
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gas-Liquid Two-phase Stratified Flow Interface Reconstruction
with Sparse Batch Normalization Convolutional Neural Network

Citation for published version:
Tan, C, Li, F, Lv, S, Yang, Y & Dong, F 2021, 'Gas-Liquid Two-phase Stratified Flow Interface
Reconstruction with Sparse Batch Normalization Convolutional Neural Network', IEEE Sensors Journal.
https://doi.org/10.1109/JSEN.2021.3081432

Digital Object Identifier (DOI):
10.1109/JSEN.2021.3081432

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Sensors Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

https://doi.org/10.1109/JSEN.2021.3081432
https://doi.org/10.1109/JSEN.2021.3081432
https://www.research.ed.ac.uk/en/publications/60e28bc8-ff74-43fd-baea-64ed0d88539f


IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020 1

Gas-Liquid Two-phase Stratified Flow Interface
Reconstruction with Sparse Batch Normalization

Convolutional Neural Network
Chao Tan, Senior Member, IEEE, Feng Li, Shuhua Lv, Yunjie
Yang Member, IEEE and Feng Dong, Senior Member, IEEE
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Abstract— Two-phase stratified flow is ubiquitous in industrial pro-
cesses, monitoring its phase interface is important for improv-
ing the safety and efficiency of process. Electrical Resistance
Tomography is a promising non-intrusive visualization technique
for monitoring two-phase flow. However, some electrodes could
lose their contact with the liquid in stratified flow, aggravating
the under-determined image reconstruction solution and resulting
in low-quality reconstructed image in traditional methods. In this
paper, a sparse batch normalization convolutional neural network
(SBN-CNN) method is proposed for accurate and rapid gas-liquid
interface reconstruction. Up-sampling and normalization were used
for preprocessing of measurements. A novel network structure in-
cluding convolution, pooling and batch normalization layers was designed to extract features from sparse measurements
and the images were reconstructed by deep fully connected layers. After batch-based training, the proposed SBN-CNN
achieves a superior performance to the-state-of-art methods in terms of convergence rate, imaging accuracy, noise
resistance and generalization ability, through experimental validation.

Index Terms— Gas-Liquid Stratified Flow, Electrical Resistance Tomography, Interface Reconstruction, Batch Normaliza-
tion, Convolutional Neural Network

I. INTRODUCTION

TWO-phase stratified flow is ubiquitous in industrial pro-
duction process, e.g. pneumatic conveyance of granular

solids, long-distance transportation of hydrocarbons, interfa-
cial heat and mass transfer [1]. Online monitoring the transit
interface of two-phase flow is important to improve the safety
and efficiency of industrial production, which requires a mea-
surement technology be fast enough to capture the transient
change and also easy to be implemented in the pipeline.
Electrical Resistance Tomography (ERT) is a non-intrusive
process visualization technique with the advantages of low
cost, radiation-free and high speed [2]. It can be used to
reconstruct the dynamic interface of two fluids with different
conductivity.

An ERT sensor consists of a set of electrodes evenly
mounted around the periphery of the pipe. The boundary
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voltage measurements are obtained by subsequently injecting
electric currents into one selected pair of electrodes and
measuring voltages from the others. The reconstruction of
conductivity distribution with boundary voltage data is a typi-
cal nonlinear, under-determined and ill-posed inverse problem
[3]. If the excitation or measurement electrodes are in contact
with non-conductive fluid, the corresponding measurements
will be invalid and the number of effective measurements will
decrease, which aggravates the under-determined issue of the
image reconstruction problem. Unlike in other flow regimes,
the phenomenon of invalid measurements is particularly com-
mon in gas-liquid two-phase stratified flow [4], therefore it is
very difficult to reconstruct the interface with traditional image
reconstruction algorithms.

To address this problem, many studies have been done to
mitigate the aggravated under-determined problem resulted
from invalid electrodes [5], [6]. Ma et al. extracted a common
feature in the voltage data when some electrodes are in
contact with gas [7]. They put forward a liquid level detection
method which can identify whether a water surface exists in
the measured field and find out its position. However, this
method can only recognize 14 special water surface positions
including the full pipe state. Babaeizadeh et al. proposed
a boundary element method (BEM) [8], which converts the
original problem of reconstructing the domain’s conductivity
distribution into estimating the subdomains’ boundaries. Ren
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et al. presented a physical model of ERT for interface recon-
struction by using BEM and solved the inverse problem using
the Levenberg-Marquardt method [9]. Although BEM methods
obtained good results, there are two weaknesses. Firstly, their
conclusions are all drawn with a correct prior knowledge of
the water’s conductivity. If the prior information deviates from
its true value, the estimated results deteriorate. Secondly, to
obtain accurate estimation, it requires the number of effective
electrodes to be larger than five. Decreasing the number of
effective electrodes will significantly reduce the estimation
quality.

