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ABSTRACT: The development of the first enantioselective para-Claisen
rearrangement has been achieved. Using a chiral aluminum Lewis acid,
illicinole is rearranged to give (−)-illicinone A (er 87:13), which can then
be converted into more complex Illicium-derived prenylated phenyl-
propanoids. The absolute configurations of the natural products
(+)-cycloillicinone and (−)-illicarborene A have been determined, and
our results cast doubt on the enantiopurity of the natural samples.

(+)-Cycloillicinone (1) was isolated from the twigs of Japanese
Star Anise, Illicium anisatum, by Fukuyama and co-workers in
2011 (Scheme 1).1 In 2013, Shen and co-workers reported the

isolation of the opposite enantiomer, from Illicium arborescens,
and named it (−)-illicarborene A.2 The absolute configurations
of (+)-cycloillicinone/(−)-illicarborene A (1) have not yet
been determined.1,2

Fukuyama and co-workers proposed a biosynthetic pathway
toward (+)-cycloillicinone (1) involving an intermolecular
Diels−Alder cycloaddition between (E)-β-ocimene and
illicinone A (2),1 a known natural product which has been
isolated in both enantiomeric forms from Illicium plants

(Scheme 1).3 In an attempt to probe the chemical feasibility of
this proposed biosynthetic Diels−Alder reaction and to
determine the absolute configurations of these natural
products, we decided to embark upon efforts toward achieving
an enantioselective biomimetic total synthesis.
We planned to follow an approach reported by Danishefsky

and co-workers to access illicinone A (2),4 which relies on a
remarkably selective para-Claisen rearrangement using Yama-
moto’s bulky Lewis acid, MABR (methylaluminum bis(4-
bromo-2,6-di-tert-butyl-phenoxide)) (Scheme 2).5 To access
enantioenriched (+)-cycloillicinone/(−)-illicarborene A (1),
we envisioned pursuing two different strategies: (1) Diels−
Alder kinetic resolution of racemic illicinone A (2); (2)
development of an enantioselective para-Claisen rearrange-
ment.
During our early work on this project, Rahman and co-

workers reported an elegant biomimetic total synthesis of
(±)-cycloillicinone (1) (Scheme 2).6 In their studies, they
found a number of acid catalysts promoted a highly regio- and
diastereoselective Diels−Alder cycloaddition between (±)-il-
licinone A (2) and (E)-β-ocimene to give (±)-cycloillicinone
(1). Regrettably, however, Rahman and co-workers observed
no kinetic resolution when using Corey’s oxazaborolidinium
catalyst (Scheme 2).6 We, therefore, decided to focus our
attention on pursuing an enantioselective para-Claisen
strategy.
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Scheme 1. Diels−Alder Biosynthetic Pathway to
(+)-Cycloillicinone/(−)-Illicarborene (1)1
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It was clear that achieving enantioselectivity in the para-
Claisen rearrangement of illicinole (3) was going to be very
challenging. There are no examples of enantioselective para-
Claisen rearrangements in the literature.7 A limited number of
enantioselective ortho-Claisen rearrangements are known, but
these rely on substrates with the potential for two-point
binding to a chiral reagent (Scheme 3a).8 Nevertheless, given
the long established [3,3]-Claisen/[3,3]-Cope mechanism for
para-Claisen rearrangements (Scheme 3b, pathway 1),9 one

might assume that enantioselectivity could be achieved by
simple extension of ortho-Claisen methodology. That is to say,
a point-to-point chirality transfer in the [3,3]-Cope rearrange-
ment reduces the challenge to achieving enantioselectivity in
the initial [3,3]-Claisen rearrangement. However, when using
an isotopically labeled substrate, 4, in the MABR-mediated
para-Claisen rearrangement, Danishefsky and co-workers
observed partial retention of prenyl group geometry (Scheme
3c).4 This was attributed to a “direct prenyl migration”
pathway, as opposed to the more common [3,3]-Claisen/
[3,3]-Cope mechanism,9 which would be expected to give a
1:1 (E):(Z) mixture. No mechanistic speculation was put
forward for the direct prenyl migration pathway, although
Dewar-type intermediates have been suggested for other para-
Claisen rearrangements (Scheme 3b, pathway 2).10,11 Clearly,
if this reaction does proceed via a Dewar-type mechanism, this
will place a particularly high demand on any catalyst to control
enantioselectivity at the remote para-position.
We began our studies by conducting the known three-step

