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A unified resource and configurable 
model of the synapse proteome 
and its role in disease
Oksana Sorokina1*, Colin Mclean1*, Mike D. R. Croning2, Katharina F. Heil1,4, 
Emilia Wysocka1, Xin He1,5,6, David Sterratt1, Seth G. N. Grant2,5, Thomas I. Simpson1,5 &  
J. Douglas Armstrong1,3,5

Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show 
clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 
proteins and combined them with direct protein–protein interactions and functional metadata to build 
a network resource that reveals the shared and unique protein components that underpin multiple 
disorders. All the data are provided in a flexible and accessible format to encourage custom use.

At neuronal synapses, the proteomes in presynaptic and postsynaptic compartments form complex and highly 
dynamic molecular networks. These networks mediate signal transduction and plasticity processes that under-
pin normal (and abnormal) information processing in the brain. We systematically curated proteomic datasets 
dating from 2000 to 2020, to produce a comprehensive index of the proteins (and their genes) expressed at the 
mammalian synapse (see Methods for details). This resulted in 58 papers, which when combined, describe a 
landscape of 8087 synaptic genes.

The set includes 29 post synaptic proteome (PSP) studies (2000 to 2019) contributing a total of 5560 mouse 
and human unique gene identifiers; 18 presynaptic studies (2004 to 2020) describe 2772 unique human and 
mouse gene IDs, and 11 studies that span the whole synaptosome and report 7198 unique genes (Table 1, Sup-
plementary Table 1).

Each study was annotated with relevant metadata including GO function, disease association and cross-ref 
to SynGo. Orthologues were mapped across human, mouse and rat and each mapped onto stable identifiers 
(MGI, Entrez and Uniprot).

High throughput proteomic techniques are powerful, but they are noisy, and contamination is always a con-
cern. A large number (2091 for PSP and 1434 for presynapse, Fig. 1A,B) of proteins have been observed just once. 
While single hits may be accounted for lack of sensitivity with low abundance molecules, it could also indicate 
the presence of false positive components brought in by experimental uncertainty.

The rate of growth with respect to newly discovered proteins for PSP appears to be slowing (Fig. 1C,E) and 
therefore there is now an opportunity to define a more reliable subset. Following the approach described  in11, 
we selected genes found in two or more independent studies to designate the “consensus” PSP. This resulted in 
3,438 genes, which is ~ 7 times larger than reported  by11 and described a subset of synaptic proteins for which 
have higher confidence. In this subset we observe the increment of new genes per year decreases after 2008 and 
drops completely after 2014 (Fig. 1C). Based on this, we predict a total number of consensus PSP genes found to 
be 3499 (Fig. 1G) by year 2023 which, when compared to the current number indicates that our knowledge on 
PSP components, based on currently available methodologies, is close to saturation.

It is different for the presynaptic compartment, where the recent trend in newly identified genes indicates 
that saturation has not been achieved yet (Fig. 1D,F). For instance, the latest study by Taoufiq et al.47 brought in 
over 400 new genes to our presynaptic list.

The overlap of proteins found in pre- and post-synaptic datasets, and proteins identified in synaptosomal 
studies is shown at Fig. 1H and Fig. 1 in Supplementary Methods.

To reconstruct protein–protein interaction (PPI) networks for the pre- and post-synaptic proteomes we used 
human PPI data filtered for the highest confidence direct and physical interactions from  BioGRID58,  Intact59 and 
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Study name Gene_N  Compartment Brain region Species

