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Abstract

The renal mesenchyme contains heterogeneous cells, including interstitial fibroblasts

and pericytes, with key roles in wound healing. Although healing is impaired in aged

kidneys, the effect of age and injury on the mesenchyme remains poorly understood.

We characterized renal mesenchymal cell heterogeneity in young vs old animals and

after ischemia-reperfusion-injury (IRI) using multiplex immunolabeling and single cell

transcriptomics. Expression patterns of perivascular cell markers (α-SMA, CD146,

NG2, PDGFR-α, and PDGFR-β) correlated with their interstitial location. PDGFR-α

and PDGFR-β co-expression labeled renal myofibroblasts more efficiently than the

current standard marker α-SMA, and CD146 was a superior murine renal pericyte

marker. Three renal mesenchymal subtypes; pericytes, fibroblasts, and myo-

fibroblasts, were recapitulated with data from two independently performed single

cell transcriptomic analyzes of murine kidneys, the first dataset an aging cohort and

the second dataset injured kidneys following IRI. Mesenchymal cells segregated into

subtypes with distinct patterns of expression with aging and following injury. Base-

line uninjured old kidneys resembled post-ischemic young kidneys, with this pheno-

type further exaggerated following IRI. These studies demonstrate that age

modulates renal perivascular/interstitial cell marker expression and transcriptome at

baseline and in response to injury and provide tools for the histological and trans-

criptomic analysis of renal mesenchymal cells, paving the way for more accurate clas-

sification of renal mesenchymal cell heterogeneity and identification of age-specific

pathways and targets.
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1 | INTRODUCTION

Acute kidney injury (AKI) occurs in approximately 1 in 5 hospital

admissions,1 and can leave patients with varying degrees of renal

fibrosis—an important contributor to the transition to chronic kidney

disease (CKD). In addition, the likelihood of a fibrotic outcome post

AKI and of progression to CKD increases with age.2-7 It is therefore

crucial to understand the mechanism of fibrosis following renal injury

and the age-associated factors that drive this.

Bilateral ischemia reperfusion injury (bIRI) is a common model of

AKI,8 but the long-term effects on the aged kidney cannot be easily

assessed in this model as aged mice tolerate such severe injury poorly

leading to a high mortality.2,9 In contrast, unilateral ischemia reperfusion

injury (uIRI)8 transiently interrupts blood flow to one kidney but leaves

the contralateral kidney unaffected, thus enabling the study of more

unilaterally severe injury than the models of bIRI or uIRI with contralat-

eral nephrectomy.10 Importantly, this facilitates the observation of

long-term fibrotic end-points, increasing the relevance to patients.11

Although AKI results in widespread tubular cell injury, the effect

upon the interstitium is key for overall kidney outcome: rarefaction of

peritubular capillaries with subsequent tissue hypoxia exacerbates the loss

of nephrons,12 while a progressive fibrotic phenotype in the interstitium

is the hallmark of CKD.13 These processes are influenced by mesenchy-

mal perivascular/interstitial cells which support the vasculature14 and con-

tribute substantially to myofibroblast generation and expansion.15

However there has been little research into how age affects perivascular/

interstitial progenitor cells,16,17 and crucially no research to date into the

effect of age on the perivascular/interstitial cell response to injury.

There are two broad types of mesenchymal cells present in the

interstitium. “Pericytes” enwrap the microvascular endothelium and

are embedded in the capillary basement membrane.18,19 “Interstitial
fibroblasts” are embedded in and structurally maintain the collagenous

extracellular matrix (ECM) of the interstitium.20-23 These fibroblasts

are necessarily in close proximity to the capillaries, but are less inti-

mately associated than pericytes. There are likely many subpopula-

tions of pericytes and interstitial fibroblasts, such as the “perivascular
fibroblasts” that reside in the collagenous matrix around larger ves-

sels.24 In the text below the term “interstitial cell” refers to all mesen-

chymal cells in the interstitial compartment.

A diverse range of perivascular cell markers, with heterogeneous

expression patterns, have been utilized to study renal interstitial

cells, such as neural glial 2 (NG2), platelet derived growth factor

receptor (PDGFR) -β, α-smooth muscle actin (α-SMA), and PDGFR-α.

Their heterogeneity in expression is not well characterized, and is

indicative of an underlying functional heterogeneity.17 Kidney

pericyte functional heterogeneity has been demonstrated previ-

ously: Gli1+ pericytes/perivascular fibroblasts give rise to the major-

ity of myofibroblasts following kidney injury,25 and there is a

pericyte subset that produce renin.26 CD146 is reportedly a ubiqui-

tous human pericyte marker,27-29 but is poorly characterized in

murine kidney. Thus, more detailed characterization of the inter-

stitium is required given the central role of mesenchymal cells in

renal injury and recovery.

This work characterizes the interstitial distribution of common

perivascular cell markers in the young and aged murine kidney and

tests the effects of injury and age on mesenchymal cell phenotypes.

This is achieved by multiplexed immunolabeling, which reveals the rel-

ative spatial distribution of multiple surface markers within the com-

plex renal architecture, in combination with single cell transcriptomic

technology, which provides high-dimensional information on gene

expression within individual cells and allows unbiased clustering into

transcriptionally distinct subpopulations. In this work these two tech-

nologies independently identify similar subpopulations within the

renal interstitium and provide insight into their functional properties

through their anatomical localization, their reaction to age and ische-

mia, and through their gene expression profile.

