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The stochasticity of gene expression is manifested in the fluctuations of messenger ribonucleic acid and
protein copy numbers within a cell lineage over time. While data of this type can be obtained
for many generations, most mathematical models are unsuitable to interpret such data since they assume
nongrowing cells. Here we develop a theoretical approach that quantitatively links the frequency
content of lineage data to subcellular dynamics. We elucidate how the position, height, and width of
the peaks in the power spectrum provide a distinctive fingerprint that encodes a wealth of information about
mechanisms controlling transcription, translation, replication, degradation, bursting, promoter switching,
cell cycle duration, cell division, gene dosage compensation, and cell-size homeostasis. Predictions are
confirmed by analysis of single-cell Escherichia coli data obtained using fluorescence microscopy.
Furthermore, by matching the experimental and theoretical power spectra, we infer the temperature-
dependent gene expression parameters, without the need of measurements relating fluorescence intensities
to molecule numbers.

DOI: 10.1103/PhysRevX.11.021032 Subject Areas: Biological Physics,
Interdisciplinary Physics,
Statistical Physics

I. INTRODUCTION

In recent years, measurements of the size, division
events, and the content of single cells over extended time
(many generations) have been made possible due to
advances in microfluidic devices and live-cell imaging
[1–3]. While the existing data are typically for proteins,
such measurements are also in principle possible for
messenger ribonucleic acids (mRNAs), particularly with
the advent of new methods to visualize RNA dynamics in
live cells using bright and stable fluorescent RNAs [4]. The
data in these experiments are sampled at a rate that is much
higher than the frequency of cell division, thus providing us
with a means to understand the temporal variation of gene
expression as a cell progresses through its cell cycle.
A common feature of these time traces is a noisy

oscillatory variation of the fluorescence intensity (from
fluorescently labeled proteins) with time with a period that

is roughly coincident with the interval between two
successive cell division events [2]. A sawtooth type of
temporal pattern is expected due to a sharp dip in the
protein numbers at cell division stemming from the
partitioning of the contents of the mother cell among
two daughter cells. While these oscillations are regular
in some cases, very often they display a significant degree
of noisiness. This noisiness reflects the inherent stochas-
ticity of transcription, translation, and replication [5–7],
noise introduced or modified by homeostatic mechanisms
such as those that compensate for the doubling of gene
copies at replication [8,9], and nongenetic sources of noise
such as variability in the cell cycle duration from one
generation to the next [1,10,11] and variability in the
number of molecules allocated to a newborn cell at cell
division [12,13]. Hence, it follows that a measure of the
regularity of an oscillation, such as the power spectrum of
fluorescence fluctuations calculated over a lineage, encap-
sulates within it a large amount of information about the
inherent chemical and physical processes, both determin-
istic and stochastic, that shape cellular dynamics.
An essential first step to link the properties of the power

spectrum with the underlying dynamic intracellular proc-
esses is the derivation of a mathematical formula for the
spectrum as a function of gene expression rate parameters.
For this purpose, the standard stochastic models in the
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literature that are based on the two-stage or three-stage
representation of gene expression [14] are not useful
because they do not provide a mathematical description
of processes along a cell lineage. These models describe
transcription and translation, and implicitly characterize the
dilution due to cell division via an effective decay reaction;
however, simulated time traces of the protein numbers
based on these models using the stochastic simulation
algorithm will not display any noisy oscillatory behavior
since the partitioning of molecules at cell division is not
taken into account. Standard models also lack a description
of important cell cycle features such as the high variability
in the interdivision time that is a characteristic of exper-
imental time traces. Recently, models that surmount the
aforementioned limitations of the standard models have
been studied leading to mathematical formulas for the mean
and variance of mRNA or protein numbers [15–18] and
also for the steady-state distributions of these numbers
[19,20] calculated across a cell lineage. These statistical
measures provide different information from the power
spectrum; notably, the former statistical measures, unlike
the latter, neither provide an understanding of the corre-
lations between molecule numbers at two time points nor of
the frequency composition of fluctuations in molecule
numbers [21].
In this article, for the first time, we calculate in closed

form the power spectrum of fluctuations across a lineage
in a stochastic gene expression model with a high level of
biological realism, including a description of transcription,
translation, degradation, bursting, promoter switching,

DNA replication, gene dosage compensation, and symmet-
ric or asymmetric partitioning at cell division. The analytical
expressions give insights into how the regularity and
noisiness of the oscillations in the mRNA or protein
abundance across generations are related to the rate param-
eters associated with the various subcellular processes at
play. The theory alsomakes various predictions that are then
verified by analysis of a publicly available single-cell dataset
of Escherichia coli followed over 70 generations for three
different growth conditions. Finally, we show howmatching
the experimental and theoretical power spectra enables a
reliable inference of gene expression rate parameters.

II. RESULTS

A. Model specification

We consider a detailed model of stochastic gene expres-
sion dynamics in a single cell which includes transcrip-
tional or translational bursting, degradation, cell cycle
duration variability, gene replication, gene dosage com-
pensation, and symmetric or asymmetric cell division [see
Fig. 1(a) for an illustration]. The specific meaning of all
model parameters is listed in Table I, and the biological
values of some key parameters in different cell types are
listed in Table II. The model is based on a number of
assumptions that are closely tied to experimental data. The
assumptions are as follows:
(i) Before replication, the synthesis of the gene product

of interest, mRNA or protein, occurs at a rate ρ in
bursts of a random size sampled from an arbitrary

Cell division

(a) (b) Symmetric
binomial partitioning

Asymmetric
binomial partitioning

G
1 duration

G
2 

du
ra

tio
n

M duration

p < 0.5

p = 0.5 1 - p = 0.5

1 - p > 0.5

dG

Bursting

Stage 1 Stage 2

Stage N0Stage N0+1

Stage N

Gene replication

Stage 3a

Cell cycle Stage

N0 N

Dosage
compensation

S
tage 4

a

a

S duration

FIG. 1. A detailed gene expression model across the cell cycle. (a) Schematic illustrating the model describing N effective cell cycle
stages, gene replication at stage N0, bursty production of the gene product, degradation of the gene product, and gene dosage
compensation induced by a change in the burst production rate upon replication from ρ to κρwith κ < 2 (see inset graph). (b) At stageN,
a mother cell divides into two daughters that are typically different in size (asymmetric division) with the larger daughter inheriting more
molecules. Symmetric division is the special case where the daughters are equisized.
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distribution μ ¼ ðμnÞ. This means that in each burst,
there is a probability μn of producing n copies of the
gene product. In some previous studies [22], the
synthesis of the gene product is assumed to be non-
bursty; i.e., themolecules are produced one at a time. In
this case, μn ¼ δ1;n is the Kronecker delta which takes
the value of 1 when n ¼ 1 and the value of 0 otherwise.
In many other papers [23], the synthesis of the gene
product is assumed to be bursty with the burst size
sampled from a geometric distribution μn¼pn

Bð1−pBÞ,
where pB ¼ B=ð1þ BÞ with B being the mean burst
size. Both nonbursty and bursty gene expression are
commonly observed in naturally occurring systems
[24]. The bursting of mRNA and protein has different
biophysical origins [25,26]: Transcriptional bursting is
due to a gene that is mostly OFF but transcribes a large
number of mRNA molecules when it is ON, whereas
translational bursting is due to rapid synthesis of protein
molecules from a single short-lived mRNA molecule.
Therefore, the arbitrariness of the burst size distribution
allows us to analyze both bursty and nonbursty cases
within a unified model.
InAppendixA,we also consider amore complicated

model where the promoter of the gene of interest can
switch between an inactive state G0 and an active state
G1 [14], each associated with a different burst produc-
tion rate. Previous studies [25,26] have shown that there
is a degree of degeneracy in the model if promoter
switching is taken into account since a switching gene
coupled with nonbursty production of the gene product
can simulate bursty production of the gene product. For
this reason, we mainly focus on the model without
promoter switching in the main text and defer the
analysis of the model with promoter switching to
Appendixes A and D.

(ii) The gene product is degraded via first-order kinetics
with rate constant d, which is a common assumption
supported by experiments [27].

(iii) Each cell can exist in N effective cell cycle stages
denoted by 1; 2;…; N, with a being the transition rate

from one stage to the next, which is assumed to be the
same for all stages. Since the transition time between
stages is exponentially distributed, the duration of the
cell cycle is Erlang distributed with mean N=a, and
thus, the cell cycle frequency is f ¼ a=N. In our
model, the noise in the doubling time characterized by
the coefficient of variation squared is equal to 1=N. As
N → ∞, the noise vanishes, and thus, the doubling
time becomes fixed. Hence, our model allows the
investigation of the influence of cell cycle duration
variability on stochastic gene expression.
We emphasize that the effective cell cycle stages

introduced here do not directly correspond to the four
biological cell cycle phases of eukaryotic cells (G1, S,
G2, and M) since the durations of the latter are
typically not exponentially distributed. In our model,
a cell cycle phase corresponds to multiple effective cell
cycle stages [Fig. 1(a)]. By introducing a number of
effective cell cycle stages, our model has the property
that the total duration of the cell cycle and the
durations of individual cell cycle phases are all Erlang
distributed. This is in agreement with experiments in
various cell types [17,28–31].