Husi_2000[1] 77 postsynaptic forebrain mouse

Walikonis_2000[2] 29 postsynaptic forebrain rat

Peng_2004[3] 237 postsynaptic forebrain rat

Satoh_2002[4] 45 postsynaptic forebrain mouse

Youshimura_2004[5] 436 postsynaptic forebrain rat

Farr_2004[6] 73 postsynaptic whole brain rat

Jordan_2004[7] 393 postsynaptic whole brain mouse and 

rat

Li_2004[8] 139 postsynaptic forebrain rat

Trinidad_2005[9] 236 postsynaptic whole brain mouse

Cheng_2006[10] 289 postsynaptic forebrain and cerebellum rat

Collins_2006[11] 620 postsynaptic forebrain mouse

Dosemeci_2006[12] 114 postsynaptic hippocampus rat

Dosemeci_2007[13] 276 postsynaptic cerebral cortex rat

Trinidad_2008[14] 2158 postsynaptic cortex, midbrain, 

cerebellum, and 

hippocampus

mouse

Selimi_2009[15] 63 postsynaptic cerebellum mouse

Fernandez_2009[16] 113 postsynaptic forebrain mouse

Bayes_2011[17] 1443 postsynaptic cortex human

Bayes_2012[18] 1552 postsynaptic cortex mouse

Schwenk_2013[19] 34 postsynaptic whole brain mouse

Distler_2014[20] 3558 postsynaptic hippocampus mouse

Bayes_2014[21] 1134 postsynaptic frontal cortex human

Uezu_2016[22] 928 postsynaptic cortex and hippocampus mouse

Focking_2016[23] 2021 postsynaptic whole brain human

Li_2016[24] 1602 postsynaptic hippocampus CA1 mouse

Fernandez_2017[25] 107 postsynaptic forebrain mouse

Roy_2017[26] 1213 postsynaptic frontal, parietal, temporal 

and occipital lobes of the 

neocortex

human

Li_2017[27] 993 postsynaptic hippocampus CA1 mouse

Roy_2018[28] 1071 postsynaptic frontal, medial and caudal 

cortex, right caudate 

putamen, right 

hippocampus, whole 

hypothalamus, and 

cerebellum (right half)

mouse

Wilson_2019[29] 2134 postsynaptic cortex mouse

Coughenour _2004[30] 36 presynaptic forebrain rat

Blondeau_2004[31] 209 presynaptic whole brain rat

Phillips_2005[32] 110 presynaptic cortex rat

Table 1.  (continued)



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9967  | https://doi.org/10.1038/s41598-021-88945-7

www.nature.com/scientificreports/

 DIP60. The resulting PSP network contains 4817 nodes and 27,788 edges in the Largest Connected Component 
(LCC). The presynaptic network is significantly smaller and comprises 2221 nodes and 8678 edges in the LCC.

The resulting network model is embedded into a SQLite implementation allowing users to derive custom 
network models based on meta-data including species, disease association, synaptic compartment, brain region, 
and method of extraction (Fig. 2). The database with manual is available from Supplementary Materials and 
from Edinburgh DataShare https:// doi. org/ 10. 7488/ ds/ 3017, along with a SQLite Studio manual and Rmd file 
for querying under the R environment, a screencast walk-through demonstrating use-cases can also be found 
here https:// youtu. be/ oaW9Y r9AkXM.

The dataset can be used to answer frequent questions such as “What is known about my favourite gene? Is it 
pre- or postsynaptic? Which brain region was it identified in?”. Beyond that, users can extend these queries to 
extract custom networks based on bespoke subsets of molecules. Worked examples that are easy to customise 
are shown in the Supplementary files.

The underlying principle of a systems biology approach is that structural features (pathways and subnet-
works) underpin network functionality and given a network, one should be able to extract these features. 
Clustering  algorithms61,62 are commonly used to identify local communities within the network under the 
assumption that shared network topology correlates with shared function (and dysfunction). However, the 

Table 1.  Studies included in the database. Dark grey corresponds to postsynaptic, light grey—to presynaptic, 
and green—to synaptosomal studies.

