

Edinburgh Research Explorer

Code-Level Dark Patterns: Exploring Ad Networks' Misleading
Code Samples with Negative Consequences for Users

Citation for published version:
Tahaei, M & Vaniea, KE 2021, 'Code-Level Dark Patterns: Exploring Ad Networks' Misleading Code
Samples with Negative Consequences for Users', Paper presented at "What Can CHI Do About Dark
Patterns?" Workshop at CHI Conference on Human Factors in Computing Systems 2021, 8/05/21 - 8/05/21.
<https://darkpatternsindesign.com/position-papers/>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/429845299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://darkpatternsindesign.com/position-papers/
https://www.research.ed.ac.uk/en/publications/ea71877b-4def-4c2c-aa45-e148122b4f36

Code-Level Dark Patterns: Exploring Ad Networks’ Misleading Code Samples
with Negative Consequences for Users

MOHAMMAD TAHAEI, University of Edinburgh

KAMI VANIEA, University of Edinburgh

We introduce code-level dark patterns in ad networks. These are official code samples provided by ad networks that will result in
user-facing dark patterns, if copy-pasted by developers. Developers who do not carefully read the code for all the nuanced consequences
may endanger users privacy by using these code samples. We present three code samples from Google and Amazon ad networks
where the code samples do not provide a “I do not consent” option for location data collection, the consent form keeps reappearing
until the user consents, and the inclusion of unnecessary permissions when they are presented as “optional” in the surrounding text.

CCS Concepts: • Security and privacy→Human and societal aspects of security and privacy; • Software and its engineering
→ Software creation and management; • Information systems → Online advertising.

Additional Key Words and Phrases: software developers, usable privacy, ad networks

ACM Reference Format:
Mohammad Tahaei and Kami Vaniea. 2021. Code-Level Dark Patterns: Exploring Ad Networks’ Misleading Code Samples with Negative
Consequences for Users. Position Paper at the “What Can CHI Do About Dark Patterns?” Workshop at CHI Conference on Human Factors

in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan. 5 pages.

1 MOTIVATION

Ad networks are one of the primary monetisation methods in the mobile app market [2, 3, 6, 9, 11, 12], about 77% of
free Android apps contain an ad network [7, 8]. However, developers who choose to monetise their apps using ad
networks are not always fully informed about privacy consequences of their decisions on users and tend to follow
the default options provided by ad networks [11]. Some of these options are graphical interfaces with radio buttons
and checkboxes, and some of them are code samples. In this study, we focus on the code samples as an official source
provided by ad networks because developers are known to use code samples on the Internet to build their applications.
We are keen to understand the consequences of using these code sample on the users. In the security domain, for
example, copy-pasting code from online sources has resulted in severe security consequences such as leaving apps
open to man-in-the-middle attacks [4].

We looked at four most popular ad networks on Android [1] which were: Google AdMob, Amazon Mobile Ad Network,
Facebook Audience Network, and Twitter MoPub to search for any defaults that are not in favour of users and instead
favour the ad networks. For the purpose of this paper, we focus on the code-level dark patterns, an extended version of
this paper was available at CHI ’21 Late-Breaking Work [15].

We define code-level dark patterns as official sample code provided by a large platform (e.g. Amazon, Apple, Facebook,
Google, and Twitter) that has a negative consequence for users, leading to a higher data collection and user interfaces
with dark patterns. These code samples are deceptive code samples that developers may copy-paste into their apps
without reading or knowing about what each line of the code does, and the consequences of their copy-pasting behaviour.
Mainly, in this short paper, we focus on three code samples with privacy consequences.

© 2021 Authors retain copyright. This paper is published under a Creative Commons Attribution-NonCommercial 4.0 International License.

1

CHI ’21 “What Can CHI Do About Dark Patterns?” Workshop, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei and Kami Vaniea

Connect

Blog

Facebook

Medium

Twitter

YouTube

Programs

Women Techmakers

Google Developer Groups

Google Developers Experts

Accelerators

Developer Student Clubs

Developer consoles

Google API Console

Google Cloud Platform Console

Google Play Console

Firebase Console

Actions on Google Console

Cast SDK Developer Console

Chrome Web Store Dashboard

Android Chrome Firebase Google Cloud Platform All products

Terms | Privacy Sign up for the Google Developers newsletter Subscribe Language !

"

Home# Products# Google AdMob# Mobile Ads SDK (Android) Rate and review

Recent updates to the Google Publisher Policies have introduced new notice and consent requirements for publishers
who pass users’ precise location data to Google, for ads-related purposes.

If this policy applies to you, the snippet below shows one way you could inform your users of this data sharing:

Key Point: This snippet is only an example. Make sure to customize the snippet to accurately reTect your data sharing practices, so

users are informed of all the relevant purposes for which you share their precise location data.

Rate and review

Send feedback

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the
Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its a\liates.

Last updated 2020-06-03 UTC.

Send feedbackComplying with our Precise Location Data
Policy

Java Kotlin

protected void presentConsentOverlay(Context context) {
 new AlertDialog.Builder(context)
 .setTitle("Location data")
 .setMessage("We may use your location, " +
 "and share it with third parties, " +
 "for the purposes of personalized advertising, " +
 "analytics, and attribution. " +
 "To learn more, visit our privacy policy " +
 "at https://myapp.com/privacy.")
 .setNeutralButton("OK", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 dialog.cancel();
 // TODO: replace the below log statement with code that specifies how
 // you want to handle the user's acknowledgement.
 Log.d("MyApp", "Got consent.");
 }
 })
 .show();
}

// To use the above method:
presentConsentOverlay(this);

$ %

Get started

Prepare for SDK v20

Enabling test ads

CCPA preparation

Ad formats

Interstitial

Interstitial (legacy API)&

Rewarded

Rewarded (legacy API)&
Rewarded interstitial

App Open (open beta)

Advanced topics

Authorized Sellers for Apps

EU consent

EU consent (legacy)&
Global settings

Precise location data policy

Reporting'
Rewarded ads server-side veri`cation

Targeting

Open Measurement

Get started

Mediation

Overview

Custom events

Native custom events

Rewarded custom events

Tools and debugging

Ad load errors

Response info

Logging ad response ID

Charles proxy

Network tracing

Mediation Test Suite

Banner!