(iv) Cell division occurs when the cell transitions from
effective stage N to the next stage 1. At division, most
previous papers assume that the mother cell divides
into two via symmetric binomial partitioning: Each
molecule has an equal chance to be allocated to one of
the two daughter cells [20,32]. However, asymmetric
cell division is also common in biology [13,33]. For
instance, Saccharomyces cerevisiae divides asymmet-
rically into two daughters with different sizes. Escher-
ichia coli may also undergo asymmetric division with
old daughters receiving fewer gene products than new
daughters [34]. Here we extend previous models by
considering asymmetric binomial partitioning at cell
division: The probability of a molecule being allocated
to one daughter is p ≤ 1=2, and the probability of
being allocated to the other is q ¼ 1 − p [Fig. 1(b)].
After division, we randomly track one of the two
daughters with probability 1=2; hence, our model
corresponds to cell lineage measurements performed
using a mother machine such as in Ref. [35].

(v) The replication of the locus containing the gene of
interest occurs over a period that is much shorter than
the rest of the cell cycle. Note that the replication of the
whole genome within a cell cannot be assumed to be
instantaneous. However, since the replication time of a
particular gene is much shorter than the total duration
of the S phase, it is reasonable to consider it to be
instantaneous. Specifically, we assume that gene
replication occurs instantaneously when the cell tran-
sitions from a fixed effective stage N0 ∈ ½1; N − 1� to
the next stageN0 þ 1. We refer to the gene copy that is
replicated as the mother copy and to the duplicated
gene copies as the daughter copies. Under this

TABLE I. Model parameters and their meaning.

Meaning of model parameters

ρ Burst production rate before replication
κρ Burst production rate after replication
B Mean burst size of the gene product
d Degradation rate of the gene product
N Number of cell cycle stages
N0 Number of cell cycle stages before replication
w Proportion of the cell cycle before replication
a Transition rate from one cell cycle stage to the next
f Cell cycle frequency
η Ratio of the degradation rate to the cell cycle frequency
p Allocation probability in asymmetric binomial partitioning
deff Effective decay rate of the gene product
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assumption, for haploid cells, there is only one mother
copy during the first N0 stages and two daughter
copies during the last N − N0 stages; for diploid cells,
the number of gene copies varies from two to four
upon replication. For diploid cells, we assume that the
two alleles act independently of each other [36,37].

(vi) If the two daughter copies have the same burst
production rate as the mother copy, then the total
burst production rate after replication should be equal
to 2ρ. Dosage compensation is then modeled as a
change in the burst production rate upon replication
from ρ to κρ with κ < 2. In the absence of dosage
compensation, we have κ ¼ 2.

We next describe our stochastic model for haploid cells.
The results for diploid cells can be easily deduced from the
haploid case using allelic expression independence (see
Appendix B for details). The microstate of the gene of
interest can be represented by an ordered pair ðr; nÞ, where
r is the effective cell cycle stage, and n is the copy number
of the gene product. Let pr;n denote the probability of
observing microstate ðr; nÞ. Then the evolution of stochas-
tic gene expression dynamics is governed by the master
equation

_p1;n ¼
Xn−1
k¼0

ρμn−kp1;k−
X∞
k¼1

ρμkp1;n

þðnþ1Þdp1;nþ1−ndp1;n

þa
2

X∞
m¼n

Cm;nðpnqm−nþqnpm−nÞpN;m−ap1;n;

_pr;n ¼
Xn−1
k¼0

ρμn−kpr;k−
X∞
k¼1

ρμkpr;nþðnþ1Þdpr;nþ1

−ndpr;nþapr−1;n−apr;n; 2≤ r≤N0;

_pr;n ¼
Xn−1
k¼0

κρμn−kpr;k−
X∞
k¼1

κρμkpr;nþðnþ1Þdpr;nþ1

−ndpr;nþapr−1;n−apr;n; N0þ1≤ r≤N: ð1Þ

Here, Cm;n ¼ m!=n!ðm − nÞ! is the combinatorial number,
the first two terms on the right-hand side describe bursty
production of the gene product, the next two terms describe
degradation, and the last two terms describe cell cycle
progression. In particular, in the first equation, the last two
terms also describe asymmetric partitioning of molecules at
cell division.

B. General expressions for the power spectrum of
single-cell measurements across generations

Experiments suggest that the periodicity of the cell cycle
can induce oscillatory behavior in gene expression [1]. In
fact, if we use a deterministic model to describe the
synthesis and degradation of the gene product and assumeTA
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that the molecule numbers halve after a deterministic
doubling time, then the solution of the deterministic rate
equation (the time series of gene product abundances) will
be periodic under all choices of rate parameters. However,
numerous time-lapse experiments [6,65] have shown that
the time course data of expression levels in single cells do
not always appear oscillatory due to various sources of
noise such as cell cycle duration variability, gene copy
number variability, asymmetry of cell division, gene
expression bursting, and promoter switching. Here we
examine how these sources of noise influence the robust-
ness of sustained oscillations.
Let nðtÞ denote the copy number of the gene product

in a cell at time t. Stochastic gene expression oscillations
are often characterized by two functions: the autocorre-
lation function and the power spectrum. The former
RðtÞ ¼ CovSS½nð0Þ; nðtÞ� is defined as the steady-state
covariance of nð0Þ and nðtÞ, while the latter GðξÞ ¼R
∞
−∞ RðjtjÞe−2πiξtdt is defined as the Fourier transform
of the former, where ξ ≥ 0 denotes the frequency. In
general, sustained oscillations cannot be observed if the
power spectrum GðξÞ is a monotonically decreasing
function of ξ. In contrast, a nonmonotonic power spectrum
with one or more off-zero peaks implies the presence of
sustained oscillations; the dominant frequencies of these
oscillations are the values of ξ at which the modes of the
power spectrum occur.
To obtain the analytical expression of the autocorrela-

tion function, we first calculate the moments of the
gene product number. For each cell cycle stage r, we
introduce the generating function FrðzÞ ¼

P∞
n¼0 pr;nzn.

Then, Eq. (1) can be converted into the following partial
differential equations:

∂tF1ðzÞ¼ ρ½HðzÞ−Hð1Þ�F1ðzÞþdð1− zÞF1ðzÞ
þa
2
½FNðpzþqÞþFNðqzþpÞ�−aF1ðzÞ;

∂tFrðzÞ¼ ρ½HðzÞ−Hð1Þ�FrðzÞþdð1− zÞFrðzÞ
þa½Fr−1ðzÞ−FrðzÞ�; 2≤ r≤N0;

∂tFrðzÞ¼ κρ½HðzÞ−Hð1Þ�FrðzÞþdð1−zÞFrðzÞ
þa½Fr−1ðzÞ−FrðzÞ�; N0þ1≤ r≤N; ð2Þ

where HðzÞ ¼ P∞
n¼1 μnz

n is the generating function of the
burst size distribution. Recall that the kth factorial moment
of the gene product number in cell cycle stage r is defined

as mkr ≔
P∞

n¼0 nðn − 1Þ � � � ðn − kþ 1Þpr;n ¼ FðkÞ
r ð1Þ.

Let mk ¼ ðmkrÞ denote the row vector whose components
are the kth factorial moments in all cell cycle stages. Taking
the kth derivative on both sides of Eq. (2), we obtain

_mk ¼ mkWkk þ
Xk−1
l¼0

mlWlk; ð3Þ

where Wkk and Wlk are matrices defined as

Wkk ¼

0
BBBBBBBB@

−a a

−a a

. .
. . .

.