2 | MATERIALS AND METHODS

2.1 | Animals and surgery

Interstitial cell quantification in the cortex and inner stripe was per-

formed on male FVB mice from the National Institute of Aging colony

(Charles River, Boston, USA) that were either young (3-5 months) or old

(18 months). IRI surgery for immunolabeling experiments was performed

on a separate cohort of FVB mice in the University of Edinburgh Central

Bioresearch Services that were either young (3-5 months) or aged in-

house (18-24 months). Ischemia time was 25 minutes. For post-IRI sin-

gle cell transcriptomics, C57/Bl6 mice were purchased from Jackson

Laboratories and bred in-house before use. Mice were used at

6-8 weeks of age. Ischemia time was 20 minutes. Mice were culled

28 days post-surgery. For uIRI surgery animals were anesthetized by

inhalation of 2-4% isofluorane (Merial) and surgery was performed as

previously described.3 More details in Supplementary Methods.

All animal procedures were approved in advance by the local Ani-

mal Welfare Ethical Review Body and performed in accordance with

the Animals (Scientific Procedures) Act 1986 (amended in 2012).

Significance statement

The mesenchymal cell compartment plays a key role in kid-

ney disease, but the varied cell types within are poorly

defined and the effect of aging on mesenchymal cells is

incompletely understood. Here, for the first time the authors

perform histological analysis of common mesenchymal

markers with accompanying transcriptomic profiling on

young and old mice following unilateral ischemia reperfusion

injury. This results in a more refined understanding of mes-

enchymal marker expression as they align with cell subtypes

within the mesenchymal compartment. Age associated

changes in mesenchymal populations are identified, further-

ing our understanding of the differences in injury response

that occur with age.
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2.2 | Human tissues

Human kidney tissue was collected with prior written informed

consent. Ethical approval for the use of human tissues in research

was obtained from the South East Scotland Research Ethics

Committee.

Tissue was obtained from uninephrectomy operations that were

performed following the detection of renal carcinoma. Plugs were

taken at maximum distance from neoplasms from the cortex and

outer medulla regions. These were fixed in formalin and paraffin

embedded, before processing for immunofluorescent staining as

described.

2.3 | Histopathology

Histopathology was performed as previously described.3 Kidney

halves were fixed overnight in methacarn before paraffin embed-

ding. Five micrometer sections were stained using hematoxylin and

eosin, or picrosirius red. For acute tubular necrosis (ATN) scoring at

day one, 4-8 random fields in the outer stripe at 20× magnification

were acquired from H&E stained sections. Images were blinded,

randomized, and the proportion of tubules with evidence of tubular

death was quantified. Fibrosis quantification was performed on

eight random fields in the outer stripe of picrosirius red stained sec-

tions. % red-positive area was quantified using ImageJ software.

2.4 | Immunofluorescence staining

All immunofluorescence staining was performed on methacarn-fixed

paraffin embedded slides as previously described.3 The choice of

endothelial cell marker (CD31 or CD34) in each case depended on

technical considerations such as species of antibody and brightness of

labeling. Full details of protocols in Supplementary Methods.

2.5 | Cell quantification

Positive cell nuclei were putatively identified automatically via co-

localization of antigen signal and DAPI using ImageJ software,

followed by manual verification. Only nuclei in the interstitium or on

the outer surface of capillaries were deemed positive. Areas of outer

stripe were digitally extracted from scans of stained sections. These

were either analyzed in their entirety or had 6-8 high power fields dig-

itally extracted from random locations. Total area quantified for

CD146 and PDGFR-β dual-labeling was 0.89 mm2 per mouse, for

α-SMA and NG2 was 0.17 mm2, and for PDGFR-α and -β was

0.09 mm2; cell numbers were normalized by total area analyzed.

Quantification in the cortex, and outer and inner stripe analyzed

0.35 mm2 per region per mouse; cell numbers were normalized by

total cross-sectional area of vasculature analyzed, as determined by

CD34 labeling.

2.6 | Single cell transcriptomics

For animals in the IRI dataset surgery was performed on three animals

as described in the Animals & Surgery section. They were culled via

exsanguination and cervical dislocation and kidney was dissected out

and immediately stored in TPMT on ice before digestion and live/

dead FACS sort using DAPI (BioLegend, catalogue 422 801) stain. Sin-

gle cell libraries from murine kidneys were prepared using a high-

throughput droplet-based library preparation workflow, Single cell

suspensions were prepared as outlined by the 10× Genomics Single

Cell 30 v2 Reagent kit user guide (10x). The sample was then split and

sequenced across 4 lanes on a single Illumina flow cell on a NextSeq

550 High Output Kit v2 (Illumina) for 150 cycles at 400 M PE reads

comprising of 2x75bp and 8 bp index reads. Alignment was performed

by splicing aware aligner STAR 2.5.1b before downstream analysis in

the R environment. The Tabula Muris Senis data follows a similar

droplet based protocol using the 10× platform with digests from mice

of multiple ages and is described in detail in the original manuscript.30

Full details of single cell transcriptomic analysis and statistical

methods can be found in Supplementary Methods.

2.7 | Statistical analysis

Data are presented as mean ± SD, or in the case of ratios geometric

mean ± 95% CI. For single comparisons in Figure S7B,D,E a two-tailed

two sample t test was performed. For ratios (Figures 3H,I,K,L and S9B,

C) data were log transformed and difference from 0 was tested by

one sample t test. Data in Figures 2C-F; 3G,J; 4D-F; 5E-G; S9A; and

S12B were analyzed using two-way ANOVA and Bonferroni corrected

post-tests. Correlations in Figure S10 were analyzed by linear regres-

sion. All statistics were performed using Graphpad Prism 5 software.

For statistics regarding single cell transcriptomics, see the dedicated

section within Supplementary Methods.