Native!

Partner networks!

Guides Reference SDK Samples SupportAdMob#Mobile Ads SDK (Android)

Fig. 1. Precise Location Data Policy page in Google AdMob provide a sample code for obtaining location consent from users without
providing a “I do not consent” or a “Reject” button. Developers who use this sample code spread a “forced action” dark pattern in
their apps. The provided URL to “our” privacy policy leads to a Chinese Android app market page. The use of “We may use your
location” is also misleading because the location data is being used for this purpose.

2 DISCOVERED CODE-LEVEL DARK PATTERNS

Google AdMob and Amazon Mobile Ad Network provide code samples and libraries to Android mobile developers to
easily integrate their ad networks. We provide three code samples from these two ad networks that if developers copy
and paste them into their apps, they all lead to a dark pattern on the user side. All screenshots were taken in Feb ’21.

Consent form without a “I do not consent” option. Google AdMob asks developers to adhere to its location data policy
and provides a code sample to inform users about their data collection policy (Figure 3). The code sample says “We
may use your location” when Google AdMob definitely does use the data for personalisation purposes. The included
example privacy policy link also leads to a Chinese Android market website. Finally, the options presented to the user
will only have an “OK” button without providing any “I do not consent” option. If a developer were to copy this code
from the official Google AdMob’s page verbatim, it would compile but their users will not have accurate privacy policy
information or the option to not consent. The resulting user-facing dialogue is shown in Figure 2.

2

https://developers.google.com/admob/android/precise-location

Code-Level Dark Patterns CHI ’21 “What Can CHI Do About Dark Patterns?” Workshop, May 8–13, 2021, Yokohama, Japan

Fig. 2. Resulting user-facing dialogue from the code sample in Figure 1. There are no options to cancel or disagree with the policy.

Consent form that only disappears with a consent. The second code sample from Google AdMob shows a consent form
to the user (Figure 3). However, it will keep appearing on the user’s screen until they give consent. The loadForm()
method in the loop will be called continuously until the user consents.

Collecting more data is optional, but it may yield to higher revenue. The third example is from Amazon Mobile Ad
Network (Figure 4). Amazon Mobile Ad Network suggests developers provide the ad network with access to fine and
coarse location, network, and WiFi state of the user’s phone. While these are not essential for the library’s functionality,
they are highly recommended, and Amazon Mobile Ad Network claims that they may result in higher revenue for the
developer: “These additional permissions allow Amazon to provide relevant, targeted ads to your users, which may
result in higher CPMs.”

3 IMPLICATIONS AND SUGGESTIONS

Non-compliant GDPR consent forms [5, 10, 17], lack of decent privacy policies in apps, and questions developers ask in
Stack Overflow about privacy [16] show that privacy is not an easy task for developers [13, 14]; in particular with the
recent introduction and changes to regulations and laws. Developers, however, tend to follow requirements posed by
platforms such as Apple and Google [16]. When Google defines new sensitive data or permissions, developers must
follow the new requirement or their apps may not end up in the app store. The strong influence of platforms on the
privacy ecosystem is, therefore, undeniable. In the case of Android, Google Play, and Google AdMob, they are all related
to one company, expecting a fair assessment of what should be private and what should not be considered private is
difficult. Google Play can stop developers from propagating dark patterns to users by introducing new requirements or
running automatic checks before rolling out an app on Google Play. However, Google AdMob (with a conflict of interest
with Google Play) may be one of the sources of these dark patterns, expecting Google Play to operate fair without any
prejudices is not easy. Disentangling these actors may break the cycle and be one potential solution; having actors who
would work towards different goals instead of working for the same goal and corporation. While this can be a long
term solution, in the meantime as a short time solution, consent forms can be built by trusted open-source third-parties,
with usable interfaces for developers.

3

CHI ’21 “What Can CHI Do About Dark Patterns?” Workshop, May 8–13, 2021, Yokohama, Japan Mohammad Tahaei and Kami Vaniea

Connect

Blog

Facebook

Medium

Twitter

YouTube

Programs

Women Techmakers

Google Developer Groups

Google Developers Experts

Accelerators

Developer Student Clubs

Developer consoles

Google API Console

Google Cloud Platform Console

Google Play Console

Firebase Console

Actions on Google Console

Cast SDK Developer Console

Chrome Web Store Dashboard

Android Chrome Firebase Google Cloud Platform All products

Terms | Privacy Sign up for the Google Developers newsletter Subscribe English !

Table of contents

Prerequisites

Introduction

Install with Gradle

Add app ID to
AndroidManifest.xml

Using the SDK

Request the latest
consent information

Load a form if available

Present the form if
required

Testing

Force a geography

Reset consent state

Delay app measurement
(optional)

Mediation

IAB Consent Framework
and mediation

Custom consent
solutions and mediation

"

"

Home# Products# UMP SDK for Android# Guides Rate and review

Prerequisites

Funding Choices account linked to your AdMob account.

To create a Funding Choices account, go to Privacy & messaging in the AdMob UI and select Go to Funding Choices.
The Funding Choices account is then created automatically in the background.

Introduction

Under the Google EU User Consent Policy, you must make certain disclosures to your users in the European Economic
Area (EEA) along with the UK and obtain their consent to use cookies or other local storage, where legally required, and
to use personal data (such as AdID) to serve ads. This policy reRects the requirements of the EU ePrivacy Directive and
the General Data Protection Regulation (GDPR).

To support publishers in meeting their duties under this policy, Google offers the User Messaging Platform (UMP) SDK,
which replaces the previous open source Consent SDK. The UMP SDK has been updated to support the latest IAB
standards. We've also simpliTed the process of setting up consent forms and listing ad providers. All of these
conTgurations can now conveniently be handled in the Funding Choices UI.