−a a

ðpk þ qkÞa=2 −a

1
CCCCCCCCA

− kdI;

ð4Þ

and Wlk ¼ Ck;lHðk−lÞð1ÞS. Here, I ¼ diagð1;…; 1Þ is the
identity matrix, Ck;l ¼ k!=l!ðk − lÞ! is the combinatorial
number, and S ¼ diagðρ;…; ρ; κρ;…; κρÞ is the diagonal
matrix whose diagonal entries are the burst production
rates in all cell cycle stages. In the nonbursty case, the
derivative terms in Wlk are given by H0ð1Þ ¼ 1 and
HðkÞð1Þ ¼ 0 for any k ≥ 2; in the bursty case, they are
given by HðkÞð1Þ ¼ k!Bk, where B is the mean burst size.
Note that Eq. (3) is recursive with respect to k; hence, all

factorial moments of the gene product number can be
solved analytically. Since the autocorrelation function
contains only information of moments up to the second
order, it can be computed exactly as (see Appendix C for
the proof)

RðtÞ ¼ ðm1 þm2ÞeW11t1 − ðm11Þ2

þ B
Z

t

0

m1eW00sSeW11ðt−sÞ1ds; ð5Þ

where W00 and W11 are matrices defined in Eq. (4),

m0 ¼ ð1=N;…; 1=NÞ;
m1 ¼ −Bm0SW−1

11 ;

m2 ¼ −½2Bm1 þH00ð1Þm0�SW−1
22 ð6Þ

are the steady-state zeroth, first, and second factorial
moments in all cell cycle stages, and 1 ¼ ð1;…; 1ÞT is
the column vector whose components are all 1. Note that
W00 is nothing but the generator matrix for the transitions
between cell cycle stages. The analytical expressions of the
autocorrelation function and power spectrum for the model
with promoter switching can be found in Appendix D.
Note that the autocorrelation function RðtÞ in Eq. (5) is

expressed in matrix form. A more explicit expression can
be obtained by expanding the matrix exponentials eW11t and
eW00s in terms of their eigenvalues and eigenvectors. Since
both W00 and W11 are N × N circular matrices, their
eigenvalues can be computed explicitly. The eigenvalues
of W00 are given by

λk ¼ −aþ aωk; 0 ≤ k ≤ N − 1; ð7Þ
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and the eigenvalues of W11 are given by

λNþk ¼ −d − aþ 2−1=Naωk; 0 ≤ k ≤ N − 1; ð8Þ

where ωk ¼ e2πki=N are all the Nth roots of unity. We find
that the autocorrelation function (power spectrum) can be
rewritten as the linear combination of 2N − 1 exponential
(Lorentzian) functions

RðtÞ ¼
X2N−1

k¼1

ukeλkt; GðξÞ ¼
X2N−1

k¼1

−2ukλk
4π2ξ2 þ λ2k

; ð9Þ

where λ0;…; λ2N−1 are all the eigenvalues ofW00 andW11,
and uk are suitable constants (see Appendix C for the proof
and the specific expressions of uk).
In addition, the steady-state mean of the gene product

number can be also calculated explicitly as (see Appendix C
for the proof)

hni¼ ρB
ηf

�
wþ κð1−wÞþðκ−1Þawη;N þ1− κaη;N

ηð2aη;N −1Þ
�
; ð10Þ

where w ¼ N0=N is the proportion of the cell cycle before
replication, η ¼ d=f is the ratio of the degradation rate to the
cell cycle frequency which serves as a measure for the
stability of the gene product, and aη;N ¼ ð1þ η=NÞN ≈ eη

when N ≫ 1.
To validate the analytical expression of the power

spectrum, we compare it with the numerical spectrum
calculated by means of the Wiener-Khinchin theorem,
which states that GðξÞ ¼ limT→∞hjn̂TðξÞj2i=T, where
n̂TðξÞ ¼

R
T
0 nðtÞe−2πiξtdt is the truncated Fourier transform

of a single stochastic trajectory over the interval ½0; T�, and
the angled brackets denote the ensemble average over
trajectories [Fig. 2(a)]. To guarantee the accuracy of the
numerical spectrum, we calculate the ensemble average
over 5000 trajectories simulated using Gillespie’s stochas-
tic simulation algorithm with the maximum simulation time
being chosen as 30N=a (about 30 cell cycles). Here we
normalize the power spectrum such that Gð0Þ ¼ 1. Clearly,
the analytical (blue curve) and numerical (red circles)
spectra coincide perfectly with each other. In general,
the numerical simulations of the power spectrum turn
out to be very slow. The analytical solution is hence crucial
because it allows a fast exploration of large swathes of
parameter space.

C. Single-cell time traces can be classified
into four different types according to

their power spectrum shapes

Our gene expression model displays four different types
of power spectra [Fig. 2(a)]: (i) the spectrum is unimodal
and monotonically decreasing with a peak at zero, (ii) the
spectrum is bimodal with the height of the off-zero peak

less than 1, (iii) the spectrum is bimodal with the height of
the off-zero peak greater than 1, and (iv) the spectrum is
unimodal and bell shaped with the height of the off-zero
peak greater than 1. For convenience, we refer to (i)–(iv) as
type I, II, III, and IV spectra, respectively. The robustness
of oscillations increases as the spectrum changes from
type I to type IV [Fig. 2(b)]; this is since the increasing
height of the off-zero peak relative to the zero peak implies
increasing power in a narrow range of frequencies centered
about the cell cycle frequency. To better understand the
analytical solution of the power spectrum, we decompose it
into two parts:

GðξÞ ¼
XN−1

k¼1

−2ukλk
4π2ξ2 þ λ2k

þ
X2N−1

k¼N

−2ukλk
4π2ξ2 þ λ2k

; ð11Þ

where the first part is the contribution of the eigenvalues of
W00, and the second part is the contribution of those ofW11

[see insets of Fig. 2(a) for the decomposition]. Clearly, the
first part (green curve) mainly controls the off-zero peak,
and the second part (red curve) mainly controls the zero
peak as well as the decay of the spectrum. When cell cycle
duration variability is small (N ≫ 1), the first eigenvalue of
W11 is given by

λN ¼ −d − að1 − 2−1=NÞ ¼ −d − að1 − e−ðln 2Þ=NÞ
≈ −d − ðln 2Þa=N ¼ −deff ; ð12Þ

where deff ¼ dþ ðln 2Þf is the effective decay rate of the
gene product, which is the sum of the decay rates due to
active degradation and due to dilution at cell division [67].
This explains why the second part characterizes the decay
of the spectrum.

D. General scaling properties of the height and
width of the off-zero spectral peak

To see the influence of cell cycle duration variability on
sustained oscillations, we illustrate how the power spec-
trum given by Eq. (9) varies with N [Fig. 2(c)]. When N is
very small, the spectrum has only a peak at zero, implying
that no regular oscillations can be observed. However, as N
increases, the spectrum becomes nonmonotonic with the
off-zero peak becoming higher and closer to (but still less
than) the cell cycle frequency f (shown as a vertical dashed
line). This indicates that there is a threshold cell cycle
duration variability below which the periodicity of the cell
cycle leads to sustained oscillations in gene expression.
Moreover, as f increases while keeping N and hni fixed,

the power spectrum becomes wider, but the height of the
off-zero peak remains exactly the same [Fig. S1(a) in the
Supplemental Material [66]]. In fact, if the cell cycle
frequency is increased from f to αf with some α > 1,
then the coefficients uk in Eq. (9) will remain the same, but
the eigenvalues λk will be replaced by αλk (see Appendix C
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for the proof). Therefore, the power spectrum (autocorre-
lation function) will be stretched (compressed) along the
horizontal axis by a factor of α. This explains why the
height of the off-zero peak is independent of the cell cycle
frequency.

E. Symmetric division, midway replication,
and nonbursty expression enhance the

regularity of oscillations

Oscillations are also affected by the gene replication
time, asymmetric cell division, random bursting, and gene
expression mean. Figures 2(d) and 2(e) illustrate the height
of the off-zero peak as a function of w, p, B, and hni. It is
clear that the off-zero peak becomes lower as B increases
and as p and hni decrease. The decline of the height with
increasing B and decreasing p and hni is expected since all
of them correspond to an increase in the fluctuations of
gene product abundances which counteracts the regularity
of oscillations; indeed, noise above a certain threshold can
even completely destroy oscillations [Fig. 2(e)]. This

observation is in sharp contrast to a negative feedback
genetic loop, where random bursting can promote the
regularity of oscillations [68,69]. In addition, we also find
that sustained oscillations are the most regular when w is
neither too small nor too large [Fig. 2(d)].