Morciano_2005[33] 153 presynaptic whole brain rat

Burre_2006[34] 165 presynaptic whole brain rat

Takamori_2006[35] 410 presynaptic cerebral cortex rat

Khanna_2007[36] 104 presynaptic whole brain rat

Morciano_2009[37] 369 presynaptic whole brain rat

Abul-Husn_2009[38] 138 presynaptic hippocampus and striatum mouse

Abul-Husn_2011[39] 145 presynaptic striatum rat

Gorini_2010[40] 57 presynaptic cortex mouse

Gronborg_2010[41] 618 presynaptic cerebral cortex rat

Boyken_2013[42] 414 presynaptic cerebral cortex rat

Wilhelm_2014[43] 1169 presynaptic cortex and cerebellum rat

Brinkmalm_2014[44] 68 presynaptic hippocampus mouse

Weingarten_2014[45] 482 presynaptic whole brain mouse

Kokotos_2018[46] 983 presynaptic cerebellum rat

Taoufiq_2020[47] 1,466 presynaptic whole brain rat

Filiou_2010[48] 2980 synaptosome whole brain mouse

Dahlhaus_2011[49] 673 synaptosome visual cortex mouse

Cohen_2013[50] 2668 synaptosome cortex rat

Biesemann_2014[51] 163 synaptosome forebrain mouse

Chang_2015[52] 2077 synaptosome cortex human

Liu_2014[53] 1388 synaptosome hippocampus and 

prefrontal cortex

mouse

Distler_2014[20] 4417 synaptosome hippocampus mouse

Kohansal-

Nodehi_2016[54]

4961 synaptosome cerebellum rat

Gonzalez-Lozano[55] 1560 synaptosome cortex mouse

Alfieri_2017[56] 351 synaptosome telencephalon mouse

Heo_2018[57] 2272 synaptosome cortex and hippocampus mouse

Taoufiq_2020[47] 4,439 synaptosome whole brain rat

https://doi.org/10.7488/ds/3017
https://youtu.be/oaW9Yr9AkXM
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more important question is how the different communities are organised to enable a controllable flow of sig-
nals across the large network. Using the PSP network as example, we identified 1029 “Bridging” proteins as 
those known to interact locally with neighbours in the network—helping organise function inside communi-
ties they belong  to63,64, and simultaneously influence other communities in the network (Fig. 3A, Methods). 
Using graph entropy as a compliment means of ranking a protein’s ability to inhibit or enhance information 
 flow65, we found that proteins with high Bridgeness value have ability to decrease the entropy of the network 
thus facilitating the signal transmission (Fig. 3B,D, Methods). Of the 1029 candidate Bridging proteins (see 
Region 1, Fig. 3C), we found ~ 43%) associated with at least one known synaptopathy and ~ 21% linked to mul-
tiple diseases including: APP (AD&Epi&ASD&PD&HTN&MS&FTD), VDAC1 (AD&PD&MS), and MAPK14 

Figure 1.  (A) Discovery rate of new PSD proteins across 29 postsynaptic studies, where the number of 
proteins is plotted against the frequency of identification. 2091 PSP proteins have been observed just once. The 
most frequently found proteins (i.e. detected in 22, or more, studies out of the 29) include very well-known 
PSD proteins, for example: DLG4 (28/29), CAMK2A (27/29), INA (26/29), SPTBN1, CAMK2B, DLG2, NSF, 
GRIN2B, GRIN1 (25/29), BIAP2, BSN (24/29) (full list in Supplementary Table 2). (B) Discovery rate of new 
proteins analysed across 18 presynaptic studies. More than half of the proteins in the presynaptic proteome 
(1251) have been observed just once. The most frequent presynaptic genes include AP2B1, HSPA8, GNAO1, 
ACTB (15/17), STX1B, ATP6V0A1, STXBP1, ATP1A3, ATP6V1E1, SYT1, GNB1, TUBA1A, VAMP2, NSF, 
DNM1 (14/17) with full statistics available in Supplementary Table 3. (C) Contribution of each of 29 studies 
to the total number of PSP genes (purple—total number of genes, yellow—identified in this study). Two major 
jumps in the gross number of proteins identified occur in 2008, when 1249 new proteins were reported  by14 
and in 2014 with 2588 new proteins added  by20. (D) Contribution of each of 18 studies to the total number 
of presynaptic genes (purple—total number of genes, yellow—identified in this study): two jumps in newly 
discovered proteins correspond to studies in years 2010 and 2014. (E) Accumulation of the new PSP genes 
(black) compared to the total datasets (blue) over years. (F) Accumulation of new presynaptic genes (black) 
compared to the total datasets (blue) over years. (G) Non-linear fit predicting the total size of “consensus” 
PSP (genes found in two and more studies, 3499) (P = 2.36E−11, residual standard error: 192.7 on 12 degrees 
of freedom) by year 2023 which, when compared to the current number (3438) indicates that our knowledge 
on PSP components, based on currently available methodologies, is close to saturation. (H) Overlap of three 
synaptic datasets: presynaptic, postsynaptic and synaptosomal. Bars correspond to the number of unique genes 
in each compartment and their intersections.
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(AD&SCH&HD&HTN&MS), which supports the functional/disease importance of “bridging” proteins. Indeed, 
we found significant overrepresentation for specific diseases, such as AD (P = 3.4 × 10–6), HTN (P = 2.1E−5), HD 
(P = 5.2E−5), PD (P = 2.6E−3) (Supplementary Table 2).