It is a best practice to load a form every time the user launches your app, even if you determine consent is not required,
so that the form is ready to display in case the user wishes to change their consent setting.

This guide walks you through how to install the SDK, implement the IAB solutions, and enable testing features.

Install with Gradle

Include the library in your app's build.gradle:

Don't forget to sync Gradle when you're Tnished.

Add app ID to AndroidManifest.xml

Obtain your app ID by following the Help Center instructions.

Add your app ID to your AndroidManifest.xml:

Using the SDK

The SDK is designed to be used in a linear fashion. The steps for using the SDK are:

1. Request the latest consent information.

2. Check if consent is required.

3. Check if a form is available and if so load a form.

4. Present the form.

5. Provide a way for users to change their consent.

Request the latest consent information

It is recommended that you request an update of the consent information at every app launch. This will determine
whether or not your user needs to provide consent.

Load a form if available

Once you've determined that you will ask a user for consent, the next step is to determine if a form is available.

There are a variety of reasons why a form may not be available, such as:

The user has limited ad tracking enabled.

You tagged the user as under the age of consent.

To check if a form is available, use the isConsentFormAvailable() method on the ConsentInformation instance. Add
a wrapper method for loading a form:

To load the form you will use the static loadConsentForm() method on the UserMessagingPlatform class. This
method must only be called from the main thread. Alter your loadForm() method like so:

Present the form if required

To present the form, use the show() method on the ConsentForm instance. You should determine if the user requires
consent prior to presenting the form. To check if consent is required, check the getConsentStatus() method on the
ConsentInformation object, which returns an enum of type ConsentInformation.ConsentStatus . There are four

possible values:

ConsentStatus.UNKNOWN : Unknown consent status.

ConsentStatus.REQUIRED : User consent required but not yet obtained.

ConsentStatus.NOT_REQUIRED : User consent not required. For example, the user is not in the EEA or the UK.

ConsentStatus.OBTAINED : User consent obtained. Personalization not deTned.

Alter your loadForm() method like so:

If consent is not required, you can maintain a reference to the form so that your user can change their consent status.

Testing

Force a geography

The UMP SDK provides a way to test your app's behavior as though the device was located in the EEA using the
setDebugGeography() method on ConsentDebugSettings.Builder .

You will need to provide your test device's hashed ID in your app's debug settings to use the debug functionality. If you
call requestConsentInfoUpdate() without setting this value, your app will log the required ID hash when run.

To force the SDK to treat the device as though it is not in the EEA or the UK, use
DebugGeography.DEBUG_GEOGRAPHY_NOT_EEA . Note that debug settings only work on test devices. Emulators do not

need to be added to the device ID list as they have testing enabled by default.

Reset consent state

In testing your app with the UMP SDK, you may Tnd it helpful to reset the state of the SDK so that you can simulate a
user's Trst install experience. The SDK provides the reset method to do this.

Delay app measurement (optional)

By default, the Google Mobile Ads SDK initializes app measurement and begins sending user-level event data to Google
immediately when the app starts. This initialization behavior ensures you can enable AdMob user metrics without
making additional code changes.

However, if your app requires user consent before these events can be sent, you can delay app measurement until you
explicitly initialize the Mobile Ads SDK or load an ad.

To delay app measurement, add the following <meta-data> tag in your AndroidManifest.xml .

Mediation

If you use mediation, you will need to handle consent for your mediation partners differently based on the consent
framework you choose to use on your app. Google supports the IAB Consent Framework but also allows you to have your
own custom consent solution. Below are the details about how to handle mediation under each of these options. Learn
more about our consent solution in Funding Choices.

IAB Consent Framework and mediation

If you're using the IAB Consent Framework, be sure that you add each mediation partner to your list of vendors in the
Funding Choices UI. Neither the UMP SDK nor the Mobile Ads SDK forwards consent information to mediation partners.
Rather, when using the IAB solution, the UMP SDK writes consent status information to local storage and it is the
responsibility of each mediation partner's SDK to read the appropriate keys. Be sure to check with each third-party
network to determine if they support the IAB solution.

Important: When using the IAB Consent Framework, the Mobile Ads SDK blocks mediation callouts to any mediation partner who

has been declined by the end user.

Custom consent solutions and mediation

If using a custom consent solution, it is your responsibility to notify third-party SDKs of your app's consent status. For
speciTcs on how to pass consent information to the relevant third parties, click the appropriate link below.

AdColony

AppLovin

Chartboost

Facebook

Fyber

InMobi

ironSource

MoPub

myTarget

Tapjoy

Unity Ads

Verizon

Vungle

Important: As it is your responsibility to manage consent for mediation partners when using a custom consent solution, the Mobile

Ads SDK will not block mediation partner callouts.

Rate and review

Send feedback

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the
Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its adliates.

Last updated 2020-10-08 UTC.

Send feedbackObtaining Consent with the User Messaging
Platform

implementation 'com.google.android.ump:user-messaging-platform:1.0.0'

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation 'androidx.appcompat:appcompat:1.1.0'
 implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'androidx.test.ext:junit:1.1.1'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'

}

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.rewardedinterstitialexample">

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <meta-data
 android:name="com.google.android.gms.ads.APPLICATION_ID"
 android:value="YOUR-APP-ID"/>
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

package com.example.myapplication;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import com.google.android.ump.ConsentForm;
import com.google.android.ump.ConsentInformation;
import com.google.android.ump.ConsentRequestParameters;
import com.google.android.ump.FormError;
import com.google.android.ump.UserMessagingPlatform;

public class MainActivity extends AppCompatActivity {
 private ConsentInformation consentInformation;
 private ConsentForm consentForm;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 ConsentRequestParameters params = new ConsentRequestParameters.Builder().build();
 // Set tag for under age of consent. Here false means users are not under age
 params.setTagForUnderAgeOfConsent(false);
 consentInformation = UserMessagingPlatform.getConsentInformation(this);
 consentInformation.requestConsentInfoUpdate(
 this,
 params,
 new ConsentInformation.OnConsentInfoUpdateSuccessListener() {
 @Override
 public void onConsentInfoUpdateSuccess() {
 // The consent information state was updated.
 // You are now ready to check if a form is available.
 }
 },
 new ConsentInformation.OnConsentInfoUpdateFailureListener() {
 @Override
 public void onConsentInfoUpdateFailure(FormError formError) {
 // Handle the error.
 }
 });
 }
}