F. Contrasting the properties of the off-zero
peak for stable and unstable gene products

To further understand these observations, we consider
two important special cases. In bacteria and yeast, most
proteins have very long half-lives, i.e., η ≪ 1 (Table II).
For such stable gene products, when cell cycle duration
variability is not too large, the power spectrum can be
simplified as

GðξÞ ≈ 2Ahnif
3ð4π2ξ2 þ λ2NÞ

þ ρ2B2N
2f

X½N=2�

k¼1

HkGkðξÞ; ð13Þ

where A and Hk; k ≥ 1 are suitable constants and
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GkðξÞ¼
2k2π2f2− ðπ2ξ2−a2 cosθk sin2 θk=2Þ

4k6π6f4þN2ðπ2ξ2−a2 cosθk sin2 θk=2Þ2
; ð14Þ

with θk ¼ 2kπ=N (see Appendix E for the expressions of A
and Hk and Sec. S1 in the Supplemental Material [66] for
the proof). In Eq. (13), the decay of the power spectrum is
mainly controlled by the first term, while the off-zero peak
is controlled by the function G1ðξÞ in the second term. The
influence of the remaining functions GkðξÞ; k ≥ 2 in the
second term will be discussed later.
From Eq. (14) with k ¼ 1, the position of the off-zero

peak is given by ξ ¼ ða=πÞ cos θ1 sinðθ1=2Þ < aθ1=2π ¼
a=N ¼ f, which is smaller than the cell cycle frequency f.
WhenN ≫ 1, the peak position is approximately equal to f
since sin θ ≈ θ and cos θ ≈ 1 when θ is small [Fig. 2(c)].
Moreover, the width of the off-zero peak characterized by
the difference of the frequencies at which the spectrum
attains half of its peak value [see Fig. 2(c) for an
illustration] is given by D ¼ 2πf=N. In other words, the
width is proportional to both the cell cycle frequency and
cell cycle duration variability [in agreement with Fig. S1(a)
in the Supplemental Material [66]]. In the case of bursty
gene expression, the height of the off-zero peak is given by
[see Sec. S1 in the Supplemental Material [66] for the
proof]

H ¼ J1hniN=6π4

hni½2Jðγ þ 2
3NÞ þ C

π2N� þ 3
ln 2 þ 2Bðγ − 2þ 3

ln 2Þ
; ð15Þ

where γ ¼ 2ð1 − 4pqÞ=ð1þ 2pqÞ is a function of p, and

Jk ¼
½wþ κð1 − wÞ þ ðκ−1Þ sin ð2kwπÞ

2kπ �2 þ ðκ−1Þ2 sin4ðkwπÞ
k2π2

½κ − 1
3
ðκ − 1Þwð4 − wÞ�2 ;

J ¼ ½wþ κð1 − wÞ�2
½κ − 1

3
ðκ − 1Þwð4 − wÞ�2 ; ð16Þ

and C ¼ P∞
k¼1 Jk=k

2 are all functions of κ and w. In the
nonbursty case, the term involving B in Eq. (15) vanishes.
Note that since p ≤ 1=2 is the probability that a molecule is
allocated to one daughter and q ¼ 1 − p is the probability
of being allocated to the other daughter, it follows that
0 ≤ γ ≤ 2; hence, the parameter γ is a dimensionless
measure of the asymmetry of cell division. From
Eq. (15), it is easy to see that the height decreases with
increasing B and decreasing p and hni. This is in full
agreement with the numerical results shown in Figs. 2(d)
and 2(e), which are computed using Eq. (9).
On the other hand, in bacteria and yeast, most mRNAs

have very short half-lives, i.e., η ≫ 1 (Table II). For such
unstable gene products, we also derive a simplified
expression of the power spectrum which is given in
Appendix F. In this case, the width of the off-zero peak
is still given byD ¼ 2πf=N, but the height is given by (see
Sec. S2 in the Supplemental Material [66] for the proof)

H ¼ sin2ðwπÞN2

2CðwÞπ2 ; ð17Þ

where CðwÞ ¼ P∞
k¼1 sin

2ðkwπÞ=k2 is a function of w.
We stress that this formula is derived in the limit of
η → ∞. In naturally occurring systems, the value of η for
an unstable gene product in general does not exceed
100 (Table II), and hence, applying this formula may
lead to some errors, especially when κ is very close to 1.
Interestingly, for unstable products, the height of the
off-zero peak depends less on asymmetric division,
gene expression mean, random bursting, and dosage
compensation, whereas from Eq. (15), it is clear that
the opposite is true for stable products. In both stable and
unstable cases, as cell cycle duration variability becomes
smaller (N increases), the off-zero peak becomes narrower
and higher.
According to our simulations in Fig. 2(d), oscillations

are the most regular when w is neither too small nor too
large. For stable gene products with η ≪ 1, it follows
from Eq. (15) that the maximal regularity is obtained
when w ≈ 0.29 for the case of symmetric division, large
gene expression mean, and no dosage compensation
(κ ¼ 2). For unstable gene products with η ≫ 1, it follows
from Eq. (17) that the maximal regularity is obtained
when w ¼ 0.5.
Note that our conclusions about the differences between

the power spectra for (unstable) mRNA and (stable) protein
are also confirmed by numerical simulations of a more
complex model with both mRNA and protein descriptions
(rather than an effective protein description with bursting
dynamics as described in point 1 in Sec. II A.

G. Increasing the asymmetry of cell division
induces a sharp change in the power spectrum

for stable gene products

Our theory further reveals an important difference
between symmetric (p ¼ 0.5) and asymmetric (p < 0.5)
cell division for stable gene products. When the gene
expression mean is large, it follows from Eq. (15) that the
height of the off-zero peak can be simplified as

H ≈
J1N

6π4½2Jðγ þ 2
3NÞ þ C

π2N�
: ð18Þ

For the case of symmetric division, we have γ ¼ 0,
and thus, the height depends on N quadratically as H ≈
J1N2=2π2ð4π2J þ 3CÞ [Fig. S2(a) in the Supplemental
Material [66]]. For the case of asymmetric division,
we have 0< γ ≤ 2, and thus, when cycle duration variability
is very small (N ≫ 1), the height depends on N linearly
as H ≈ J1N=12π4Jγ [Fig. S2(b) in the Supplemental
Material [66]]. As cell division asymmetry becomes
stronger, the height transitions sharply from the N2 law
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to the N law [Fig. S2(c) in the Supplemental Material [66]].
This implies that for a certain cell cycle duration variability
(fixed N), symmetric division leads to a much higher
degree of regularity in oscillations for stable gene products
than asymmetric division. In contrast, we find that for
unstable gene products, there is no analogous transition
because the height of the off-zero peak is always propor-
tional to N2 and is independent of p which controls the
asymmetry of cell division [see Eq. (17)].

H. Single-cell time traces can display higher-order
harmonics of the cell cycle frequency

Interestingly, when cell cycle duration variability is very
small, besides the peak at the cell cycle frequency f, the
power spectrum also has peaks at integer multiples of f [see
Fig. 2(f) and Figs. S2(a) and 2(b) in the Supplemental
Material [66]]. This observation indicates that in addition to
the fundamental period of the mean doubling time
T ¼ 1=f, the system also has the hidden periods of T=2
and even T=3. Note that in Figs. 2(a) and 2(c), higher-order
harmonics are not observed because the variability in the
cell cycle duration is not sufficiently small (N is not
sufficiently large). Similar peaks at higher-order harmonic
frequencies have been previously reported for biochemi-
cal systems with feedback loops due to the combination
of intrinsic noise and nonlinearity in the law of mass
action [70]. In the present model, the propensities of the
reactions are all linear in molecule numbers, and hence,
the hidden periods cannot be attributed to the same
mechanism as in Ref. [70].
These hidden frequencies can be better understood

using our analytical results. Recall that the spectral peak
at f is controlled by the function G1ðξÞ in the second term
of Eq. (13). In fact, the remaining functions GkðξÞ; k ≥ 2
in the second term control the peaks at higher-order
harmonics kf. From Eq. (14), for stable gene products,
the height and width of the spectral peak at the kth
harmonic frequency are given by JkH=J1k4 and k2D,
respectively, where Jk is given in Eq. (16). In particular,
when w is very small or very large, we have Jk ≈ 1 for all
k, and hence, the height of the spectral peak at f is 24 ¼ 16

times greater than that at 2f and 34 ¼ 81 times greater
than that at 3f. Moreover, the width of the spectral
peak at f is 22 ¼ 4 times lesser than that at 2f and
32 ¼ 9 times lesser than that at 3f. This is in full
agreement with our simulation results which show that
the peaks at higher-order harmonic frequencies are
much lower and wider than the peak at the fundamental
frequency [Fig. 2(f)].
For unstable gene products, similar phenomena are

also observed, but the characteristics of higher-order
peaks are slightly different. In fact, the height and width
of the spectral peak at the kth harmonic frequency are given
by sin2ðkwπÞH= sin2ðwπÞk4 and k2D, respectively (see
Appendix F for the proof). When w is very small or very

large, we have sin2ðkwπÞ= sin2ðwπÞ ≈ k2, and hence, the
height of the spectral peak at f is 22 ¼ 4 times greater than
that at 2f and 32 ¼ 9 times greater than that at 3f. Another
interesting prediction is that for midway replication
(w ¼ 0.5), there are no peaks at even harmonics since
the height at 2kf is zero [inset of Fig. 2(f)]. Therefore, we
find that for midway replication, stable gene products yield
higher peaks at higher-order harmonics, while for early or
late replication, unstable gene products yield higher peaks
at higher-order harmonics.