3 | RESULTS

3.1 | CD146 and PDGFR-β staining identifies
pericytes and interstitial fibroblasts in the murine
kidney

Multiple markers are used to label perivascular/interstitial cells in

murine renal studies (Table 1). To test their usefulness together as

perivascular/interstitial cell markers in murine kidney, sections were

labeled for α-SMA, PDGFR-β, NG2, CD146, and the endothelial cell

marker CD31 (Figures 1 and S1-S3). Separate sections were also

labeled for PDGFR-β, CD146, and endothelial cell marker CD34

(Figure 2). CD146+CD31− and CD146+CD34− perivascular

populations were identified around peritubular capillaries of the cor-

tex and outer medulla (Figures 1A,C; 2A; S1; and S2). CD146+ peri-

vascular cells were often co-labeled with NG2 and PDGFR-β

(Figures 1A,B; S1 and S3). In contrast, no cells with convincing
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pericyte morphology were labeled CD146−NG2+ or CD146−PDGFR-

β+, indicating that CD146 identifies all murine renal pericytes.

CD146+ endothelial cells were also observed (Figures 1B, 2A, and S3)

however many peritubular capillaries lacked CD146 expression

(Figure 1D). In human kidney biopsies, CD146 labeled kidney peri-

cytes, and a subset of endothelial cells (Figure S4A-D).

A substantial population of PGDFR-β+CD146−NG2−α-SMA− cells

were present. They were distributed in the interstitial ECM and did

not show the same intimate association with vessels as

CD146+PDGFR-β− and CD146+PDGFR-β+ pericytes (Figures 1A-C

and 2A, and S1-S3) indicating that PDGFR-β+ cells lacking CD146

expression are interstitial fibroblasts. NG2 expression was

occasionally observed on these interstitial fibroblasts (PDGFR-

β+CD146−NG2+α-SMA−) localized to the periphery of larger vessels,

basally to the CD146+α-SMA+ pericyte/vascular smooth muscle cell

(vSMC) layer (Figures 1B and S3). α-SMA localized to SMC-like peri-

cytes on larger vessels such as afferent arterioles (Figures 1B and S3),

and descending vasa recta (Figures 1C and S2) where it overlapped

substantially with CD146 and NG2, but was undetectable on capillary

pericytes and interstitial fibroblasts (Figures 1A and S1). This contra-

sted with human, where α-SMA was present on the majority of capil-

lary pericytes (Figure S4A-D).

Based on these observations, labeling for CD146 and PDGFR-β

alongside an endothelial cell marker, such as CD31, effectively iden-

tifies pericytes and distinguishes them from interstitial fibroblasts in

the baseline murine kidney. In endothelial marker negative cells,

CD146+ (±PDGFR-β+) staining identifies pericytes, while a

CD146−PDGFR-β+ phenotype identifies interstitial fibroblasts (sum-

marized in Figure S5).

3.2 | Reductions in pericyte and fibroblast
numbers in the renal interstitium occur with age

Reductions in vascular area and pericyte numbers with age have been

reported.16 To determine the effects of age on perivascular/interstitial

cell numbers, kidney sections from young (3-5 months) and old

(18 months) mice were triple-labeled for PDGFR-β, CD146, and the

endothelial cell marker CD3443,44 (Figure 2A,B) and the relative abun-

dances of CD146+PDGFR-β−(CD34−), CD146−PDGFR-β+(CD34−),

and CD146+PDGFR-β+(CD34−) interstitial cells were quantified in the

cortex, outer stripe, and inner stripe regions (Figure 2C-F).

CD146+PDGFR-β+ pericytes were a minority subset of each popula-

tion, namely 27-33% of the CD146+ population and 7-28% of the

PDGFR-β+ positive population (Figure S6). This indicates that the

major portion of cells in the total PDGFR-β+ interstitial population are

not pericytes but rather interstitial fibroblasts. This analysis revealed a

general increase in CD146−PDGFR-β+ interstitial cells (ie, interstitial

fibroblasts) from cortex to inner stripe (Figure 2E). The number of

CD146−PDGFR-β+ interstitial fibroblasts in the inner stripe decreased

from young to aged kidneys (Figure 2E). There was also a decrease in

CD146+PDGFR-β+ and CD146+PDGFR-β− cells (ie, pericytes) in the

cortex and inner stripe, but not the outer stripe (Figure 2D,F). These

results indicate that there is a loss of pericyte coverage on renal

TABLE 1 Properties of perivascular cell surface markers and their previous use in murine renal studies

Interstitial

surface
marker Other names Description Use in murine renal studies

PDGFR-α CD140a Receptor for PDGF-A, -B, and -C.31 Linked to a fibrotic

interstitial cell phenotype in studies of muscle.32,33
Studies of glomerular and

interstitial fibrosis34

PDGFR-β CD140b Receptor for PDGF-A, -B, and -D.31 Commonly used

pericyte marker in multiple tissues including kidney.

Involved in pericyte recruitment during angiogenesis/

vasculogenesis. Brain studies suggest that PDGFR-β
dependent binding to CD146 in pericyte progenitors

facilitates their coverage of endothelial cells.35

Common pericyte marker.

Studies of glomerular and

interstitial fibrosis34

CD146 Melanoma-associated cell

adhesion molecule (MCAM)

Receptor for laminin-α-4 (endothelial basement

membrane),36 and interacts with actin cytoskeleton37

and calcium signaling.38 Can dimerize with VEGFR239

and PDGFR-β (see above) for angiogenesis roles.