...
 consentInformation.requestConsentInfoUpdate(
 this,
 params,
 new ConsentInformation.OnConsentInfoUpdateSuccessListener() {
 @Override
 public void onConsentInfoUpdateSuccess() {
 // The consent information state was updated.
 // You are now ready to check if a form is available.
 if (consentInformation.isConsentFormAvailable()) {
 loadForm();
 }
 }
 },
 new ConsentInformation.OnConsentInfoUpdateFailureListener() {
 @Override
 public void onConsentInfoUpdateFailure(FormError formError) {
 // Handle the error.

 }
 });
 }

 public void loadForm() {

 }
}

public void loadForm() {
 UserMessagingPlatform.loadConsentForm(
 this,
 new UserMessagingPlatform.OnConsentFormLoadSuccessListener() {
 @Override
 public void onConsentFormLoadSuccess(ConsentForm consentForm) {
 MainActivity.this.consentForm = consentForm;
 }
 },
 new UserMessagingPlatform.OnConsentFormLoadFailureListener() {
 @Override
 public void onConsentFormLoadFailure(FormError formError) {
 // Handle the error
 }
 }
);
}

public void loadForm(){
 UserMessagingPlatform.loadConsentForm(
 this,
 new UserMessagingPlatform.OnConsentFormLoadSuccessListener() {
 @Override
 public void onConsentFormLoadSuccess(ConsentForm consentForm) {
 MainActivity.this.consentForm = consentForm;
 if(consentInformation.getConsentStatus() == ConsentInformation.ConsentStatus.REQUIRED) {
 consentForm.show(
 MainActivity.this,
 new ConsentForm.OnConsentFormDismissedListener() {
 @Override
 public void onConsentFormDismissed(@Nullable FormError formError) {
 // Handle dismissal by reloading form.
 loadForm();
 }
 });

 }

 }
 },
 new UserMessagingPlatform.OnConsentFormLoadFailureListener() {
 @Override
 public void onConsentFormLoadFailure(FormError formError) {
 /// Handle Error.
 }
 }
);
}

ConsentDebugSettings debugSettings = new ConsentDebugSettings.Builder(this)
 .setDebugGeography(ConsentDebugSettings
 .DebugGeography
 .DEBUG_GEOGRAPHY_EEA)
 .addTestDeviceHashedId(" ")
 .build();

ConsentRequestParameters params = new ConsentRequestParameters
 .Builder()
 .setConsentDebugSettings(debugSettings)
 .build();

consentInformation = UserMessagingPlatform.getConsentInformation(this);
consentInformation.requestConsentInfoUpdate(this, params,
 new ConsentInformation.OnConsentInfoUpdateSuccessListener() {
 @Override
 public void onConsentInfoUpdateSuccess() {
 // The consent information state was updated.
 // You are now ready to check if a form is available.
 }
 },
 new ConsentInformation.OnConsentInfoUpdateFailureListener() {
 @Override
 public void onConsentInfoUpdateFailure(FormError formError) {
 // Handle the error.
 }
 });

TEST-DEVICE-HASHED-ID $

consentInformation.reset();

<!-- Delay app measurement until MobileAds.initialize() is called. -->
 <meta-data
 android:name="com.google.android.gms.ads.DELAY_APP_MEASUREMENT_INIT"
 android:value="true"/>

<manifest>
 <application>

 </application>
</manifest>

% &

% &

% &

% &

Home Guides Release Notes ReferenceUser Messaging Platform SDK for Android English !Search'

Fig. 3. Obtaining Consent with the User Messaging Platform page in Google AdMob provides a sample code for obtaining consent
from users that constantly shows the form to the user until they consent. Developers who use this sample code spread a “nagging”
dark pattern in their apps.

Quick Start Guide
The Quick Start Guide provides you step-by-step instructions for incorporating Amazon Mobile Ads into your
app. The Amazon Mobile Ads API currently supports static image banners, expandable rich media banners
with videos, and interstitials.

Table of Contents

Before You Use the Amazon Mobile Ads API

Account Registration - Self Service

Submit Your Payment Information and Tax
Information

Obtain an Application Key

Add the Google Play Services SDK to Your App

Enabling Ads in Android Apps

1. Incorporate the API into Your Project

Add the Amazon Mobile Ads API to Your
Android Studio Project

Add the Amazon Mobile Ads API to Your
Eclipse Project

2. Update the Android Manifest

Amazon Ad Activity

Permissions

Example Manifest

3. Set Your Application Key

4. Add the Amazon Ad to Your App

Adding Banner Ads through Java Code

Adding Banner Ads through XML Layout
File

Adding Interstitial Ads through Java Code

Adding Modeless Interstitial Ads through
Java Code

Optional - Set an Ad Request Timeout Value

Where Do I Go From Here?

Before You Use the Amazon Mobile Ads
API
The Amazon Mobile Ads API for Android requires Android 2.3 (Gingerbread) or later and assumes you have
Android Studio or Eclipse installed with Android Development Tools (ADT) Plugin. Familiarity with Android
development is also required.

Account Registration - Self Service
Sign in to your Amazon Apps & Games Developer Portal account, which you can access through the Amazon
Developer Services Page. If you do not already have one, you will be prompted to create an account.

Submit Your Payment Information and Tax Information
Submit your payment information through the Payment Information Page and your tax information through
the Tax Identity Interview Page (skip this step if you have already submitted this information through the
Amazon Apps & Games Developer Portal). This information is required to receive ads.