synthesis of illicinole (3), from sesamol, on a multigram scale
(Scheme 4; (1) O-allylation, (2) ortho-Claisen rearrangement,
(3) O-prenylation).4 We then repeated Danishefsky’s MABR
mediated para-Claisen rearrangement to access 1.7 g of
(±)-illicinone A (2).4 Yamamoto’s Lewis acids have been
extensively used to promote Diels−Alder reactions,12 and we
envisioned developing a one-pot consecutive para-Claisen/
Diels−Alder reaction sequence to directly access (±)-cyclo-
illicinone (1). This was achieved by first treating illicinole (3)
with MABR at −78 °C for 2.5 h before a diastereomeric
mixture of (E)/(Z)-β-ocimene (dr 3:2, 4.5 equiv) was added
and the reaction was warmed to room temperature.13 This

Scheme 2. Previous Non-enantioselective Syntheses of
(±)-Illicinone A (2) and (±)-Cycloillicinone (1)4,6

Scheme 3a

a(a) Examples of enantioselective ortho-Claisen rearrangements.8 (b) Mechanisms for the para-Claisen rearrangement.9−11 (c) Mechanistic studies
on the MABR-mediated para-Claisen rearrangement by Danishefsky and co-workers.4.
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one-pot reaction gave (±)-cycloillicinone (1) in 30−43% yield,
depending on the scale (up to gram scale), which is in line with
the yields achieved by Rahman and co-workers over two-
steps.6

Our attention then turned to developing the first
enantioselective para-Claisen rearrangement, for which we
decided to focus on chiral aluminum Lewis acids. This decision
was driven by the fact MABR works well in the non-
enantioselective para-Claisen rearrangement of illicinole (3)
and Yamamoto and co-workers have shown that chiral
aluminum Lewis acids can mediate enantioselective aliphatic-
Claisen rearrangements with substrates where two-point
coordination is not involved.14 An initial screen of various
chiral ligands, including quinine, TADDOL, and salen-type
ligands, identified (R)-BINOL as a preliminary hit, giving
illicinone A (2) in an er of 46:54 (Table 1, entry 1). From this
very modest result, an extensive investigation into ligand
structure was conducted (30 ligands screened; see the
Supporting Information for full details). Most of the BINOL-
type ligands that we screened did not provide any significant

improvement (e.g., Table 1, entries 2−6). It was not until we
tried 3,3′-9-anthracenyl substituted BINOL that we observed
our first promising increase in er to 30:70 (Table 1, entry 7).15

When this reaction was conducted at −40 °C, we observed a
slight improvement in the er to 26:74 (Table 1, entry 8), but
the reaction failed to proceed at lower temperatures (Table 1,
entry 9). We postulated that if a Dewar-type mechanism was
operating (Scheme 3b, Pathway 2), maximizing the distance
over which the chiral environment might extend from the
aluminum center should be beneficial to enantioselectivity.
Thus, we investigated 3,3′-neopentyl substituted BINOL,16