Historically used as an endothelial maker; ubiquitous

marker of pericytes in human tissue.27

Rarely used25

NG2 Chondroitin sulfate

proteoglycan 4

Proposed roles in detecting extracellular matrix

components and relaying signals to the cytoskeleton.40

Necessary for full pericyte coverage of retinal vessels.41

In human it is specifically not expressed on venular

pericytes.27 Expression lost during pericyte quiescence

and regained upon stimulation (eg, following injury).24

Common pericyte marker

α-SMA α-actin-2 Role in cell contraction. Presence on stromal cells indicates

a collagen producing myofibroblast.42 Also present on

contractile pericytes, for example, on arterioles and

descending vasa recta.17

Extensively used as

myofibroblast marker
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F IGURE 1 Heterogeneity in the expression
and localization of perivascular markers in the
kidney. A-C, Confocal images of healthy kidney
labeled for α-SMA, CD31, CD146, NG2, and
PDGFR-β. A) Peritubular capillary in the cortex.
Pericytes positive for multiple markers are
visible on the basal aspect of CD31+ capillaries
(arrows). Note the close association of CD146
with the endothelium. PDGFR-β+ interstitial cells
that are negative for other pericyte markers are
widely distributed (arrowheads). Similar
expression patterns are observed in the outer
medulla. Asterisks indicate a tubule. B, Afferent
arteriole in the cortex. Smooth muscle-like
pericytes around the arteriole label robustly for
CD146, NG2 and α-SMA, but have low-to-
absent expression of PDGFR-β (arrowhead).
PDGFR-β+ and PDGFR-β+NG2+ cells are present
basally to the CD146+ layer. CD146 can co-
localize with CD31 on the endothelium. Dashed
line marks the border of a glomerulus. C, Image
of vasa recta from the inner stripe. Arrowheads
indicate α-SMA+ perivascular cells around
vessels in the vasa recta. D, Widefield image of
kidney labeled for CD146 and CD31. CD146 is
always closely associated with CD31+

endothelium (arrowheads). CD31+ vessels
lacking CD146 coverage are also present
(arrows). Scale bars (A-C) 10 μm; (D) 50 μm
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F IGURE 2 Age- and region-linked differences in interstitial cell subpopulations as defined by CD146 and PDGFR-β expression. A, Confocal
microscopy image of CD146, PDGFR-β, and CD34 labeling in the mouse kidney, outer stripe region, with a 1.5 μm optical section. Cells single
positive for PDGFR-β (arrow), CD146 (notched arrowhead) and CD34 (open arrowhead) are visible, along with endothelial co-localizations of
CD146 and CD34 (filled arrowhead) and CD146 and PDGFR-β (not shown). Tubules labeled with an asterisk. B, Widefield images of CD146,
PDGFR-β and CD34 labeling of young and old uninjured cortex and inner stripe (DAPI also present but not shown). Scale bars (A) 15 μm;
(B) 25 μm. C, Quantification of CD34+ vascular area. D-F, Quantification of CD146+PDGFR-β− (D), CD146−PDGFR-β+ (E), and CD146+PDGFR-β+

(F) interstitial nuclei in the cortex, outer stripe and inner stripe of young and old mice, normalized per mm2 of CD34+ vasculature. P values from
two-way ANOVA are shown for each graph. *P < .05; **P < .01; ***P < .001 from Bonferroni post hoc tests. N = 5-8 per group

6 SHAW ET AL.



F IGURE 3 Quantification of CD146+ and PDGFR-β+ interstitial cells in the outer stripe at days one and 28 following unilateral ischemia
reperfusion injury. A-F, Outer stripe region of kidneys from the IRI injury experiment labeled for CD146 (green), PDGFR-β (red), and with DAPI
(blue). Contralateral kidneys at day one (A,B) and ischemic kidneys at days one (C,D) and 28 (E,F) are shown, as indicated. Asterisks indicate
denuded tubules. Scale bar = 100 μm. G and J, Quantification of PDGFR-β+CD146− (G), or PDGFR-β+CD146+ (J), interstitial cells in the outer
stripe of ischemic kidneys across injury time course. Means were compared by two-way ANOVA, P values displayed. *P < .05; **P < .01 in
Bonferroni post hoc tests. Lines indicate mean ± SD. I-L, Ratio comparisons between contralateral and ischemic kidneys at day 1 (H,K) and day
28 (I,L) post-injury. Log ratios significantly different from one by one sample t test indicated with asterisks: *P < .05; **P < .01. Bars show
geometric mean ± 95% CI. N = 4-10 per group. Con., contralateral kidney; IRI, ischemic kidney
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vessels with age in the cortex and inner stripe, along with a loss of

interstitial fibroblasts in the inner stripe.

3.3 | Initial injury is not significantly worse in aged
vs young mice following severe unilateral ischemia/
reperfusion

Following 25 minutes of warm uIRI young and old mice were culled at

one- and 28 days post-ischemia. Subsequent investigations unless

otherwise indicated focused on the outer stripe of the outer medulla,

as this is the region most susceptible to tubular cell injury following

ischemia and relatively little injury was observed in the cortex and

inner stripe. ATN scoring at day one post-IRI indicated that a signifi-

cant injury was inflicted (Figure S7A,B). However, there was no differ-

ence in ATN score between the ischemic kidneys of old and young

mice (Figure S7B), indicating that the degree of initial tubular injury

was equivalent between ages.

3.4 | Old animals have increased interstitial fibrosis
compared with young both before and after unilateral
ischemia reperfusion injury

To test whether old animals have a greater fibrotic response following

a similar initial ischemic injury, young and old animals were culled at

28 days post-IRI and fibrosis was quantified in the outer stripe by

picrosirius red staining (Figure S7C-E). There was significantly more

fibrosis in the old kidneys of the contralateral and ischemic groups

(Figure S7D,E). There was no obvious change in fibrosis in contralat-

eral kidneys between days one and 28 (Figure S8).

3.5 | Dynamic changes in CD146+PDGFR-β+

pericyte numbers following injury that are absent in
aged animals

To observe the mesenchymal cell response following uIRI,

CD146+PDGFR-β−, CD146−PDGFR-β+ and CD146+PDGFR-β+ inter-

stitial cells were quantified at one- and 28 days post-IRI in young and

old contralateral and ischemic kidneys (Figures 3 and S9).