Obtain an Application Key
To obtain the application key for an existing app:

1. Log into your developer portal account and click the Apps & Services tab.

2. Click your app.

3. Click App Services (the right-most option under your app title).

4. Scroll down to Mobile Ads (the last option).

5. Click View Mobile Ads.

6. Indicate that your app is not directed primarily at kids under 13.

It's important to note that apps that are directed at children under 13 are not eligible to participate in the
Amazon Mobile Ad Network. See Personal Information and COPPA Policy to learn more.

If you answer that your app is not directed at children under 13, the console will display the unique
Application Key value, which is a 32-character globally unique alphanumeric string that is used to identify
your app. The same Application Key can be used across platforms, but each distinct app must have a unique
Application Key. For example, the IMDb app uses the same Application Key on Android phone and Fire tablets,
but the IMDb Trivia app has a different Application Key.

The Application Key is used in the setAppKey call mentioned in Step 3 of the Quick Start Guide, and your
developer reports will aggregate data by Application Key. Proper use of your Application Key permits accurate
tracking, reporting, and accrual of advertising fees.

Add the Google Play Services SDK to Your
App

Beginning on August 1, 2014, ad-serving apps distributed through Google Play must comply with the Google
Play Services Advertising Identifier conditions outlined on Google’s policy page. To ensure adherence to these
new conditions, developers intending to distribute apps integrated with the Amazon Mobile Ads API on
Google Play must follow these instructions:

Integrate the Google Play Services SDK into the app by following the Google Play Services SDK Setup
Instructions.

Ensure that the version of the Amazon Mobile Ads Android API that's being used is 5.4.46 or higher. Older
versions do not support the required identification changes.

Enabling Ads in Android Apps
This section of the Quick Start Guide steps you through adding ads to an existing Android Studio or
Eclipse Android app project

1. Incorporate the API into Your Project

2. Update the Android Manifest

3. Set Your Application Key

4. Add the Amazon Ad to Your App

1. Incorporate the API into Your Project

Add the Amazon Mobile Ads API to Your Android Studio
Project
You need to modify the build.gradle file to include the Amazon Mobile Ads API. In Android Studio:

1. Click on the build.gradle at the App level

2. Add the following line of code in the dependencies section

Fig. 1: Screenshot depicting the addition of Amazon Mobile Ads API jar to a project in the Android Studio environment

Add the Amazon Mobile Ads API to Your Eclipse Project
You need to add the amazon-ads-x.y.z.jar to your project build path. In Eclipse:

1. Click on project Properties, which opens the Properties dialog.

2. Select Java Build Path.

3. Select Libraries on the top.

4. Click Add External JARs… to open the JAR Selection dialog

5. Select the amazon-ads-x.y.z.jar and click Open.

Fig. 2: Screenshot depicting the addition of Amazon Mobile Ads API jar to a project in the Eclipse environment

2. Update the Android Manifest

Amazon Ad Activity
The Amazon Mobile Ads API requires the com.amazon.device.ads.AdActivity to be declared in your app's
AndroidManifest.xml file. Please add the following AdActivity declaration within the application tags of your
AndroidManifest.xml file:

Permissions
Making ad requests to the Amazon Mobile Ad Network requires the INTERNET permission. We also highly
recommend including permissions for ACCESS_NETWORK_STATE and ACCESS_WIFI_STATE . These additional
permissions allow Amazon to provide relevant, targeted ads to your users, which may result in higher CPMs.
These permissions, as well as any additional permissions, need to be declared outside of the application tags
in your AndroidManifest.xml file. See the permission declarations below:

The ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION permissions can also be included to allow
location-based targeting. Including one of these permissions allows Amazon to supply highly relevant
targeted ads and may result in higher CPMs. If either of these permissions are included, they should also be
declared in the same way:

Example Manifest !
For an illustration of how these declarations are implemented into an AndroidManifest.xml file, please refer to
the example below:

3. Set Your Application Key
You must set your Application Key in order to receive ads. This allows Amazon to track your impressions and
clicks, and associate them with your account. You should have your app call the AdRegistration.setAppKey()
method on every app start using the Application Key from the Amazon Mobile App Distribution. You could
add this call to your activity's onCreate method, or some other app initialization code. Here's an example of
setAppKey in onCreate:

4. Add the Amazon Ad to Your App
The Amazon Mobile Ads API now supports both banner ads and interstitial ads. Banner ads, which include
static click-through ads as well as rich media expandable ads, are created via AdLayout objects. Meanwhile,
interstitial ads are full-screen ads that are created via InterstitialAd objects. Both AdLayout and InterstitialAd
are Java classes that implement the Ad interface.

Learn more about different ad types in Android Ad Concepts.

Adding Banner Ads through Java Code
To retrieve and display a banner ad, you will use an instance of AdLayout, which can be created either in code
or XML. To load an ad, call the AdLayout.loadAd method, which uses a background thread to request an ad
from the Amazon Mobile Ad Network.

Only one ad can be loading or displayed by a given AdLayout at a given time. AdLayout.loadAd will return
false if a request for a new ad is ignored because of another pending ad request. The default behavior is for
the ad to show on the screen after it is loaded since the AdLayout.autoshow property is set to true by default.
This setting can be toggled by calling the AdLayout.disableAutoShow or the AdLayout.enableAutoShow
methods. If the AdLayout.autoshow property is set to false by calling the AdLayout.disableAutoShow
method, the ad can be shown with the AdLayout.showAd call.

To check if a particular ad is loading, you can call the method AdLayout.isLoading. To check if an ad is
showing, you can call the method AdLayout.isShowing . When requesting an ad, you can also set a number of
optional targeting parameters; these are covered on the Ad Targeting Options Page. Below is an example of a
simplified AdLayout.loadAd call placed in the activity's onCreate method:

Here's the activity's onDestroy method:

Adding Banner Ads through XML Layout File
You can also add the AdLayout to your XML layout file. You would need to first add the Amazon namespace to
the root Layout and the AdLayout to your layout.xml file. In the following example AdLayout definition, the
attribute Amazon:adSize is omitted, meaning that the dimensions of the ad will be determined using Auto Ad
Size. If you'd rather set the size yourself, you will have to include this attribute as described in the Manual Ad
Size section.