I. Bifurcations between the four types of
power spectra are observed as the gene

product stability is varied

The dependence of oscillations on gene product stability
η is much more complicated. Figures 3(a)–3(c) illustrate the
height of the off-zero peak as a function of η, κ, andN when
the gene expression mean is large. Since type I spectra are
monotonically decreasing, the height of the off-zero peak is
set to be zero for convenience. For stable gene products
with η ≪ 1, it is only possible to observe type I, II, and III
spectra. It can be analytically shown that for the case of
symmetric division, large gene expression mean, midway
replication (w ¼ 0.5), and no dosage compensation
(κ ¼ 2), stable gene products yield type I spectra when
N ≤ 6, type II when 7 ≤ N ≤ 28, and type III whenN ≥ 29
(see Sec. S1 in the Supplemental Material [66] for
the proof).
When N is small and η is not restricted to small

values, all four types of power spectra can be observed;
as η increases, the system undergoes three stochastic
bifurcations from type I to type II, then to type III, and
finally to type IV [Fig. 3(a)]; when N is moderate, type I
spectra cannot occur, and the system undergoes two
stochastic bifurcations from type II to type III, and then
to type IV [Fig. 3(b) and Fig. S1(b) in the Supplemental
Material [66]]; when N is large, both type I and II spectra
fail to be observed, and the system undergoes only one
stochastic bifurcation from type III to type IV [Fig. 3(c)].
These results show that gene expression oscillations tend to
occur when (i) N is small but η is large (unstable gene
products with large cell cycle duration variability) or (ii) N
is moderate or large. In the latter case of moderate or low
cell cycle duration variability, oscillations can be observed
for all values of η and hence are expected for both stable
and unstable gene products.
The reason why unstable gene products yield more

robust sustained oscillations can be understood as follows.
For stable gene products, since active degradation is weak,
the number of molecules increases approximately linearly
with time, and hence, the time traces of gene product
abundances appear like a sawtooth wave [upper panel of
Fig. 3(d)]. Because of cell cycle duration variability and
noise due to partitioning at division, the expression levels at
the end (or beginning) of each generation have large
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fluctuations. Such noise results in the zero peak of the
power spectrum, which explains why for small η, the
spectra are of types I–III. In contrast, for unstable gene
products, since the degradation rate is large, molecule
numbers quickly reach a steady state, and hence, the time
traces of gene product abundances appear like a square
wave [lower panel of Fig. 3(d)]. The two levels of the
square wave correspond to the steady-state levels before
and after replication. Once the expression level deviates
from the steady-state value, the large degradation rate will
help it relax to the steady state rapidly, and hence, the
expression levels at the end (or beginning) of each gen-
eration will have relatively small fluctuations. This explains
why for large η, the spectra are of type IV; i.e., they do not
have a peak at zero frequency, but rather the power is
concentrated in a narrow bandwidth of frequencies close to
the cell cycle frequency.

J. Strong dosage compensation causes resonancelike
behavior at intermediate gene product stability

The pattern of sustained oscillations is also influenced
by dosage compensation. When dosage compensation is

weak (κ is close to 2), the height of the off-zero peak
(relative to the zero peak) is an increasing function of η
[Figs. 3(a)–3(c)]. In this case, the more unstable the gene
products are, the more capable they are of exhibiting
regular gene expression oscillations. However, when
dosage compensation is strong (κ is close to 1) and cell
cycle duration variability is not too large, there is an
optimal η such that the height is maximized [Figs. 3(b)
and 3(c)]; oscillations are the most regular when η is
around 15, which falls within the biological range of a
typical mRNA in bacteria (Table II). The reason for this
phenomenon can be understood as follows. On one hand,
oscillations cannot be very regular for small η due to
noise in cell cycle duration and partitioning at division,
as discussed earlier. On the other hand, for large η,
oscillations also cannot be very regular because when
κ ≈ 1, there is little change in the burst production rate
across the cell cycle, and hence, the steady-state expres-
sion levels before and after replication [shown as the two
levels of the square wave in Fig. 3(d)] will merge into
one. As a result, when dosage compensation is strong,
sustained oscillations are the most regular at an inter-
mediate η value.
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FIG. 3. Further properties of the power spectrum. (a)–(c) Heat maps showing the dependence of the height of the
off-zero peak (relative to the zero peak) on the parameters controlling gene product stability (η) and dosage compensation (κ).
For stable gene products with η ≪ 1, it is only possible to observe type I–III spectra; type IV can be produced by unstable gene
products with η ≫ 1. Strong dosage compensation (κ ¼ 1) in (b),(c) leads to maximal oscillation regularity at an intermediate gene
product stability. (d) Typical trajectories for stable and unstable gene products. With the same gene expression mean,
unstable products lead to more robust sustained oscillations than stable ones. (e) Heat map showing the dependence of the height
of the off-zero peak (relative to the zero peak) on promoter switching rates u and v in the absence of promoter leakage. (f) Same as
(e) but in the presence of promoter leakage. Fast promoter switching, leakage, and active gene-state dominance enhance oscillation
regularity. (g) Height of the off-zero peak (relative to the zero peak) versus the asymmetric allocation probability p for three types of
tracking protocols at cell division: tracking one of the two daughters randomly (blue), tracking the smaller daughter (red), and
tracking the larger daughter (green). (h) Typical trajectories for the three protocols generated using Gillespie’s algorithm. Note that
(a)–(c) and (e)–(g) are obtained from numeric evaluation of Eq. (9). See Sec. S6 in the Supplemental Material [66] for the technical
details of this figure.
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K. Fast promoter switching, leakage, and active
gene-state dominance enhance oscillation regularity

In Appendix A, we consider a more general model with
promoter switching, with which we investigate the effect
of promoter switching on gene expression oscillations.
Figures 3(e) and 3(f) illustrate the height of the off-zero
peak as a function of the promoter switching rates, u and v,
in the absence and presence of promoter leakage, where
promoter leakage means that there is a nonzero burst
production rate when the gene is in the inactive state.
For the case of no leakage, oscillations are manifest when
the gene is mostly active, i.e., u ≫ v, and fail to occur when
the gene is mostly inactive, i.e., u ≪ v, likely due to an
exceptionally small gene expression mean. In the presence
of leakage, however, we observe a strong oscillation when
u ≫ v and a weaker oscillation when u ≪ v. Because of
promoter leakage, even when the gene is mostly inactive,
there is still a smaller but nonvanishing gene expression
mean, which leads to the weaker oscillation observed. In
addition, we find that the height of the off-zero peak is
exceptionally small when promoter switching is very slow
[71], i.e., u, v ≪ 1, regardless of whether there is promoter
leakage or not. We emphasize that while Figs. 3(e) and 3(f)
display the results for the inheritance mechanism (the
daughter copies inherit the gene state of the mother copy
after replication), similar results also hold for the reset
mechanism (the daughter copies are reset to the inactive
state after replication).

L. The power spectrum in asymmetrically
dividing cells is strongly influenced by the

single-cell tracking protocol

In some previous papers [1,72], to track a cell lineage,
one of the two daughters was randomly selected at division
with probability 1=2. However, for asymmetric division, the
two daughters are of different sizes, and another possible
protocol is to track the smaller or larger daughter (such as
the bud or mother cell in budding yeast) at division [3,73].
Assuming well mixing, the probability for a newborn cell
receiving a gene product molecule is equal to the ratio of
the volume of the newborn to the volume of the mother cell,
and hence, on average the smaller daughter receives fewer
gene products than the larger one. We remind the reader
that in our model the probability of a molecule being
allocated to one daughter is p ≤ 1=2, and the probability of
being allocated to the other is q ¼ 1 − p. Hence, it follows
that the daughter with allocation probability p < 1=2 is the
smaller daughter [Fig. 1(b)]. Thus far, we assume that one
of the two daughters is randomly tracked after division.
Now we study two other tracking protocols, namely, where
we always follow the smaller or the larger daughter after
division.
For smaller daughter tracking, the master equation for

the stochastic gene expression dynamics should be modi-
fied as

_p1;n ¼
Xn−1
k¼0

ρμn−kp1;k −
X∞
k¼1

ρμkp1;n

þ ðnþ 1Þdp1;nþ1 − ndp1;n

þ a
X∞
m¼n

Cm;npnqm−npN;m − ap1;n;

_pr;n ¼
Xn−1
k¼0

ρμn−kpr;k −
X∞
k¼1

ρμkpr;n

þ ðnþ 1Þdpr;nþ1 − ndpr;n

þ apr−1;n − apr;n; 2 ≤ r ≤ N0;

_pr;n ¼
Xn−1
k¼0

κρμn−kpr;k −
X∞
k¼1

κρμkpr;n

þ ðnþ 1Þdpr;nþ1 − ndpr;n

þ apr−1;n − apr;n; N0 þ 1 ≤ r ≤ N; ð19Þ

where only the first equation differs from that in Eq. (1) due
to a different tracking strategy. In this case, the autocorre-
lation function RðtÞ also has the same form as in Eq. (5),
where the matricesW00 andW11, as well as the matrixW22

in Eq. (6), should be replaced by

Wkk¼

0
BBBBBB@

−a a

−a a

. .
. . .