There are many complex co-morbidities between psychiatric disorders at the population and the genetic 
level but for most the molecular basis remains elusive. The network perspective can be used to obtain a different 
view by linking topology and phenotype together. Gene-disease association data is noisy and far from complete, 
but we can partly compensate by measuring, for each disease, the distance from each protein in the network 
to its nearest known associated protein, which can be extended to disease  pairs66 to dissect how these different 
neurological diseases coalesce at the synapse.

Using PSP (both full and consensus) and presynaptic networks we found clear evidence of network overlap 
between well-known co-morbid neuro-psychiatric/developmental disorders in both postsynaptic and presynaptic 
models (q-values shown for PSP/presynaptic networks), including BD-SCH (P = 2.0E−49/4.39E−16), BD-ASD 
(P = 7.12E−20/1.28E−7), and ASD/SCH (P = 6.17E−16/1.12E−5). Similarly, overlap was observed for common 
neurodegenerative diseases/conditions AD and PD (P = 3.04E−6/1.32E−6).

We also observed compartment-specific overlaps for Epilepsy with PD (P = 0.53/2.12E−3) and BD 
(P = 0.54/9.73E−4), which is significant only in the presynaptic network (Fig. 3E).

In both postsynaptic and presynaptic models, we found overlap for Hypertension (HTN) with AD 
(P = 8.6E−4/1.0E−2, and with MS (P = 8.79E−5/2.12E−3) (Fig. 3E). The AD-HTN link is not, in itself, new but 
commonly considered as a cardiovascular mechanism with a neurological impact. However, the network view 
reveals a new potential mechanistic link at the synapse. Although we found significant overlaps between AD-
HTN and AD-PD, we did not see evidence for a PD-HTN link (P = 0.17/0.36), which indicates the potential 
shared mechanistic pathway between AD and HTN, which is different to the pathways shared between AD and 
PD (Fig. 3E).

To further dissect the potential sharing of pathways between AD and HTN in the PSP network (Fig. 3F), we 
employed Belief Propagation to propagate these GDA’s through the network’s edges, and a Degree-Corrected 
Block Model (DC-SBM) to model its effect on network  clustering67. Under a prior assumption of no correlation 
between the GDA’s and the network communities, we found evidence for the co-localization of AD and HTN 
(C = 31 P = 4.69E−5 and C = 43 P = 1.6E−11). Functionally, these communities are enriched for synaptic transmis-
sion, axon guidance (C = 31, GO:0007268 = 5.8E−3, GO:0007411 = 7.46E−5), stress activated MAPK cascade and 
response to oxidative stress (C = 43, GO:0051403 = 1.92E−5, GO:0006979 = 5.34E−5).