The Amazon Mobile Ads API samples directory includes the full source and project file for the Simple Ad
Sample, which provides an example implementation similar to what's seen above.

Adding Interstitial Ads through Java Code
Interstitials are full-page ads designed to be loaded in the app's background and then shown to the user
during a natural transition point in the app. An instance of InterstitialAd needs to be created in your code
before you can retrieve and display interstitial ads. Ad loading can be accomplished by calling the
InterstitialAd.loadAd method, which uses a background thread to request an ad from the Amazon Mobile Ad
Network.

Only one ad can be loaded by a given InterstitialAd object at a given time, and only one interstitial ad can
be displayed in your app at a given time. InterstitialAd.loadAd will return false if a request for a new ad is
ignored because of another pending ad request. To check if a particular ad is currently loading, you can call
the method InterstitialAd.isLoading .

To check if a particular ad is currently showing, you can call the method InterstitialAd.isShowing . To
check if any interstitial ad is currently showing, you can call the static method InterstitialAd.isAdShowing .
And finally, just as you can when requesting a banner ad, you can also set a number of optional targeting
parameters when requesting an interstitial; these parameters are covered on the Ad Targeting Options Page.

Below is an example of a simplified InterstitialAd.loadAd call placed in the onCreate method of an
Activity that loads the next level in a game app. The interstitial ad is displayed as soon as it is ready, and the
next level is started after the user has dismissed the ad by pressing either the ad's "X" button or the device's
back button.

Adding Modeless Interstitial Ads through Java Code
To retrieve and display a modeless interstitial ad, you will use an instance of ModelessInterstitialAd. To load a
modeless interstitial, call the method ModelessInterstitialAd.loadAd , which uses a background thread to
request a modeless interstitial from the Amazon Mobile Ad Network.

Only one modeless interstitial can be loading for a given ModelessInterstitialAd instance at a given time,
ModelessInterstitialAd.loadAd will return false if a request for a new ad is ignored because of another
pending ad request. When loading a modeless interstitial, you can also set a number of optional targeting
parameters; these are covered on the Ad Targeting Options Page.

To check if a particular ad is currently loading, you can call the method ModelessInterstitialAd.isLoading .
Once loaded, the onAdLoaded callback is fired and the ad is ready for showing. ModelessInterstitialAd
also provides the isReady property to check the readiness of the modeless interstitial for convenience. You
must call ModelessInterstitialAd.adShown when the modeless interstitial is presented on the screen for
impression counting. You must also callModelessInterstitialAd.adHidden to inform the SDK when the
modeless interstitial leaves the screen.

Below is a code excerpt from SwipeableModelessInterstitialAdSample which displays an ad interspersed
with images. This sample uses a FragmentPagerAdapter to handle the user interaction and the process of
creating and loading a ModelessInterstitialAd for displaying. It also uses an OnPageChangeListener to
identify the fragment on screen which provides the ability to run ModelessInterstitialAd.adShown and
ModelessInterstitialAd.adHidden when an ad is presented to and hidden from the user.

Mobile Ads
Collapse All | Expand All

! Get Started

" The Mobile Ads API

" Mobile Ads API FAQ

Quick Start Guide

$ Android

$ iOS

$ Reference

Other Resources

Mobile Associates API Overview

Mobile Ads Forum

SDK Downloads

compile 'com.amazon.android:mobile-ads:5.+'

<activity android:name="com.amazon.device.ads.AdActivity" android:configChanges="keyboardHidden|or
ientation|screenSize"/>

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.company"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk android:minSdkVersion="4" android:targetSdkVersion="17" />
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".AdTestAppActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="com.amazon.device.ads.AdActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"/>
 </application>

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

</manifest>

public void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 AdRegistration.setAppKey("0123456789ABCDEF0123456789ABCDEF");
}

@Override
public void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 AdRegistration.setAppKey("0123456789ABCDEF0123456789ABCDEF");

 // Programmatically create the AmazonAdLayout
 this.adView = new AdLayout(this);
 LinearLayout layout = (LinearLayout) findViewById(R.id.mainLayout);
 // Set the correct width and height of the ad
 LinearLayout.LayoutParams lp = new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.MATCH_PARENT,
 LinearLayout.LayoutParams.MATCH_PARENT);
 layout.addView(this.adView,lp);

 // If you declared AdLayout in your xml you would instead
 // replace the 3 lines above with the following line:
 // this.adView = (AdLayout) findViewById(R.id.adview);

 AdTargetingOptions adOptions = new AdTargetingOptions();
 // Optional: Set ad targeting options here.
 this.adView.loadAd(adOptions); // Retrieves an ad on background thread
}

@Override
public void onDestroy()
{
 super.onDestroy();
 this.adView.destroy();
}

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:Amazon="http://schemas.android.com/apk/lib/com.amazon.device.ads"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <com.amazon.device.ads.AdLayout
 android:id="@+id/adview"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

public class LoadNextLevel extends Activity
{
 private InterstitialAd interstitialAd;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 AdRegistration.setAppKey("0123456789ABCDEF0123456789ABCDEF");

 // Create the interstitial.
 this.interstitialAd = new InterstitialAd(this);

 // Set the listener to use the callbacks below.
 this.interstitialAd.setListener(new MyCustomAdListener());

 // Load the interstitial.
 this.interstitialAd.loadAd();
 }

 class MyCustomAdListener extends DefaultAdListener
 {
 @Override
 public void onAdLoaded(Ad ad, AdProperties adProperties)
 {
 if (ad == LoadNextLevel.this.interstitialAd)
 {
 // Show the interstitial ad to the app's user.
 // Note: While this implementation results in the ad being shown
 // immediately after it has finished loading, for smoothest user
 // experience you will generally want the ad already loaded
 // before it’s time to show it. You can thus instead set a flag
 // here to indicate the ad is ready to show and then wait until
 // the best time to display the ad before calling showAd().
 LoadNextLevel.this.interstitialAd.showAd();
 }
 }