CD146−PDGFR-β+ interstitial fibroblasts were significantly increased

in ischemic kidneys of young and old animals at day 28 compared with

contralateral kidneys and day-one ischemic kidneys (Figure 3G-I). No

difference was detected between ages (Figure 3G).

In young ischemic kidneys strong CD146 labeling was observed

around denuded tubules (identified morphologically and by lack of

nuclei) at day 1 (Figure 3C). In old animals CD146 was not so obvi-

ously activated and localized (Figure 3D). CD146+ pericytes may be

separated into subtypes with or without PDGFR-β expression.

CD146+PDGFR-β− pericyte numbers were unchanged in ischemic

compared with contralateral kidneys in both age groups (Figure S9B,

C), however young animals exhibited a marked increase in

CD146+PDGFR-β+ pericytes at day one in ischemic kidneys in con-

trast to old (Figure 3J,K). CD146+PDGFR-β+ pericyte numbers in

ischemic kidneys were equivalent to contralateral levels at both ages

by day 28 (Figure 3L). These data demonstrate a transient increase in

a CD146+PDGFR-β+ pericyte subtype early in the wound healing

response of young animals that is absent in old animals.

3.6 | NG2 and PDGFR-α identify interstitial cell
populations associated with fibrosis and more
abundant in old kidney

Renal fibrosis is mediated by myofibroblasts, commonly defined as

α-SMA+ interstitial cells,24,25,43 and the NG2 pericyte marker has been

associated with pericytes/interstitial cells activated by pathological

processes.24,45 To quantify myofibroblasts and investigate their rela-

tionship with NG2+ cells, α-SMA+, α-SMA+NG2+, and α-SMA−NG2+

interstitial cells were quantified at day 28 post-ischemia (Figure 4).

At 28 days post-IRI, NG2+α-SMA+/− cells were significantly more

abundant in old ischemic kidneys than at baseline and were significantly

higher in number than in corresponding young kidneys (Figure 4D,E),

suggesting a more active pathological phenotype in old kidneys follow-

ing ischemic injury. Supporting this idea, there was an increase in NG2

expression in the inner medulla of old kidneys at day 28 post-IRI that

was absent in young kidneys (Figure S12), indicating that activation of

NG2 expression was more widespread in old kidneys.

Old ischemic kidneys had significantly more α-SMA+ myo-

fibroblasts than young (Figure 4F) suggesting a more active fibrotic

phenotype. Furthermore, in day-28 post-IRI ischemic kidneys NG2+α-

SMA+/− cell numbers correlated more closely with fibrosis area than

α-SMA+ myofibroblast numbers (Figure S10D-F). Previous work

showed that not all α-SMA+ cells express collagen,24 and α-SMA

expression on other renal cell types such as macrophages.46 We thus

asked whether more specific myofibroblast markers exist.

PDGFR-α is a mesenchymal marker associated with a fibrotic phe-

notype in skeletal and cardiac muscle.32,33 PDGFR-α shows little co-

localization with CD146, NG2, or α-SMA in healthy kidney (-

Figure S11A-D) but substantial overlap with PDGFR-β (Figure 5).

PDGFR-α+-β−, PDGFR-α−-β+, and PDGFR-α+-β+ interstitial cell numbers

in the outer stripe of day 28 kidney tissue were quantified (Figure 5).

PDGFR-α was observed mainly on interstitial fibroblasts, whereas

PDGFR-α−-β+ cells only occurred rarely and in perivascular locations

(Figure 5A,B). This suggests that PDGFR-α+-β+/− cells are interstitial

fibroblasts, whereas PDGFR-β+ cells that lack PDGFR-α expression are

pericytes. PDGFR-α+-β+ cells increased significantly with ischemia at

both ages and correlated more strongly with fibrosis than α-SMA+ cells

(Figures 5G,H; S10D,I), suggesting they may together label fibrosis-

producing myofibroblasts. There was substantial, but not absolute, co-

localization of PDGFR-α and α-SMA in injured kidneys (Figure S11E). In

contralateral kidneys the PDGFR-α−-β+ pericyte population tended to

be lower in old than young animals and was significantly lower follow-

ing ischemia, consistent with a loss of pericytes with age (Figure 5E,H).

In contralateral kidneys the PDGFR-α+-β− population was significantly
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higher in old than young (Figure 5F,H). Interestingly, young day-28

ischemic kidneys had also acquired a population of PDGFR-α+-β− cells,

suggesting PDGFR-α+-β− cells are a subtype of interstitial fibroblasts

arising in response to pathological stimuli (Figure 5F,H). This suggests a

persistent activated state of interstitial cells 28 days post-IRI and in

aged kidney at baseline.

3.7 | Single cell transcriptomics independently
identifies pericytes, fibroblasts, and myofibroblasts in
young and old kidney

To investigate the transcriptional identity and functional phenotype

of cells identified through imaging studies we performed a new

analysis on the renal compartment of the Tabula Muris Senis (TMS)

kidney single cell RNA sequencing (scRNAseq) dataset (Figures S13

and S14).30 This dataset is comprised of male and female

C57BL/6JN mice across six age groups, ranging from 1 month (the

equivalent of human early childhood) to 30 months (the equivalent

of a human centenarian). Given the variable expression of common

mesenchymal markers demonstrated above and elsewhere,17 we

deemed that a whole digest dataset, as opposed to for example

FACS sorting, would give a more unbiased selection of all mesenchy-

mal cells present in the kidney. From 21 647 starting cells (from all

age groups) we isolated 400 cells with mesenchymal identity as

detailed in the methods. This mesenchymal cell yield is similar to

other whole kidney digest scRNAseq experiments.47,48 These were

enriched in mesenchymal-identity genes (Tagln, Acta2, Col1a1/2,

F IGURE 4 NG2+ and α-SMA+ cell
quantification in the outer stripe of
contralateral kidneys, and ischemic day-
28 kidneys following unilateral ischemia
reperfusion injury. A-C, NG2 and α-SMA
labeling in the outer stripe of contralateral
kidney and ischemic day-28 post-injury
kidney. Examples of NG2+α-SMA+ (A),
NG2−α-SMA+ (B), and NG2+α-SMA− (C)