Among the reported results for interface reconstruction of
two-phase stratified flow, there are mainly three disadvantages.
First, in most studies only interfaces at specific locations of
the pipe have been discussed, which limited their applications.
Second, as accurate as possible prior information is required
in some iterative image reconstruction algorithms, and their
solving processes are time-consuming and usually of low
precision. Third, no dynamic experimental results are reported
in most of the research. In conclusion, influenced by invalid
electrodes, it is a big challenge to realize accurate reconstruc-
tion from relatively fewer measurements. Therefore, a novel
theoretical framework is needed to solve such problems.

Recently, deep learning has generated an overwhelming en-
thusiasm in several imaging applications [10], [11]. It can effi-
ciently learn high-level features from data through a hierarchi-
cal network framework [12]. Several deep learning algorithms
have been proposed for image reconstruction of electrical
tomography using different network models [13]–[16]. Jin et
al. established a benchmark dataset for Electrical Capacitance
Tomography and put forward a deep autoencoder-based itera-
tion method to evaluate reconstruction results on this database
[13]. Lei et al. proposed a Deep Extreme Learning Machine
(DELM) method to ameliorate the reconstruction accuracy
[15]. The DELM combined with split Bregman (SB) method
and fast iterative shrinkage thresholding (FIST) algorithm
realized competitive reconstruction both on numerical and
experimental data. Li et al. presented a deep neural network
combined with stacked autoencoder and logistic regression to
improve the quality of reconstruction in Electrical Impedance
Tomography [16]. However, most of such studies focus on
the image reconstruction of different inclusions, and in such
cases all the electrodes are in contact with conductive fluid.
Considering the existence of invalid electrodes, the effective
measurements obtained by ERT sensors become far less than
the unknowns to be solved in gas-liquid stratified flow, which
deteriorates the under-determined image reconstruction prob-
lem. To tackle this problem, some special improvement and
design are required to be made under the basic deep learning
framework, in order to adapt it to interface reconstruction.

In this work, a novel sparse batch normalization convolu-
tional neural network (SBN-CNN) structure is proposed by
exploiting the characteristics of the measurements. The input
nodes of the network are sparse measurements as most of
the invalid measurements are zero. A hierarchy of convolution
and pooling is used to extract high-level features from low-
dimension and sparse measurements. Batch Normalization
[17] is designed between the convolutional and the pool-
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Fig. 1: Measurement setup of stratified flow with ERT. (a)
horizontal pipe with ERT sensors, (b) interface distribution in
cross-section.

ing layers to solve the problem of slow updating speed
of parameters caused by the sparse measurements, which
consequently reduces the error of interface reconstruction.
An improved gradient-based optimization method, i.e. Adam
[18] with temporal averaging, which can adjust the update
step size adaptively and overstep the local optimum, is used
to minimize the distance between the network output and
the true conductivity distribution. The proposed SBN-CNN
adopts data-driven method, which can automatically search
the optimal solution in the solution space without introducing
prior knowledge. The reduction of effective measurements
is compensated by the designed efficient feature extraction
layers, which have strong data representation ability even on
sparse measurements.

II. INTERFACE RECONSTRUCTION WITH
SBN-CNN

A. Stratified Flow Reconstruction with ERT

The 16-electrode adjacent excitation mode is usually
adopted in ERT [19]. The electric potential distribution φ ,
conductivity σ and excitation current I satisfy the Laplace
equation, which can be formulated as:

∇ · (σ∇φ) =0∫
E+

σ · ∂φ∂nds = +I∫
E−

σ · ∂φ∂nds = −I
(1)

where n is boundary exterior normal vector; E is electric
field intensity. The measurement setup of gas-liquid two-phase
stratified flow in a horizontal pipe is shown in Fig. 1. When the
excitation electrodes are covered by non-conductive gas, the
sensitive field cannot be established in the measured field. As
a result, the corresponding measurements will be zero. These
measurements are invalid because they do not contain effective
information reflecting the conductivity distribution of fluid. If
all electrodes are in contact with conductive fluid, according
to the reciprocity theorem, there will be N(N − 3)/2 effective
measurement data, where N is the number of electrodes.
However, there are only (Nv − 2)(Nv − 3)/2 effective mea-
surements in measuring stratified flow [7], where Nv is the
number of valid electrodes and Nv ≤ N . It should be aware
that the reduction of the number of effective data aggravates
the under-determined problem in image reconstruction.
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Fig. 2: Structure of SBN-CNN

B. Sparse Batch Normalization Convolutional Neural
Network

Deep CNNs can automate the learning of features from
sparse measurements by utilizing a large database of samples.
The output of CNN is then fed into a deep fully connected
neural network (FCN), which aims to map a set of 2-D
features into a series of labels for each input. Finally, all the
labels are padded into the measured field to generate the fluid
distribution.

It is essential to define a CNN-based strategy for extracting
features automatically from sparse measurement data and use
those features for accurately interface reconstruction from both
the training database and also from an independent set of
test measurements. Based on the sparse characteristics of the
measurement data, the overall architecture of the proposed
SBN-CNN is shown in Fig. 2. The network includes 5 convo-
lutional (conv1 to conv5) layers to hierarchically mapping the
original sparse measurements to multiple feature maps and 3
fully connected (fc1 to fc3) layers to integrate the information
of multiple feature maps to the final fluid distribution. Batch
normalization is applied to the input, conv1 and conv4 layer
in a convolutional way to alleviate the problem of slow
parameters updating speed caused by sparse data.

To address the problem of sparse measurement data, inter-
face reconstruction by SBN-CNN involves the following five
basic stages: (1) data acquisition, (2) preprocessing, (3) feature
extraction, (4) image reconstruction and (5) model selection
and training, as shown in Fig. 3.

1) Data acquisition: There are 106750 samples generated in
the training dataset by solving the forward problem through
simulation, which are divided into 4 different types of in-
terfaces. As demonstrated in Fig. 4, case 1 shows the mea-
surement when the interface is near invalid electrodes, case
2 represents the interface near effective electrodes, case 3
represents the interface in the middle of invalid electrodes
and effective electrodes, and case 4 represents the interface
in the middle of the same electrodes. To make the simulation
interface closer to the real dynamic experiment interface, there
are horizontal, declining and wave interfaces in each case,
and the number of each interface type is approximately equal.
In the simulation models with different interface types, the
number of invalid electrodes is different, and the measurement
of effective electrodes is affected by the interface type.

2) Preprocessing: Due to system noise and the large range
of measurement, it is necessary to preprocess the ERT bound-
ary measurement information before inputting them into the
SBN-CNN [20]. To avoid the instability of the imaging result
caused by the fluctuation of the measurement with the system
noise, ERT measurement is processed as follows:

u = ug − uw (2)

where, ug is the boundary voltage vector with objects in the
sensing area, while uw is the boundary voltage vector when
the field is full of water, u is the difference vector between ug
and uw. To simplify the description, u is collectively referred
to as boundary measurement voltage vector, and is normalized
in the dataset as follows:

ûi =
‖ui −min(u)‖

‖max(u)−min(u)‖
(3)

where, ui is the ith element of u, ûi is the normalized value
of ui. Measurement vectors before and after preprocessing are
shown in Fig. 5.

The original measurement of ERT is a vector after prepro-
cessing, while the inputs of CNNs are 2-D matrix, the first step
is to convert vectors to a 2-D matrix. Each row in the matrix
represents the measured data under one excitation. To alleviate
the problem of dimension disappearance caused by pooling
operation without losing effective information, up-sampling
operation is implemented by padding the same measurement
data around the original matrix.