.

−a a

pka −a

1
CCCCCCA

−kdI; k¼ 0;1;2:

For larger daughter tracking, we only need to interchange p
and q in the above two equations.
To compare the three types of tracking protocols at cell

division (tracking a random daughter, the smaller daughter,
or the larger daughter), we illustrate the height of the off-
zero peak as a function of p for moderately unstable gene
products with η ¼ 2 [Fig. 3(g)]. Clearly, the three types of
tracking protocols lead to the same oscillatory behavior for
symmetric division. However, for asymmetric division, the
smaller daughter tracking protocol yields a much higher
off-zero peak than the other two protocols, implying the
most regular oscillations. The reason for this observation is
as follows. For unstable gene products, the number of
molecules relaxes to the steady-state value rapidly, and
hence, the expression levels just before division are roughly
the same for the three protocols. However, just after
division, the smaller daughter receives fewer molecules
than the larger one. Hence, it follows that smaller daughter
tracking yields larger amplitudes of oscillations in the time
traces than larger daughter tracking [Fig. 3(h)]. Compared
to random tracking, smaller or larger daughter tracking
leads to less noisy oscillations, presumably since the
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latter protocol introduces a deterministic element in the
tracking process. This explains why random tracking leads
generally to less robust oscillations than the other two
tracking protocols [Fig. 3(g)]. Note that while increasing
cell division asymmetry (decreasing p) reduces the robust-
ness of oscillations for random and larger daughter
tracking, it leads to the opposite effect for small daughter
tracking.
In Fig. S3 in the Supplemental Material [66], we also

investigate the differences between the power spectra
obtained from the three tracking protocols as functions
of η which is a measure of gene product stability. We find
that the differences increase with gene product stability.
This can be explained as follows. The abrupt change in the
number of molecules at division as we switch from a
mother cell to a daughter cell is sensitive to the choice of
protocol; these low-frequency fluctuations contribute
to the height of the zero peak which is sizeable for very
stable products and fairly small for very unstable products
[Figs. 3(a)–3(c)]. Hence, the choice of protocol has the
most effect on the spectra of stable gene products.

M. Experimental validation of the theory and its
application to parameter inference

To test our theory, we apply it to study oscillations in
single-cell gene expression data collected for E. coli in
Ref. [2]. In this dataset, the time course data of fluorescence
intensities of a yellow fluorescent protein is recorded every
minute for 279 cell lineages over 70 generations using a
mother machine under three different growth conditions
(25 °C, 27 °C, and 37 °C). At the three temperatures, there is
a total of 65, 54, and 160 cell lineages measured, respec-
tively. Based on such data, it is possible to estimate all the
parameters involved in our model for each cell lineage.
The medians of the estimated parameters for all cell
lineage are listed in Table III, and the distributions of

the estimated parameters are given in Figs. S4 and S5 in the
Supplemental Material [66]. In the following, we briefly
describe the estimation procedures.
Since the protein used in the experiment is very stable, it

is reasonable to assume that it has negligible degradation,
i.e., d ¼ η ¼ 0 [2,72]. Based on the time course data, we
estimate the average power spectrum over all cell lineages
at each temperature by means of the Wiener-Khinchin
theorem [Fig. 4(a)], where we normalize the spectrum such
that Gð0Þ ¼ 1. Clearly, the average power spectra are of
type II for all the three growth conditions. As the temper-
ature increases, the position and height of the off-zero peak
both increase, implying more robust sustained oscillations.
The position of the off-zero peak is very close to the cell

TABLE III. The medians of the estimated parameters for all cell
lineages at three different temperatures. The distributions of the
estimated parameters can be found in Figs. S4 and S5 in the
Supplemental Material [66]. The medians rather than the means
are reported here since the estimation of the former is more robust
than that of the latter, with respect to outliers.

25 °C 27 °C 37 °C

f (min−1) 0.0148 0.0187 0.0307
T ¼ 1=f (min) 67.5676 53.4759 32.5733
N 14 31 31
w 0.2000 0.1450 0.1224
κ 2.0621 2.0000 2.9412
β 42.0719 15.4767 13.0344
hni 99.2042 199.5930 287.8168
ρ (min−1) 0.1299 0.2303 0.6259
κρ (min−1) 0.2232 0.5319 1.3809
B 4.7718 5.2099 4.8606
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FIG. 4. Analysis of single-cell time course data of fluorescence
intensities in E. coli published in Ref. [2]. (a) Average power
spectra over all cell lineages at three different temperatures (blue
curves) and their smoothed approximations (red curves) using the
Gaussian filter. The average spectra are estimated by means of the
Wiener-Khinchin theorem, where 65, 54, and 160 cell lineages
are averaged over, respectively, for the three growth conditions.
The power spectrum for each cell lineage is also estimated by
fitting the time course data to an AR model. The pie charts
display the percentages of various types of power spectra for all
cell lineages. (b) Comparison between the Fano factor γb of the
fluorescence intensities just before division and the Fano factor γa
of those just after division for all lineages at 37 °C. (c) Comparison
between the widths of the experimental power spectra obtained
using the AR model technique and the theoretical power spectra
determined using the estimated parameters for all lineages at
37 °C. (d),(e) Comparison between the experimental (blue curve)
and theoretical (red circles) power spectra for two typical lineages
at 37 °C.
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cycle frequency f, which can be easily estimated from the
data of doubling times (Table III).
We find that the doubling time data for all cell lineages

are well fitted by an Erlang distribution; the parameter N
can then be estimated as the inverse of the coefficient of the
variation squared of this distribution. The medians of the
estimated N for the three growth conditions are 14, 31, and
31, respectively. It can be seen that cells cultured at 27 °C
and 37 °C have much smaller cell cycle duration variability
than those cultured at 25 °C. Recent studies have suggested
the accumulation of certain proteins up to a critical
threshold as a putative mechanism in bacterial and yeast
cell division [74–77]. Under this mechanism, the multiple
cell cycle stages can be interpreted as different levels of the
“division protein,” and thus, the number of stages N can be
interpreted as the critical threshold of the protein. The
phenomenon that 27 °C and 37 °C correspond to a larger N
is probably because at higher temperatures, a higher level
of the division protein is needed for cell division to occur.
Our theory shows that smaller cell cycle duration

variability gives rise to a higher off-zero spectral peak
[Fig. 2(c)]. This explains why the off-zero peak is signifi-
cantly higher at higher temperatures [Fig. 4(a)]. Our
theoretical result also predicts that when N is large, the
power spectrum has peaks at higher-order harmonics of the
cell cycle frequency [Fig. 2(f)]. This is in excellent agree-
ment with our data analysis, which shows that the average
power spectra at 27 °C and 37 °C have an apparent peak at
the second harmonic frequency. Interestingly, the ratio of
the heights of the spectral peaks at f and 2f is estimated to
be 17.8 and 15.0 for the two temperatures, both of which
are very close to the theoretical value of 24 ¼ 16 predicted
by our theory for stable gene products when w is small.
To perform a more detailed analysis, we also estimate the

power spectrum for each cell lineage by fitting the time
course data to an autoregressive (AR) model, which is a
standard model in time series analysis [78], with the order
of the AR model being determined by minimizing the
Akaike information criterion. Our theory predicts that for
stable gene products, only type I–III spectra can be
observed [Figs. 3(a)–3(c)]. This is in full agreement with
our data analysis with the percentages of the three types of
spectra being illustrated by the pie charts in Fig. 4(a).
Clearly, type II spectra are dominant for all the three
temperatures. For cells at 25 °C, only types I and II are
observed; for cells at higher temperatures, only types II
and III are observed. The percentage of type III spectra is
significantly higher for cells at 37 °C than cells at 27 °C.
Since the burst production rate increases from ρ to κρ

upon replication, we can fit the data (recorded per minute)
between two cell division times by the following mean-
field approximation:

n̂ðtþ1Þ− n̂ðtÞ¼
�
ρB; if t−Tk ≤wðTkþ1−TkÞ;
κρB; if t−Tk >wðTkþ1−TkÞ;

