of 5 nucleotides were grouped in to a single interval, each of which was
subsequently extended to 30 nucleotides using the pyNormalizeIntervalLenghts.py
script from the pyCRAC package [39]. FASTA files containing the Xist sequences
associated with these intervals were analyzed by MEME using the following bash
command: meme-chip -meme-minw 4 -meme-maxw 10 -meme-nmotifs 20

-meme-p 8 -meme-mod anr -norc -rna -noecho -oc OUTFILE INFILE.
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