3) Feature extraction: CNNs can automatically learn fea-
tures from (typically massive) databases and have a good
generalization ability [21]. From this perspective, 5 convo-
lutional layers are used to extract useful features from sparse
measurements. The dimension of input matrix is 48× 39× 1
, which is 3 times of the original matrix due to up-sampling
operation as illustrated above. The conv1 uses 1× 13 kernel to
learn the features of measurements under one excitation, so it
can summarize the statistical characteristics of measurement
data at different invalid electrodes. Other convolution layers
adopt 3× 3 kernels to extract local features under different
excitation and the pooling layers adopt 2× 2 kernels for
feature reduction. It is observed in the experiments that the
activation values of invalid measurement data are close to zero
when the network becomes deeper, which results in a small
gradient of back propagation and a low parameters updating
speed. Therefore, batch normalization is applied to accelerate
the training speed of feature extraction. It accomplishes this
by normalizing layer inputs with means and variances and has
a beneficial effect on the gradient flow through the network
by reducing the dependence of gradients on initial values.
Meanwhile, as a regularization method, batch normalization
can avoid overfitting. In such case, the original convolutional
output y = f(Wa+ b) is replaced with y = f(BN(Wa)) by
BN transform, where W and b are learned parameters of
the model, f is the ReLU nonlinearity. For a feature map
x = Wa and a mini-batch B= {x1,2···m} , according to [17],
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Fig. 3: Interface reconstruction process with SBN-CNN
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the parameters in BN transform are defined as:

µB=
1

m

m∑
i=1

xi (4)

σ2
B=

1

m

m∑
i=1

(xi − µB)2 (5)

∧
xi =

xi − µB√
σ2
B + ε

(6)

yi = γ
∧
xi +β (7)

4) Interface reconstruction: FCNs are used to accomplish
the course of interface reconstruction from the output maps of
the last stage of CNNs. Because the output volume of a CNN
consists of 2-D maps and the inputs to FCNs are vectors,
the first step is to convert 2-D arrays to vectors. Then the
computation performed by the FC frame in Fig. 4 is:

ai(l) = f(

nl−1∑
j=1

wij(l)aj(l − 1) + bi(l)) (8)

where wij(l) is the weight of the ith neuron in layer l, which
associates that neuron with the output of the jth neuron in
layer l − 1; aj(l − 1) is the output of the jth neuron in layer
l − 1; bi(l) is the bias of the ith neuron in layer l; nl−1 is
the number of neurons in layer l − 1; f denotes nonlinearity.
ReLU nonlinearity is used in the fc1 and fc2 layer, but softmax
regression is applied before the final nonlinearity to turn the
output of the neural network into a probability distribution,
which is convenient to compute cross entropy loss. Finally,
the output of fc3 is padded into a circle region to accomplish
the interface reconstruction.

5) Model selection and training: two different state-of-the-
art networks were compared with the proposed SBN-CNN,
including FC (fully connection neural network with only a
hidden layer) and CNN2 [14]. The Relative Image Error (RIE)
and Image Correlation Coefficient (ICC), which are defined in
(7) and (8) respectively, are chosen for quantitative assessment
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Fig. 6: RIE and ICC during training with different networks
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of reconstruction quality:

RIE =

∥∥∥Ŷ − Y ∥∥∥
‖Y ‖

(9)

ICC =

N∑
i=1

(Ŷi − ¯̂
Y )(Yi − Ȳ )√

N∑
i=1

(Ŷi − ¯̂
Y )

2 N∑
i=1

(Yi − Ȳ )
2

(10)

where Y is the real distribution, Ŷ is the reconstruct distri-
bution, Ŷi is the ith element of Ŷ , ¯̂

Y is the mean of Ŷ , Yi
is the ith element of Y , Ȳ is the mean of Y . The change of
RIE and ICC during training with different networks is shown
in Fig. 6. It can be seen that the proposed model produced a
large margin in RIE and ICC and converged more rapidly.

To make the training more effective, four different stochastic
gradient-based optimization methods, i.e. stochastic gradient
descent (SGD) [22], AdaGrad [23], AdaDelta and Adam
with temporal averaging, were tested using the same network
structure. The results are in Fig. 7. Adam with temporal
averaging shows marginal improvement over others both in
convergence speed and reconstruction quality. Different from
the original Adam in [18], temporal averaging of parameters
θ is added for a better generalization performance since the
last iteration is noisy due to stochastic approximation. So the
final update rule is θ̄t = β2 · θ̄t−1 + (1− β2)θt on the basis
of Adam algorithm, where β2 is decay rate that gives a higher
weight to more recent parameter values.