ð20Þ

where Tk is the kth cell division time, and t is an arbitrary
time point (in minutes) between two consecutive cell
division times Tk and Tkþ1. Here we use a piecewise
linear function to approximate the time series of protein
levels between two division events. The first (second) part
of the piecewise linear function approximates the time
series before (after) replication and hence should have an
average slope of ρB (κρB). By fitting the time course data
nðtÞ to the approximation n̂ðtÞ, we obtain the least-squares
estimates of w and κ for each cell lineage by minimizing the
(squared) distance

P
M−1
t¼0 ½nðtÞ − n̂ðtÞ�2 between the two,

where M is the number of time points measured (see
Appendix G for details). The medians of the estimated w
for the three growth conditions are 0.20, 0.15, and 0.12,
respectively, which decrease with the temperature. This is
possibly because at higher temperatures, the growth rate of
E. coli cells is faster, and thus, gene replication would occur
more continuously, giving rise to a shift in w toward zero
[79]. In addition, the medians of the estimated κ are close to
2 for all three temperatures (Table III), implying weak
dosage compensation.
The remaining parameters to be estimated are ρ and B,

where B is the mean translational burst size, i.e., the
average number of protein molecules produced per
mRNA lifetime. To estimate them, recall that ρB represents
the mean number of protein molecules produced per unit
time. However, what is measured in the dataset is the
fluorescence intensity of protein molecules instead of the
real copy number. Hence, it is crucial to determine
the proportionality constant between fluorescence inten-
sities and copy numbers. To do this, we note that under the
assumption of symmetric binomial partitioning at division,
the expression levels just before and just after a particular
cell division time are coupled by (see Appendix H for the
proof)

γa ¼
γb
2
þ β

2
; ð21Þ

where γb (γa) is the Fano factor (the variance divided by the
mean) of the fluorescence intensities just before (after)
division, and β is the fluorescence intensity per protein
copy. Both γa and γb can be easily estimated for each cell
lineage by using the data at birth and division times. To test
this relationship, we show γa as a function of γb for all cell
lineages at the three temperatures [see Fig. 4(b) for cells at
37 °C and Fig. S6(a) in the Supplemental Material [66] for
cells at lower temperatures], from which we observe a
strong linear relationship with a highR2 and a slope close to
0.5. Then the proportionality constant β for a given
temperature can be estimated as β ¼ 2hγai − hγbi, where
the angled brackets denote the sample means over all cell
lineages at that temperature. The estimated β for the three
growth conditions are 42.1, 15.5, and 13.0, respectively.
In particular, our analysis shows that the fluorescence

CHEN JIA and RAMON GRIMA PHYS. REV. X 11, 021032 (2021)

021032-14



intensity per protein molecule decreases with the
temperature, which is likely because lower temperatures
are more conducive to the correct folding of the fluorescent
protein [80].
From the fluorescence intensity data and the inferred β, it

is easy to estimate the gene expression mean hni for each
cell lineage (Table III). Note that cells at 27 °C and 37 °C
have similar cell cycle duration variability withN ¼ 31, but
the latter temperature yields a higher off-zero spectral peak.
This is because cells at 37 °C have a larger gene expression
mean, which augments the height of the off-zero peak.
Moreover, since ρ, B, w, κ, and hni are related by Eq. (10)
and we have estimated w and κ, we can obtain the estimate
of ρB. Finally, we estimate ρ and B separately by equating
the heights of the off-zero peaks of the experimental power
spectrum obtained using the AR model technique and the
theoretical power spectrum determined by Eq. (9) using all
estimated parameters. From Table III, we can see that the
mean burst frequency (average number of bursts produced
per unit time) ρ increases with temperature approximately
linearly, but the mean burst size B is not temperature
dependent.
Thus far, we have shown how, bymeans of the theoretical

expressions of the power spectrum and the gene expression
mean, we can estimate all the model parameters for each cell
lineage from the time course data (except that the degrada-
tion rate d is assumed to be zero, following Ref. [72]). The
accuracy of these estimates is verified in two different ways.
First, in Figs. 4(d) and 4(e), we show a good agreement
between the experimental and theoretical power spectra for
two typical cell lineages. As a second test of the accuracy of
parameter inference, we compare the widths of the exper-
imental and theoretical power spectra for all cell lineages
[see Fig. 4(c) for cells at 37 °C and Fig. S6(b) in the
Supplemental Material [66] for cells at lower temperatures].
It can be seen from Fig. 4(c) that the widths for the two
spectra show a strong linear relationshipwith a slope close to
1, a negligible intercept, and an R2 of 0.75. We emphasize
that while the model parameters are not estimated from the
full spectrum curve but only from the height of the off-zero
peak, the full theoretical spectrummatches the experimental
one reasonably well.

N. Generalization of the model to
include cell-size dynamics

Thus far, we have incorporated various cell cycle
features, including cell cycle duration variability, gene
replication, dosage compensation, and cell division, into
the classical stochastic gene expression model for non-
growing cells [14] and carried out a frequency domain
analysis of lineage measurements. While the model cap-
tures a large variety of biological processes, it still does not
include the important variable of cell size. Recently, there
has been ample evidence [72,81,82] that the amount of
growth produced during the cell cycle must be controlled

such that, on average, large cells at birth have shorter cell
cycle durations than small ones. This mechanism maintains
size homeostasis. Many mathematical models have also
been proposed to describe cell-size dynamics and control
across the cell cycle [83–91].
Next we discuss how to incorporate the important factor

of cell size into our model. To this end, we consider a new
model which combines the gene expression model illus-
trated in Fig. 1(a) and the cell-size model investigated in
Refs. [88,91] (see Fig. 5 for an illustration). This newmodel
is based on some more assumptions which are listed as
follows:

(i) The size of each cell undergoes deterministic ex-
ponential growth in each generation with constant
growth rate g.
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FIG. 5. The model including a cell-size description. (a) Sche-
matic illustrating a detailed model of both gene expression and
cell-size dynamics. Each cell can exist in N0 effective cell cycle
stages. The transition rate from one stage to the next at a
particular time t is proportional to the αth power of the cell size
VðtÞ with α > 0 being the strength of cell-size control and a0 > 0
being the proportionality constant. This guarantees that larger cells
at birth divide faster than smaller ones to achieve size homeostasis.
At stage N0, a mother cell divides into two daughters that are
typically different in size via asymmetric cell division. (b) The cell
grows exponentially between birth and division events with the
growth rate being a generation-independent constant.
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(ii) Each cell can exist in N0 effective cell cycle stages
denoted by 1; 2;…; N0. The transition rate from one
stage to the next at a particular time is proportional
to the αth power of the cell size at that time, with a0
being the proportionality constant [88]. In other
words, the transition rate between stages at time t is
equal to a0VðtÞα, where α > 0 is the strength of cell-
size control and VðtÞ is the cell size at that time.
Under this assumption, larger cells at birth have
larger transition rates between stages and thus, on
average, have shorter cell cycle durations and lesser
volume changes than smaller ones; in this way, size
homeostasis is achieved.
The major difference between our previous model

illustrated in Fig. 1(a) (model I) and the current
model (model II) is the transition rule between
stages. The transition rate is assumed to be a
constant for the former model, while it is a power
law of cell size for the latter model. We stress that
while this power law is compatible with a biophysi-
cal mechanism where division occurs when a certain
type of protein accumulates up to a critical threshold
(in this case, the multiple cell cycle stages could be
interpreted as different levels of the “division pro-
tein”) [88,91], it could also simply be understood as
a phenomenological means to model size homeo-
stasis. Note that the parameters N, N0, and a in
model I are different from the parameters N0, N0

0,
and a0 in model II.
Let Vb and Vd denote the cell sizes at birth and at

division in a generation, respectively. Under the
assumption of power-law form of the transition rate,
the increment in the αth power of the cell size across
the cell cycle, Vα

d − Vα
b, has an Erlang distribution

with shape parameter N0 and mean N0αg=a0 [88].
Interestingly, the model considered here unifies
three popular strategies of cell-size control leading
to size homeostasis: α ¼ 1 corresponds to the
adder (since the added size Vd − Vb has an Erlang
distribution that is independent of the birth size),
α → 0 corresponds to the timer (since the doubling
time T has an Erlang distribution that is independent
of the birth size), and α → ∞ corresponds to the
sizer (since the αth power of the division size Vα

d has
an Erlang distribution that is independent of the birth
size). Intermediate strategies are naturally obtained
for intermediate values of α; timerlike control is
obtained when 0 < α < 1 and sizerlike control is
obtained when 1 < α < ∞.

(iii) The burst production rate ρ of the gene product is
assumed to be independent of cell size. This
assumption is supported by experiments in bacteria
[92]. In fission yeast and mammalian cells,
however, there has been some evidence [9,93]
showing that the transcription rate for many genes

may be proportional to cell size; this effect is not
considered here.