The presented synapse proteome dataset is the largest, most complete and up to date and is freely available 
with lightweight tools to allow anyone to extract relevant subsets. It compliments previously published curated 
dataset of synaptic genes  SynGO68, and both resources could be used jointly as we have cross-referenced the 

Figure 2.  Structure of the SQLite database, which includes 58 synaptic studies covering 8087 unique genes 
and 407,643 direct protein interactions. Grey ovals on the top show the annotated metadata: left—for nodes/ 
genes, which include brain region, subcellular compartment, method of extraction, disease and GO function 
annotation and link to published quantitative models; right—for edges/PPIs, which include PSI-MI type 
and method. The orange ovals in the bottom illustrate the possible outcomes of the database, including: (1) 
information for specific protein/gene, and (2) information that could be obtained from PPI network, e.g., 
protein’s topological importance, community to disease relationship, and disease-disease comorbidity. The 
database is available as a Supplementary File and from Edinburgh DataShare https:// doi. org/ 10. 7488/ ds/ 3017.

https://doi.org/10.7488/ds/3017
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Figure 3.  (A) Community structure of the PSP network using the Spectral modularity method. Communities 
are coloured using the average gene-community probability values: bluer coloured a community is, the more 
probable the genes are of belonging to that community on average. Nodes coloured magenta highlight the core 
PSD95  interactors25, which is also highlighted magenta in the Bridgeness plot in (C). (B) Graph entropy plots: 
(main) Global graph entropy rate (SR) plot comparing the structure of the PSP network (0.668) against 1000 
randomised Erdos–Renyi (E–R = 0.989 + − 0.0005) and Power–Law (P–L = 0.9127 + − 0.0032, αPSP = 2.41) models 
of similar size, (Enlarged) Evidence for scale-free structure in PSP network using a perturbation analysis (10], 
plotted is the SR values after each protein is perturbed through over-expression (SR_UP = red) and under-
expression (SR_OWN = green), against the log of the proteins degree,. (C) Bridging proteins, estimated using the 
Spectral clustering algorithm are plotted against semi-local centrality (Methods), allowing their categorisation: 
Region 1, proteins having a ’global’ rather than ’local’ influence in the network (also been called bottle-neck 
bridges, connector or kinless  hubs12 (DLG4, GRIN2B, CAMK2A, etc.). Region 2, proteins having ’global’ and 
’local’ influence (EGFR, HRAS, NRAS, etc.). Region 3, proteins centred within the community they belong to, 
but also communicating with a few other specific communities (GRIN1, GRIA2-4). Region 4, proteins with 
’local’ impact , primarily within one or two communities (local or party  hubs9. (D) Correlation plot for different 
centrality measures estimated for PSP network.: SP - a protein’s shortest path value, SR_UP-Entropy rate when 
protein is over expressed, SR_DOWN—entropy rate when protein is under expressed, COUNT - number of 
protein identifications in the studies, Bet - protein’s betweenness centrality value, Degree—protein degree, PR- 
Page Rank, BRIDGESpectral —protein Bridgeness value, CNorm - Protein’s local centrality value, Closeness - 
protein’s closeness value; correlation between SR_UP and Bridgeness indicates that genes with higher Bridgeness 
values also lower the graphs entropy when active/overexpressed, which allows the signal to pass more freely 
(Supplementary Table 2). (E) left: Disease-disease relationship for presynaptic (red) and PSD full (blue) and 
PSD consensus (green) interactome. Where significance q-values < 0.05 is delineated by the dashed line. 
Schizophrenia (SCH), Autistic Spectrum Disorder (ASD), Autistic Disorder (AUT), Bipolar Disorder (BD), 
Intellectual Disability (ID), Alzheimer disease (AD), Epilepsy Syndrome (Epi), Parkinson’s Disease (PD), 
Frontotemporal Dementia (FTD), Huntington’s Disease (HD) and Multiple Sclerosis (MS) are considered; right: 
randomisation studies for disease-disease pairs overlap, yellow arrow shows the measured value of Z-score 
compared to 10,000 AD-HTN, PD-HTN and AD-PD random models. (F) Colocalization of AD and HTN on 
the PSP network by propagating these gene-disease associations (GDA) through the network using the Belief 
Propagation DC-SBM  algorithm13. The colocalization of AD and HTN shared common molecular pathways in 
communities 31 and 43, which were also found enriched for axon guidance, stress-activated MAPK cascade and 
response to oxidative stress GO BP terms.
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common genes. By mirroring the methods used it would be straightforward for any user to add in their own 
datasets for comparison.

Received: 5 February 2021; Accepted: 15 April 2021
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