When training with batch normalization, a training example
is seen in conjunction with other examples in the mini-batch.
So the training network no longer produces deterministic
values for a given training example. It is advantageous to
the generalization of the network as the Dropout [24] does.
However, it will offset each other when batch normalization
and dropout were used in the same network, as shown in Fig.
8, where CNN5 represents the same network as SBN-CNN
but without batch normalization. It can be seen that there
is no significant improvement when batch normalization and
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Fig. 8: RIE and ICC during training with batch normalization
variants

dropout are both applied. While removing dropout in SBN-
CNN model can speed up training and reduce RIE further.
Therefore, the SBN-CNN model without dropout is adopted
as the final structure. In this research, after 7 hours of training,
the imaging speed of SBN-CNN is about 5 ms/image.

III. EXPERIMENTAL DESIGN AND RESULTS
The proposed SBN-CNN model is trained with simulation

data and validated with both simulation and experimental data.
It was compared with two state-of-the-art methods in terms of
reconstruction accuracy and noise reduction. The diameter of
the pipeline in experiment is different from that in simulation,
which is used to evaluate its generalization ability in practice.

A. Simulation Results
Simulated data were obtained by solving the forward prob-

lem with finite element method. The conductivity of the
water and gas is set to 0.04 S ·m−1 and 1e-6 S ·m−1
respectively. In the simulation test, the gas-liquid interface near
the invalid electrode and the effective electrode are studied, the
reconstruction results are shown in Fig. 9, where 3, 5, 7and 9
represent the number of invalid electrodes.

Two widely studied algorithms for ERT image reconstruc-
tion, i.e. total variation (TV) regularization algorithm [25] and
CNN2 method [14], are used for reconstruction performance
comparison. TV algorithm has better characteristic on stability
and edge preservation. To make it suitable for interface recon-
struction in stratified flow, some preprocessing has been per-
formed in measurement data. First, the locations of all invalid
electrodes are determined based on sparse measurement data
according to [7]. Then the abnormal measurement data caused
by invalid electrodes are removed from all measurements.
Finally, the conductivity is reconstructed based on the re-
maining valid measurements, which is called TV-effective data
method. It can be seen in Fig. 9 that TV-effective data method
suffered from serious artifacts and the interface reconstructed
was generally lower than the ground truth particularly in Case
1. The interface reconstructed by CNN2 method was closer
to the ground truth than TV, but the interface was fuzzy and
there were artifacts inside the liquid phase. SBN-CNN method
reconstructed a more accurate interface and eliminated most
artifacts than other methods. The quantitative results of the
three method for different simulation models in Fig. 9 are
listed in Table. I, SBN-CNN method obtained the best scores
on most cases.

The proposed method was also evaluated in terms of noise
suppression performance. Fig. 10 presents the results with
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TABLE I: QUANTITATIVE RESULTS ASSOCIATED WITH
DIFFERENT ALGORITHMS FOR INTERFACE RECON-
STRUCTION

Case 1 Algorithm RIE ICC

3
TV-effective data 23.5% 0.644

CNN2 15.1% 0.641
SBN-CNN 6.3% 0.944

5
TV-effective data 57.5% 0.603

CNN2 10.9% 0.976
SBN-CNN 6.2% 0.988

7
TV-effective data 53.4% 0.915

CNN2 13.9% 0.991
SBN-CNN 4.7% 0.997

9
TV-effective data 50.6% 0.941

CNN2 18.1% 0.977
SBN-CNN 4.9% 0.998

Case 2 Algorithm RIE ICC

3
TV-effective data 20.9% 0.881

CNN2 11.9% 0.930
SBN-CNN 6.0% 0.981

5
TV-effective data 29.5% 0.961

CNN2 18.4% 0.964
SBN-CNN 10.2% 0.996

7
TV-effective data 15.2% 0.995

CNN2 22.1% 0.961
SBN-CNN 13.0% 0.992

9
TV-effective data 46.6% 0.928

CNN2 25.4% 0.953
SBN-CNN 16.5% 0.983

three different noise levels, i.e. white Gaussian noise with
signal-to-noise ratio of 5, 10 and 15 dB respectively. It can
be observed that SBN-CNN can effectively restrain white
Gaussian noise with a signal-to-noise ratio of 15 dB. There are
certain deviations when white Gaussian noise with signal-to-
noise ratio of 5 and 10 dB are added to the measurements. But
the ICCs are no less than 0.85 in most of the cases. Table. II
gives the mean measurements (average ± standard deviation)
for all the six different types of interfaces. It can be seen
that the proposed SBN-CNN is robust for certain magnitude
of noise. The comparison of anti-noise performance between
SBN-CNN and CNN2 is shown in Fig. 11. It shows the change