cells are shown (arrowheads). Scale
bars = 10 μm. D-F, Quantification of
NG2+α-SMA+ (D), NG2+α-SMA− (E), and
α-SMA+ (F) nuclei observed. Comparisons
made using two-way ANOVA. *P < .05;
**P < .01; ***P < .001 by Bonferroni post
hoc tests. N = 5-7 per group. Con.,
contralateral kidney; IRI, ischemic kidney
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F IGURE 5 PDGFR-α+ and -β+ cell quantification in the outer stripe at day 28 following unilateral ischemia reperfusion injury. A-D, PDGFR-α
(green) and PDGFR-β (red) labeling in the outer stripe of young (A,C) and old (B,D) contralateral (A,B) and ischemic (C,D) kidneys at day 28 post-
injury. PDGFR-α+-β+ (arrows), PDGFR-α+-β− (arrowheads), and PDGFR-α−-β+ (notched arrowheads) nuclei are observed. Scale bars = 25 μm. E-G,
Quantification of the numbers of PDGFR-α−-β+ (E), PDGFR-α+-β− (F), and PDGFR-α+-β+ (G) nuclei observed. Comparisons analyzed by two-way
ANOVA, *P < .05 in Bonferroni post hoc tests. (H) PDGFR-α+ and PDGFR-β+ Comparison of the relative numbers of each interstitial subtype in
the different experimental groups. N = 7-10 per group. Cont., contralateral kidney; IRI, ischemic kidney
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Adamts2, Mfap5) (Figures S13C-E and S14). These cells formed three

discrete clusters, with differential gene expression that corroborated

imaging studies (Figure 6A,D, Supplementary Data 1) allowing for

classification. The myofibroblast population expressed multiple col-

lagens, and co-expressed Pdgfra (PDGFR-α) and Pdgfrb (PDGFR-β)

(Figure 6C,E). We classified the age of a mouse as “young” (aged

1-3 months) or as “old” (18, 21, and 30 months). Cells from old ani-

mals appeared to be overrepresented in the myofibroblast popula-

tion (Table 2, Figure 6B) consistent with our immunofluorescence

dataset. Pericytes/vSMC had high expression of Mcam (CD146),

Acta2 (α-SMA), and Cspg4 (NG2), but lacked Pdgfra (Figure 6E). The

third population appeared to be quiescent fibroblasts. They

expressed genes typical of a functional renal fibroblast such as

Slc6a6, Tsc22d1, and Mid1ip1, but had relatively lower collagen

expression (Supplementary Data 1, Figure 6E). Differentially

expressed genes also showed enrichment in components of the Wnt

pathway such as Ahi1, Dcdc2a, Fzd3, Fzd4, Gsk3b, Lrp6, Lypd6b,

Wnt5a, and Wnt16 (Supplementary Data 1, Figure 6D, Table S2).

3.8 | Independent single cell transcriptomics of
post-ischemic kidney identifies pericytes, fibroblasts,
and myofibroblasts in young mice

To observe the effects of IRI on mesenchymal transcriptomic profiles,

we performed unbiased scRNAseq on digests of whole injured kid-

neys 4 weeks post-IRI (Figure S15). From 2931 starting cells we iso-

lated 90 cells with high confidence mesenchymal identity which again

formed three distinct clusters, consistent with pericyte, myofibroblast

and fibroblast populations and sharing differential gene expression

similar to the TMS dataset (Figure 7A-C, Supplementary Data 2).

Using an automated “anchor gene” approach (Supplementary

Methods), 89/90 cells in the IRI data were assigned a classification

derived from the TMS transcriptomes which corresponded exactly to

the classification we had manually assigned “de novo” (Figure S16A,

B). Additionally, we used the SCMAP approach to project cell classifi-

cations from the TMS scRNAseq data set onto individual cells from

the IRI data. The mapping is shown in the Sankey plot, demonstrating

F IGURE 6 Single cell RNA sequencing identifies three distinct mesenchymal-like populations resembling pericytes, fibroblasts, and
myofibroblasts. A-C, Umap reduction of 400 murine mesenchymal cells colored by (A) shared nearest neighbor (SNN) allocated cluster; (B) age of
mouse as young (1-3 months, pink) or old (18, 21, and 30 months, turquoise); or (C) blended log10 expression level of genes Pdgfra (blue) and
Pdgfrb (red). D, Heatmap demonstrating the top 10 differentially expressed genes by fold change per cluster, calculated using Wilcoxon signed-
rank test. The color scheme is based on z-score distribution. E, Expression of selected genes across clusters. Dot size represents the percentage
of cells in each cluster expressing the gene; dot color represents average log10 gene expression
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high concordance between the automated and manual classifications