which gave (−)-illicinone A (2) in an er of 76:24 at room
temperature (Table 1, entry 10) and 87:13 at −40 °C (Table
1, entry 11), with no reaction occurring at −60 °C (Table 1,
entry 12). The 3,3′-methylene-1-adamantyl substituted
BINOL gave a promising er of 84:16 at −20 °C (Table 1,
entry 13), but attempts to improve this by lowering the
temperature failed (Table 1, entry 14). We took our best
performing ligand (Table 1, entry 11) and further optimized
the reaction by screening Lewis acid loading, solvent, and
reaction time (see the Supporting Information for full details).
Our best result was achieved when using 3 equiv of chiral
Lewis acid 5 in CH2Cl2 at −40 °C for 1 h,16 which resulted in
a 35% isolated yield of (−)-illicinone A (2) in an er of 87:13
(Scheme 4).17,18 The diminished yield in this enantioselective
reaction, compared to the MABR-mediated reaction, is
attributable to the formation of an unexpected side product
(+)-6 in 23% yield (er 93:7) and recovery of 34% unreacted
illicinole (3).19,20 Fortuitously, compound (+)-6 is a known
natural product isolated from various Illicium species,21 which
has previously only been synthesized in racemic form.22

Scheme 4. Gram-Scale, Streamlined Syntheses of Racemic
Illicinone A (2) and Cycloillicinone (1), and the First
Enantioselective Synthesis of (−)-Illicinone A (2) and
(+)-Cycloillicinone (1)

Table 1. Screen of 3,3′-Substituted BINOL Ligands for the
Enantioselective para-Claisen Rearrangement of Illicinole
(3)

entry R temperature er of 2

1 H rt 46:54
2 Me rt 45:55
3 Ph rt 40:60
4 SiPh3 rt 57:43
5 2,6-dimethylphenyl rt 40:60
6 1-naphthyl rt 40:60
7 9-anthracenyl rt 30:70
8 9-anthracenyl −40 °C 26:74
9 9-anthracenyl −60 °C nr
10 neopentyl rt 76:24
11 neopentyl −40 °C 87:13
12 neopentyl −60 °C nr
13 methylene-1-adamantyl −20 °C 84:16
14 methylene-1-adamantyl −40 °C nr
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The formation of (+)-6 can fit with a Dewar-type
mechanism (Scheme 3b, pathway 2), with the higher
enantioselectivity compared to the formation of (−)-illicinone
A (2) (er 93:7 vs 87:13), perhaps a result of the C−C bond
formation occurring closer to the chiral Lewis acid. However, a
concerted [1,3]-sigmatropic rearrangement [π2s+σ2a] mecha-
nism could also be proposed.23 More detailed studies will be
required to probe the mechanism of this reaction further.
A Diels−Alder reaction between (−)-illicinone A (2, er

87:13) and (E)/(Z)-β-ocimene gave (+)-cycloillicinone (1) in
34% yield (Scheme 4).24 Analysis of the product by chiral-
HPLC confirmed the expected retention of enantiopurity
during this reaction (er 86:14). The specific rotation of our
synthetic (+)-cycloillicinone (1, er 86:14) was much larger
than that reported for the natural products (Scheme 4).1,2

Therefore, it is likely that natural (+)-cycloillicinone1 and
(−)-illicarborene A2 are isolated in a nonenantiopure form.
Although confirmation of this proposal will require inter-
rogation of authentic samples of the natural products,25 it is
interesting to note that Terashima and Furuya have provided
evidence that (−)-tricycloillicinone (7), a biosynthetically
related natural product,26 is isolated from Illicium tashiroi in an
er of ∼60:40.27
In summary, we have achieved the first enantioselective total

syntheses of (−)-illicinone A (2) (4 steps, 23% yield, er
87:13), (+)-6 (4 steps, 15% yield, er 93:7), and (+)-cyclo-
illicinone (1) (5 steps, 8% yield, er 86:14). Our synthetic
access to enantioenriched samples of (−)-illicinone A (2) and
(+)-6 also constitutes formal enantioselective syntheses of
(−)-tricycloillicinone (7) (5 steps cf. Terashima’s previous 12-
step enantioselective synthesis)27 and illioliganone C (8) (5
steps),22 respectively (Scheme 5). Development of the first

enantioselective para-Claisen rearrangement to access (−)-il-
licinone A (2) is certainly noteworthy, and efforts are now
underway in our laboratory to probe the mechanism of this
process and to develop more broadly useful methodology.
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