Ground 

truth

True 

distribution

No noise

GS-15

GS-5

(a) (b) (c) (d)

GS-10

(e) (f)

Fig. 10: Reconstructed images with different noise
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Fig. 11: The comparison of anti-noise performance between
SBN-CNN and CNN2

of RIE and ICC mean and standard deviations with the change
of noise level. The quality of image reconstruction using
CNN2 deteriorates sharply with the increase of noise level.
In contrast, the reconstruction quality of SBN-CNN changes
smoothly, proving that the proposed model is more robust to
noise.

B. Experimental Results

Both static and dynamic experiments were conducted to
evaluate the performance of the proposed SBN-CNN. Fig. 12
shows the high-speed ERT system, including a data acquisition
system, a pipe section with a 16-electrode sensor and the
data collection software. In this experiment, the excitation
current is a sinusoidal signal with an amplitude of 2.5 mA
and a frequency of 50KHz. The diameter and length of the
horizontal pipe are 100 mm and 220 mm respectively. The
length, width and thickness of the electrodes are 30mm, 10mm
and 1mm respectively. The conductivity of tap water and gas in
horizontal pipe is about 0.04 S ·m−1 and 0 S ·m−1. Different
interface heights were tested by injecting various volumes
of water into the horizontal pipe. The reconstruction results
are given in Fig. 13. The first and forth rows are the actual
interface height. The second and fifth rows show the relative
position of the interface height to the electrodes. The third and
six rows denote the reconstruction results with the proposed
SBN-CNN. It can be seen that the proposed method can give
accurate height regardless of the type of interfaces in most of
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TABLE II: QUANTITATIVE RESULTS(MEAN ± SDs) ASSOCIATED WITH DIFFERENT NOISES FOR INTERFACE
RECONSTRUCTION

Noise level No noise GS 15 GS 10 GS 5

(a)
RIE 0.10 ± 0.04 0.22 ± 0.12 0.30 ± 0.15 0.47 ± 0.34
ICC 0.99 ± 0.02 0.97 ± 0.04 0.96 ± 0.06 0.91 ± 0.11

(b)
RIE 0.08 ± 0.06 0.25 ± 0.18 0.32 ± 0.20 0.47 ± 0.24
ICC 0.99 ± 0.02 0.95 ± 0.08 0.93 ± 0.09 0.87 ± 0.13

(c)
RIE 0.15 ± 0.16 0.28 ± 0.19 0.42 ± 0.31 0.50 ± 0.23
ICC 0.95 ± 0.10 0.91 ± 0.18 0.84 ± 0.24 0.81 ± 0.20

(d)
RIE 0.10 ± 0.03 0.22 ± 0.13 0.30 ± 0.15 0.46 ± 0.34
ICC 0.99 ± 0.02 0.97 ± 0.05 0.96 ± 0.06 0.91 ± 0.10

(e)
RIE 0.18 ± 0.10 0.31 ± 0.19 0.35 ± 0.19 0.47 ± 0.24
ICC 0.96 ± 0.04 0.93 ± 0.07 0.91 ± 0.08 0.87 ± 0.10

(f)
RIE 0.19 ± 0.11 0.32 ± 0.19 0.37 ± 0.21 0.49 ± 0.28
ICC 0.96 ± 0.04 0.93 ± 0.08 0.90 ± 0.09 0.86 ± 0.11

data collection 

software

data acquisition 

system

16-electrode sensor

Fig. 12: The ERT system for experimental investigation

the cases. Table. III summarizes the quantitative results from
the eight images. In addition to the two criteria, i.e. RIE and
ICC, height error is also used to measure the reconstruction
accuracy, which is defined as:

height error = hr − ht (11)

where hr stands for the reconstruction height from the con-
ductivity distribution, ht is the true height obtained from the
first and third lines in Fig. 13. Although a few interfaces have
larger RIE, all the ICCs are no less than 0.9 and the mean
value of height errors is 1.9 mm. This means that the SBN-
CNN has good robustness and generalization ability to some
extent. In order to further examine the effectiveness of the
proposed method, dynamic experiments were also carried out.