(Figure S16C). The high congruence between the IRI dataset and the

TMS dataset gave us confidence in the validity of our identified cell

populations, despite our comparatively lower mesenchymal cell num-

bers. The %-yield of total cells was also similar between experiments

(1.8% and 3.1% for TMS and IRI datasets, respectively). As with aging,

F IGURE 7 Single cell RNA sequencing of kidney 28 days post-IRI identifies three distinct mesenchymal-like populations resembling pericytes,
fibroblasts, and myofibroblasts. A, Umap reduction of 90 murine mesenchymal cells 28 days post-IRI colored by shared nearest neighbor (SNN)
allocated cluster. B, Heatmap demonstrating the top 10 differentially expressed genes by fold change per cluster, calculated using Wilcoxon
signed-rank test. The color scheme is based on z-score distribution. C, Expression of selected genes across clusters. Dot size represents the
percentage of cells in each cluster expressing the gene, color represents average log10 gene expression. D, Featureplot showing co-expression of
Pdgfra/Pdgfrb projected onto Umap cell coordinates. Color scale represents relative scale of gene expression, blend threshold set to 0.25. E,
Heatmap showing key fibrotic genes grouped by presence of Pdgfra/Pdgfrb transcripts. Asterisks denote cells suspected of being Pdgfra positive
due to transcriptional similarities to the dual positive cluster. The color scheme is based on z-score distribution. F, Gene expression of selected
marker genes projected onto Umap plot

TABLE 2 Proportion of cells in each cluster of the tabula muris senis dataset, and all clusters combined, that is derived from each age group

Age group All clusters combined Pericyte cluster Myofibroblast cluster Fibroblast cluster

All young (1–3 months) 48.8% 71.9% 17.7% 60.9%

1 month 28.0% 43.8% 9.2% 32.2%

3 months 20.8% 28.1% 8.5% 28.7%

All old (18-30 months) 51.3% 28.1% 82.3% 39.1%

18 months 14.8% 10.6% 22.2% 9.2%

21 months 9.3% 11.9% 7.2% 8.0%

30 months 27.3% 5.6% 52.9% 21.8%
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post IRI we found Pdgfra and Pdgfrb co-localized only in the high

collagen-expressing myofibroblast population, whereas Acta2 was

most highly expressed in the pericyte/vSMC population (Figure 7D-F).

4 | DISCUSSION

The renal mesenchyme has vast importance in disease and consists of

a complex assortment of cells with disparate roles and biologies.17

Despite this there is a lack of understanding, and awareness, of renal

mesenchymal heterogeneity that inevitably has a detrimental impact

on the design and interpretation of studies. It is therefore imperative

to thoroughly characterize this cell compartment and provide tools for

its effective study. Here we have identified mesenchymal subtypes

both transcriptomically and histologically, developed methods to dis-

tinguish these subtypes histologically, and determined subtype locali-

zation at baseline and with injury and aging.

Using scRNAseq, we have identified three major subtypes of

renal mesenchymal cells, namely pericytes/vSMCs, fibroblasts, and

myofibroblasts. The same populations were identified in two indepen-

dently performed sequencing experiments which encompass physio-

logical aging (TMS dataset)30 and the effect of injury (IRI dataset).

Importantly these studies were performed without pre-selection

based on a transgene or surface marker, allowing us to avoid selection

bias due to incomplete marker coverage (a problem highlighted by our

histology studies) or variations in transgene expression. Our analysis

represents an improvement on previous unbiased approaches, where

only a generic “fibroblast” population was identified in mouse whole-

kidney scRNAseq, and “pericyte/vSMC” and “interstitial” populations

were identified in human single nucleus RNA sequencing.47,48 Our

ability to identify myofibroblast populations was likely due to our

inclusion of aged and injured kidney tissue.

Many previous studies in kidney have used PDGFR-β as a marker

of “pericytes.”14,15,17,24,43,49-52 The data presented here demonstrate

that PDGFR-β, used alone,14,49-52 is an inappropriate pericyte marker

in murine kidney because the majority of its labeling identifies intersti-

tial fibroblasts. In our experience CD146 is the most specific marker

for distinguishing pericytes from other renal mesenchymal cells and is

also highly sensitive, as is the case in other human and mouse

organs.27,35,53 We propose a combination of CD146, PDGFR-β and

endothelial cell labeling as the most accurate method of identifying

and distinguishing pericytes and interstitial fibroblasts in histological

sections of murine kidney. Under this model, within the non-endothe-

lial population pericytes are CD146+ (±PDGFR-β labeling), and inter-

stitial fibroblasts are CD146−PDGFR-β+ (see Figure S5). In the future,

prospective pericyte markers identified through our scRNAseq analy-

sis should be tested, such as Purkinje cell protein 4-like protein

1 (Pcp4l1) which was in the top differentially expressed genes for peri-

cytes in both the IRI and TMS datasets.

We have also identified a combination of PDGFR-α and PDGFR-β

labeling as a potentially superior method of identifying myofibroblasts.

This is through corroboration of histological data, in which this popu-

lation increased substantially with ischemia (Figure 5G) and correlated

strongly with fibrosis extent (Figure S10I), and scRNAseq data in

which only the collagen-expressing myofibroblast population

expressed both the Pdgfra and Pdgfrb transcripts (Figures 6C,E and

7C-E). In line with this PDGFR-α is a marker of fibrotic populations

and progenitors in other tissues such as muscle, skin, and multiple vis-

ceral organs.25,32,54-56 It is often in association with PDGFR-β25,32,56

which is itself reported a myofibroblast progenitor marker.57 Further-

more, a contemporaneous study recently published also identified

PDGFR-α+PDGFR-β+ cells as the major ECM producers in human and

mouse renal fibrosis.58 These two proteins are therefore emerging as

reliable fibrotic population markers across multiple organ systems.

Other prospective myofibroblast markers may be identified from

scRNAseq data. Of the top differentially expressed genes for myo-

fibroblasts three, Abca8a, Fndc1, and Sult5a1, have probable intracel-

lular expression (www.uniprot.org) and thus represent markers to

investigate in future.