 @Override
 public void onAdFailedToLoad(Ad ad, AdError error)
 {
 // Call backup ad network.
 }

 @Override
 public void onAdDismissed(Ad ad)
 {
 // Start the level once the interstitial has disappeared.
 startNextLevel();
 }
 }
}

private class ModelessInterstitialFragmentPagerAdapter extends FragmentPagerAdapter
{
 private final int[] images; // the collection of images to display in the image gallery
 private int nextImageIndex; // the next image to display from the collection of images
 private static final int PAGE_COUNT = 20;
 private FrameLayout adContainerLayout;

 public ModelessInterstitialFragmentPagerAdapter(FragmentManager fm)
 {
 super(fm);
 this.images = new int[]{R.drawable.image1, R.drawable.image2, R.drawable.image3,
 R.drawable.image4, R.drawable.image5};
 }

 @Override
 public Fragment getItem(int index)
 {
 if (index % AD_FREQUENCY == 2)
 {
 this.adContainerLayout = new FrameLayout(SwipeableModelessInterstitialAdActivity.this;
 modeless = new ModelessInterstitialAd(this.adContainerLayout);
 modeless.setListener(new SampleAdListener());
 modeless.loadAd();
 // Note: You can choose to provide additional targeting information to
 // modify how your ads are targeted to your users. This is done via an
 // AdTargetingOptions parameter that's passed to the loadAd call.
 // See an example below:
 //
 // final AdTargetingOptions adOptions = new AdTargetingOptions();
 // adOptions.enableGeoLocation(true);
 // if (this.modelessInterstitialAd.loadAd(adOptions)) ...
 }
 if (index != 0 && index % AD_FREQUENCY == 0 && isReadyToShow)
 {
 modelessAds.put(index, modeless);
 return new ModelessInterstitialFragment().setAdContainerLayout(this.adContainerLayout
);
 }
 final ImageGalleryFragment fragment = new ImageGalleryFragment();
 fragment.setImageResource(this.images[this.nextImageIndex++;
 if (this.nextImageIndex == this.images.length)
 {
 this.nextImageIndex = 0;
 }
 return fragment;
 }

 @Override
 public class int getCount()
 {
 return PAGE_COUNT;
 }

 /**
 * This class is for an event listener that tracks ad lifecycle events. It
 * extends DefaultAdListener, so you can override only the methods that you
 * need. In this case, there is no need to override methods specific to
 * expandable ads.
 */
 private class SampleAdListener extends DefaultAdListener
 {
 /**
 * This even is called once an ad loads successfully.
 */
 @Override
 public void onAdLoaded(final Ad ad, AdProperties adProperties)
 {
 Log.i(LOG_TAG, adProperties.getAdType().toString() + "ad loaded successfully.");
 isReadyToShow = true;
 }

 /**
 * This event is called if an ad fails to load.
 */
 @Override
 public void onAdFailedToLoad(final Ad view, final AdError error)
 {
 Log.w(LOG_TAG, "Ad failed to load. Code: " + error + ", Message: " + error.getMessage(
));
 isReadyToShow = false;
 }
 }
}

/**
* Used for capturing page change events
*/
private class ModelessInterstitialOnPageChangeListener implements OnPageChangeListener
{
 private int prevPosition = -1; // index of previous on screen fragment
 private int currPosition = -1; // index of current on screen fragment

 @Override
 public void onPageScrollStateChanged(final int state)
 {
 switch(state)
 {
 case ViewPager.SCROLL_STATE_IDLE:
 ModlessInterstitialAd modelessAd = modelessAds.get(this.currPosition);
 if (modelessAd != null)
 {
 modelessAd.adShown();
 }
 modelessAd = modelessAds.get(this.prevPosition);
 if (modelessAd != null)
 {
 modelessAd.adHidden();
 }
 break;
 default:
 break;
 }
 }

 @Override
 public void onPageScrolled(final int position, final float positionOffset, final int positionO
ffsetPixels)
 {}

 @Override
 public void onPageSelected(final int position)
 {
 this.prevPosition = this.currPosition;
 this.currPosition = position;
 }

% Note: If you use an Application Key that is issued for one app in connection with the display of ads on
a second app, we will not pay you for any resulting impression, click or other user action relating to ads
on the second app.

& Important: This step is required if you plan to submit your app to the Google Play Store after August
1, 2014. If not, you may skip this section.

& Important: To allow targeting based on location, you must also enable geographic location targeting
via the enableGeoLocation API as specified in the Ad Targeting Options section.

% Note: To have the Amazon Mobile Ads Android SDK automatically select the ad's size based on the
layout's size and the device's screen size, you should make sure to follow the guidelines in the Auto Ad
Size section in Android Concepts. The above implementation uses Auto Ad Size by default. If you would
instead like to set the size manually, follow the instructions for Manual Ad Size section in Android
Concepts.

Fig. 4. Quick Start Guide page in Amazon Mobile Ad Network provides a sample code for the manifest file for Android developers
which includes permissions to fine and coarse locations, network state, and WiFi state. While these are not required for the API to
work, they are “highly recommended” and “allow Amazon to provide relevant, targeted ads to your users, which may result in higher
CPMs.”

ACKNOWLEDGMENTS

This work was sponsored in part by Microsoft Research through its PhD Scholarship Program and a Google Research
Award.