Dynamic experiments were conducted on a multiphase flow
loop as shown in Fig. 14. The diameter of the pipeline is
50mm. Gas was pumped into the pipeline through a desiccator
after a filter and an air compressor. The water and gas are
mixed by a T-mixer. Before mixing, the volume flow rate of
each phase is controlled by adjusting valve and measured by
standard single-phase flowmeter. A 16-electrode sensor was
installed in the pipeline. In the experiments, different heights
of interfaces were produced by changing the flow rate of
single-phase fluid of either gas or water.

In order to obtain the complete and stable flow charac-
teristics of each experimental condition, the continuous test
of each flow state last for 10 seconds. Table. IV gives the

Ground truth

True distribution

SBN-CNN

Ground truth

True distribution

SBN-CNN

Fig. 13: The interface reconstruction results in static experi-
ment
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flow direction
test tube section

high speed 

camera

mixer

fast valve

Fig. 14: Experimental rig for multiphase flow

corresponding parameters in different experimental conditions.
The SBN-CNN imaging results of typical time slice under 625
frames/second of ERT data acquisition speed are shown in
Fig. 15. The first column shows the flow state obtained by a
high speed camera. Although the reconstructed image contains
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TABLE III: QUANTITATIVE RESULTS IN STATIC EXPERIMENT

Water content (%) 11.76 23.53 35.29 47.06 58.82 70.59 82.35 94.12

Interface height (mm) 16.0 27.0 37.5 47.5 56.0 66.0 77.5 89.7

RIE 0.60 0.15 0.15 0.22 0.19 0.18 0.11 0.08

ICC 0.90 0.99 0.99 0.98 0.97 0.96 0.98 0.91

height error (mm) -4.23 -0.65 -0.73 2.76 3.04 2.29 0.82 -0.74

TABLE IV: THE EXPERIMENT CONDITIONS IN DY-
NAMIC EXPERIMENTS

Model Gas Velocity
(m/s)

Liquid Velocity
(m/s)

(a) 0.18 0.23

(b) 2.87 0.04

(c) 0.05 0.15

t=8s

t=3s

t=1s t=2s t=3s t=4s t=5s

t=6s t=7s t=8s t=9s t=10s

(b)

t=1s t=2s t=4s t=5s

t=6s t=7s t=9s t=10s

(c)

t=1s t=2s t=3s t=4s t=5s

t=6s t=7s t=8s t=9s t=10s

(a)

Fig. 15: The image reconstruction results in dynamic experi-
ment

-25.0

25.0

25.0

-25.0

Fig. 16: Multi-images flowing the same cross-section at dif-
ferent times

some artifacts, there are still clear interface consistent with the
true distribution. In model (a), it can be seen that the interface
height changes significantly at 6 seconds and gradually recov-
ers from 8 seconds. In order to display the change of interface
height more intuitively, multi-images flowing the same cross-
section at different times are stacked to form a 3D image,
which are shown in Fig. 16. It illustrates that the proposed
SBN-CNN method is effective even on complex dynamic flow
conditions.

IV. CONCLUSION

When ERT is used to measure gas-liquid two-phase strat-
ified flow in horizontal pipes, the failure of some electrodes
due to gas coverage will severely affect the reconstruction of
interface distribution. In view of this problem, a data-driven
method based on CNN is proposed. The complete procedure
is divided into four steps, i.e. data acquisition, preprocessing,
feature extraction and image reconstruction. Four different
types of interface are simulated by solving the forward prob-
lem in ERT. Normalization and up-sampling of measurement
data are used as noise reduction and geometric corrections. A
hierarchical CNN structure combined with batch normalization
is designed to extract high-level features from low-dimension
and sparse measurements. Batch normalization that normalizes
layer inputs by mean and variance can alleviate the problem
of slow parameter update speed caused by sparse data. The
interface reconstruction is finally accomplished by three fully
connected layers, which can map several feature maps to
interface distribution. An improved stochastic gradient descent
method, i.e. Adam with temporal averaging, was presented to
accelerate convergence speed and enhance reconstruction ac-
curacy. The numerical simulation results have demonstrated a
higher ICC and lower RIE than some state-of-the-art methods
both on visual observations and quantitative evaluation. It is
proved that the model has good anti-noise performance by
adding different levels of noise to the measurements. Both
static and dynamic experiments have validated that the model
has a good generalization ability. In the future, more attempts
will be made to further improve the performance of the model
on experimental data and extend it to 3D reconstruction.
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