Aging is one of the largest risk factors for renal disease,7 yet the

effect of age on the mesenchymal cell response to injury has not to

our knowledge been investigated beyond 12 months in mice.59 Fol-

lowing IRI, the response of old kidney mesenchyme differed to young

in several ways. First, increased fibrosis with age was detected in line

with previous ischemia studies.2,3,59 Second, transient increases in

pericyte numbers and CD146 labeling intensity seen in young animals

at day 1 post-IRI were not observed in old. Third, at day 28 there was

substantially more ischemia-linked subtypes in old animals, especially

NG2+ populations. Indeed, analysis of mesenchymal subtypes sug-

gests that the aged mesenchyme at baseline is in a “post-ischemic”
state. For example, NG2+α-SMA−, NG2+α-SMA+, and PDGFR-α+-β−

cells increased with ischemia in both age groups, and while they were

difficult to detect in young contralateral kidneys, in old contralateral

kidneys they were reasonably abundant. Taken together, this points

to a situation in which the old kidney has a subdued acute response

to injury, chiefly in the pericyte population, but an extended or non-

resolving long-term reaction within fibroblast and myofibroblast

populations. Non-resolving fibrosis is well documented with

aging,60,61 and previous studies have shown an impaired proliferative

response in kidney in the acute phase of injury, although none have

targeted pericytes specifically.2,9,62,63 It is possible that age related

senescence is a factor in both these observations2,64; however, fur-

ther testing is required to ascertain whether and how these differ-

ences impact the progression of renal disease.

Closer analysis of scRNAseq gene expression data leads to some

interesting findings. First, expression of Acta2 (α-SMA), the classical

myofibroblast marker, was more substantial in the pericyte/vSMC

than in myofibroblast population, as observed elsewhere.65-70 It has

been shown that only 75% of α-SMA+ cells express collagen,24 and

removal of significant numbers of α-SMA+ cells by inhibiting TGF-β

signaling had only a small effect on fibrosis.46 Given these findings,

there is reason to suppose that Acta2/α-SMA is a poor marker of

collagen-producing myofibroblasts in kidney. Although pericyte clus-

ters expressed Acta2 transcripts strongly, not all pericytes had detect-

able histological α-SMA expression. There are several possible

explanations, including the sensitivity limits of immunological
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detection, the well documented discrepancy between RNA and pro-

tein levels, or the pericyte/SMC cluster being dominated by vSMCs

and strongly α-SMA+ pericytes such as those in the arterioles and des-

cending vasa recta.

Second, our transcriptomic “Fibroblast” populations likely repre-

sent a heterogeneous group of cells. They differentially express genes

typical of renal interstitial fibroblast, such as Tsc22d1 (sodium excre-

tion71), Slc6a6 (osmoregulation72), and Mid1ip1 (lipid synthesis73,74);

but also genes with links to pericyte biology including Akap12 (endo-

thelial tight junctions75), Ankrd1 (SMC-expressed76), Map1b (formation

of processes77,78). This could be due to the fact that capillary and ven-

ular pericytes have morphological similarities with interstitial fibro-

blasts and thus may cluster with them, separate from arteriolar

pericytes/SMCs.31 Notably, fibroblasts expressed many Wnt

pathway-related genes. Wnts play a prominent role in kidney develop-

ment79 and disease,80,81 and may be a key route of communication

between renal mesenchyme and epithelium during homeostasis and

disease.82

Our study likely does not capture the full extent of mesenchymal

heterogeneity in the kidney. Multiple subtypes of mesenchymal cells

have been identified in the past including ladder-like medullary

fibroblasts,21 erythropoietin-expressing fibroblasts,83 renin+

juxtaglomerular pericytes,26 stem-like or MSC-like progenitors,84,85

Gli1+ myofibroblast progenitors,25 as well as general mesenchymal

subtypes such as adventitial fibroblasts86,87 and others.17,45 The

findings presented here complement these previous investigations

into renal mesenchyme subpopulations. Gli1+ cells are major

myofibroblast progenitors in kidney, with a surface phenotype of

CD146−NG2−PDGFR-α+PDGFR-β+,25 which is analogous with our

PDGFR-α+PDGFR-β+ myofibroblast population. Lin et al. reported that

collagen expression did not fully correlate with α-SMA expression and

also noticed an induction of NG2 with disease.24 Finally, renal mesen-

chymal populations with “stem-like” or “MSC-like” properties, such as

multilineage differentiation potential in vitro and ability to integrate

into the kidney when delivered in an injury setting, have been identi-

fied in multiple studies using various combinations of surface marker

proteins Sca-1, c-Kit, CD24, CD29, CD44, CD73, CD90, and

CD105.84,88-93 We have found that transcription of these surface

markers is distributed across all of our scRNAseq populations (not

shown). Given that MSCs can be generated in vitro from both peri-

cytes and adventitial fibroblasts, and that these MSC-like populations

are often selected by digests and plating of whole kidneys, it is likely

that they have a mixed origin within the kidney.

In future, renal mesenchymal heterogeneity can be probed more

deeply by increasing the yield of cells used in transcriptomic analysis.

Besides improved cell dissociation protocols, fluorescent fate mapping

using pan-mesenchymal gene drivers such as FoxD115 or myelin pro-

tein zero94 should label the majority of mesenchyme and provide an

efficient method of cell sorting. Alternatively, subpopulations can be

interrogated individually using markers such as those used here. This

approach has been recently performed with PDGFR-α and PDGFR-β,

revealing multiple subpopulations within this compartment.58 Much

work is still required to investigate the effect of age on renal

mesenchyme, and whether and how differences such as those identi-

fied here impact on the progression and treatment of disease.

5 | CONCLUSION

Despite the heterogeneity in perivascular marker expression in the

renal interstitium, there is correlation between marker expression and

anatomical location, and clear injury- and age-linked differences have

been identified. Further research is required to elucidate the full

extent and functional implications of renal interstitial cell heterogene-

ity, and the intriguing questions raised in this study of marker hetero-

geneity should stimulate such investigations.
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