4

https://developers.google.com/admob/ump/android/quick-start#present_the_form_if_required
https://developer.amazon.com/docs/mobile-ads/mb-quick-start.html#example-manifest

Code-Level Dark Patterns CHI ’21 “What Can CHI Do About Dark Patterns?” Workshop, May 8–13, 2021, Yokohama, Japan

REFERENCES
[1] Md Ahasanuzzaman, Safwat Hassan, Cor-Paul Bezemer, and Ahmed E. Hassan. 2020. A longitudinal study of popular ad libraries in the Google Play

Store. Empirical Software Engineering 25, 1 (Jan. 2020), 824–858. https://doi.org/10.1007/s10664-019-09766-x
[2] AppAnnie. 2020. The State ofMobile in 2020. Retrieved August 2020 from https://www.appannie.com/en/insights/market-data/state-of-mobile-2020/
[3] AppBrain. 2020. Android AdNetwork statistics andmarket share. Retrieved August 2020 from https://www.appbrain.com/stats/libraries/ad-networks
[4] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow

Considered Harmful? The Impact of Copy Paste on Android Application Security. In 2017 IEEE Symposium on Security and Privacy (SP). 121–136.
https://doi.org/10.1109/SP.2017.31

[5] Imane Fouad, Cristiana Santos, Feras Al Kassar, Nataliia Bielova, and Stefano Calzavara. 2020. On Compliance of Cookie Purposes with the Purpose
Specification Principle. In IWPE 2020 - International Workshop on Privacy Engineering. 1–8. https://hal.inria.fr/hal-02567022

[6] Catherine Han, Irwin Reyes, Álvaro Feal, Joel Reardon, Primal Wijesekera, Amit Elazari, Kenneth A Bamberger, and Serge Egelman. 2020. The Price is
(Not) Right: Comparing Privacy in Free and Paid Apps. In Privacy Enhancing Technologies Symposium (PETS 2020). 21. https://doi.org/10.2478/popets-
2020-0050

[7] Boyuan He, Haitao Xu, Ling Jin, Guanyu Guo, Yan Chen, and Guangyao Weng. 2018. An Investigation into Android In-App Ad Practice: Implications
for App Developers. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. 2465–2473. https://doi.org/10.1109/INFOCOM.2018.
8486010

[8] Ling Jin, Boyuan He, Guangyao Weng, Haitao Xu, Yan Chen, and Guanyu Guo. 2021. MAdLens: Investigating into Android In-App Ad Practice at
API Granularity. IEEE Transactions on Mobile Computing 20, 3 (2021), 1138–1155. https://doi.org/10.1109/TMC.2019.2953609

[9] Ilias Leontiadis, Christos Efstratiou, Marco Picone, and Cecilia Mascolo. 2012. Don’t Kill My Ads! Balancing Privacy in an Ad-Supported Mobile
Application Market. In Proceedings of the Twelfth Workshop on Mobile Computing Systems & Applications (San Diego, California) (HotMobile ’12).
Article 2, 6 pages. https://doi.org/10.1145/2162081.2162084

[10] Celestin Matte, Nataliia Bielova, and Cristiana Santos. 2020. Do Cookie Banners Respect my Choice? : Measuring Legal Compliance of Banners
from IAB Europe’s Transparency and Consent Framework. In 2020 IEEE Symposium on Security and Privacy (SP). 791–809. https://doi.org/10.1109/
SP40000.2020.00076

[11] Abraham H. Mhaidli, Yixin Zou, and Florian Schaub. 2019. “We Can’t Live Without Them!” App Developers’ Adoption of Ad Networks and Their
Considerations of Consumer Risks. In Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019). 20. https://www.usenix.org/conference/
soups2019/presentation/mhaidli

[12] Statista. 2020. Share of global smartphone shipments by operating system from 2014 to 2023. Retrieved August 2020 from https://www.statista.
com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/

[13] Mohammad Tahaei, Alisa Frik, and Kami Vaniea. 2021. Privacy Champions in Software Teams: Understanding Their Motivations, Strategies, and
Challenges. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). 1–15. https://doi.org/10.1145/3411764.3445768

[14] Mohammad Tahaei and Kami Vaniea. 2019. A Survey on Developer-Centred Security. In 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). 129–138. https://doi.org/10.1109/EuroSPW.2019.00021

[15] Mohammad Tahaei and Kami Vaniea. 2021. “Developers Are Responsible”:What AdNetworks Tell Developers About Privacy. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems Extended Abstracts (CHI ’21 Extended Abstracts). 1–12. https://doi.org/10.1145/3411763.3451805

[16] Mohammad Tahaei, Kami Vaniea, and Naomi Saphra. 2020. Understanding Privacy-Related Questions on Stack Overflow. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). 1–14. https://doi.org/10.1145/3313831.3376768

[17] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz. 2019. (Un)Informed Consent: Studying GDPR Consent Notices
in the Field. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (London, United Kingdom) (CCS ’19).
973–990. https://doi.org/10.1145/3319535.3354212

5

https://doi.org/10.1007/s10664-019-09766-x
https://www.appannie.com/en/insights/market-data/state-of-mobile-2020/
https://www.appbrain.com/stats/libraries/ad-networks
https://doi.org/10.1109/SP.2017.31
https://hal.inria.fr/hal-02567022
https://doi.org/10.2478/popets-2020-0050
https://doi.org/10.2478/popets-2020-0050
https://doi.org/10.1109/INFOCOM.2018.8486010
https://doi.org/10.1109/INFOCOM.2018.8486010
https://doi.org/10.1109/TMC.2019.2953609
https://doi.org/10.1145/2162081.2162084
https://doi.org/10.1109/SP40000.2020.00076
https://doi.org/10.1109/SP40000.2020.00076
https://www.usenix.org/conference/soups2019/presentation/mhaidli
https://www.usenix.org/conference/soups2019/presentation/mhaidli
https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/
https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/
https://doi.org/10.1145/3411764.3445768
https://doi.org/10.1109/EuroSPW.2019.00021
https://doi.org/10.1145/3411763.3451805
https://doi.org/10.1145/3313831.3376768
https://doi.org/10.1145/3319535.3354212

	Abstract
	1 Motivation
	2 Discovered Code-Level Dark Patterns
	3 Implications and Suggestions
	Acknowledgments
	References