(iv) Cell division occurs when the cell transitions from
effective stage N0 to the next stage 1. In naturally
occurring systems, the partitioning of cell size at
division is often asymmetric and stochastic [72]. Let
Vd and V0

b denote the cell sizes at division and just
after division, respectively. At cell division, we
assume that the partition ratio z ¼ V 0

b=Vd has a
beta distribution with mean p, whose probability
density function is given by

fðzÞ¼ 1

Bðpν;qνÞz
pν−1ð1− zÞqν−1; 0<z< 1;

ð22Þ

where B is the beta function, q ¼ 1 − p, and ν > 0 is
referred to as the sample size parameter. The reason
behind this assumption is that the partition ratio
V 0
b=Vd should be a random number between 0 and 1,

which is an important property of the beta distribu-
tion [94]. For simplicity, we assume that the mean
partition ratio for the cell size is the same as the
mean partition ratio for the gene product number.

Based on the four assumptions of model II and the six
assumptions of model I (except the third one, which
assumes constant transition rates between stages), we are
able to simulate both the gene expression and cell-size
dynamics in a unified model. In our recent work [91], we
have computed the exact distribution of the cell cycle
duration for model II and found that it can always be well
approximated by an Erlang or gamma distribution (see
Fig. 4 in Ref. [91]). This implies that model II can be
approximated by model I (since model I has an Erlang-
distributed cell cycle duration) with the parameters N and a
for the approximate model being chosen so that the first and
second moments of the cell cycle durations for the two
models are matching. Moreover, the parameter N0 for the
approximate model can be determined so that the mean
replication times for the two models are matching.
To test the accuracy of this approximation, we illustrate

the power spectra for model II and its approximation using
model I as α and η vary (Fig. 6). Clearly, when α is small
(timerlike control), the power spectra of both models are in
good agreement with each other [Fig. 6(a)]. This is because
a small α leads to an approximately constant transition rate
between stages. When α is moderate or large (adder or
sizerlike control), there are some differences between them
for small η [Figs. 6(b) and 6(c)]; compared with model I,
model II has a power spectrum with a higher off-zero peak,
possibly due to strong cell-size control, which is equivalent
to a negative feedback loop [72], enhancing the regularity
of oscillations. However, when η is large, they are very
close to each other, implying that both models lead to
similar oscillatory behavior for unstable gene products.
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In all cases, we can see that the model without cell-size
dynamics investigated earlier can indeed capture (with
acceptable errors) the oscillatory behavior of the model
with cell-size dynamics.

III. DISCUSSION

In this work, we investigate the frequency decomposition
of the copy number fluctuations of a gene product (mRNA
or protein) within a cell lineage by deriving expressions for
the power spectrum of fluctuations in a detailed stochastic
model of gene expression. This model takes into account
the salient experimental observations of intracellular
dynamics including promoter switching, transcriptional
and translational bursting, variability in the duration of
the cell cycle, variability in the gene copy number due to
replication, the copying or resetting of the gene state during
replication, gene dosage compensation, and partitioning of
molecules due to symmetric or asymmetric cell division.
Our investigation differs from previous studies in four

main respects: (i) Our model is more grounded in biological
reality than other models in the literature due to the large
number of subcellular and cellular processes that it
accounts for, as we mention above. (ii) A number of

studies have derived the distribution of molecule numbers
or more commonly the moments for models that have some
similarity to ours [15–20]; however, in contrast, here we
derive expressions for the power spectrum which provide
information about the frequency content of lineage data.
This type of analysis has previously been reported only
for models of nongrowing cells [21,95,96]. (iii) Rather than
a parameter inference based on the matching of the
moments or the distribution of molecule numbers calcu-
lated from the data to those of a stochastic model [97], we
showcase a power-spectrum-based parameter inference
method. (iv) Our model takes into account the details of
the experimental protocol used for tracking cells across a
lineage.
Our novel theory provides expressions for the height and

width of the off-zero spectral peak (with its position close
to the cell cycle frequency) as a function of all rate
parameters in the model. The ratio of the height of this
peak to the power at zero frequency provides a means to
classify the power spectra into two main types: (i) the
spectra with the ratio less than 1 (types I and II), and (ii) the
spectra with the ratio greater than 1 (types III and IV). The
periodicity in molecule number variation induced by cell
division dominates over subcellular noise for (ii) while the
reverse is the case for (i). Type I is further differentiated
from type II by specifying that in the former type, there is
only one peak at zero frequency, whereas in the latter type,
there is a dominant peak at zero frequency and a lesser
one at approximately the cell cycle frequency. Similarly,
type III is further differentiated from type IV by specifying
that in the former type, there is a dominant peak at
approximately the cell cycle frequency and a lesser one
at zero frequency, while in the latter type, there is only one
peak at approximately the cell cycle frequency. The theory
also predicts that while the spectra for fast decaying
(unstable) gene products can be of all four types, the
spectra for slowly decaying (stable) gene products can be
only of types I–III.
Our analysis of experimental data for E. coli shows that

the type of spectra of single-cell trajectories depends on the
temperature: Lower temperatures favor type I and II
spectra, while higher temperatures favor type II and III
spectra. Overall, the most common spectrum is type II,
implying that for many cells, the “forces” inducing perio-
dicity of molecule numbers are typically slightly less strong
than the forces inducing subcellular noise; the strength of
the latter increases with decreasing temperature. None of
the 279 cell lineages have a type IV spectrum for protein
fluctuations, in accordance with the theoretical result that
stable gene products cannot display such a spectrum.
Our theory makes a number of other testable predictions:

(i) The height of the off-zero spectral peak (relative to the
zero peak) increases with decreasing cell cycle duration
variability and increasing mean expression levels, while the
width of the off-zero peak is proportional to the cell cycle
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and its approximation by the model without a cell-size descrip-
tion under different size homeostasis strategies. (a) Timerlike
control for stable (left panel) and unstable (right panel) gene
products. (b) Adder control. (c) Sizer-like control. In (a)–(c), the
gray region represents the simulated spectrum for the model with
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Sec. S7 in the Supplemental Material [66] for the technical details
of this figure.
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frequency and to the cell cycle duration variability. (ii) If the
cell cycle duration variability is small enough, then the
spectra display peaks at higher-order harmonics of the cell
cycle frequency. For stable proteins, the height of the spectral
peak at the second harmonic (twice the cell cycle frequency)
is 16 times larger than that at the cell cycle frequency for
early or late replication. Both predictions are confirmed by
analysis of lineage data for E. coli.
Furthermore, our theory makes numerous other predic-

tions which require the design of new experiments and
which cannot be tested using current data. A brief summary
of these predictions is as follows: (i) The dependence of the
height of the off-zero spectral peak on parameters is very
different for gene products that are stable, e.g., most proteins,
compared to gene products that are unstable, e.g., most
mRNAs. For stable gene products, the height of the off-zero
peak decreases with increasing mean burst size, decreasing
mean molecule number, and increasing asymmetry of cell
division. Furthermore, the height is maximal for replication
occurring (almost) a third of the way through the cycle. In
contrast, for unstable gene products, the height of the off-
zero peak is maximal for replication occurring midway
through the cycle but is (almost) independent of asymmetric
division, gene expression mean, random bursting, and
dosage compensation. Independent of stability, fast promoter
switching enhances the height of the off-zero peak (relative
to the zero peak), whereas slow switching has the opposite
effect; (ii) the strength of gene dosage compensation is
reflected in how the spectrum varies with gene product
stability. For weak dosage compensation, molecules which
have a larger decay rate also exhibit a spectrum with a higher
off-zero peak. For strong dosage compensation, molecules
which have a decay rate that is neither too large nor too small
are the ones which exhibit the most pronounced off-zero
peaks. (iii) The power spectrum in asymmetrically dividing
cells is strongly influenced by the choice of single-cell
tracking protocol. In particular, the spectra obtained from
following the smaller daughter after division have a signifi-
cantly higher off-zero peak than those obtained from follow-
ing the larger daughter or from random tracking. This last
prediction is likely the easiest of the three to check by redoing
the cell tracking analysis in budding yeast which displays
asymmetric cell division. Predictions (i) and (ii) ideally
require the ability to obtain live-cell fluorescence data for
mRNA over tens of generations and for different types of
mRNAswithwidely varying decay rates, which are presently
not easy to obtain. The development of such methods,
particularly those with minimal perturbation of transcription
and translation, is still in an active area of research [4].
To make our model closer to biological reality, we

also incorporate cell-size dynamics into our gene expres-
sion model by assuming that (i) the cell grows exponen-
tially between birth and division events with the growth rate
being a generation-independent constant, (ii) stochastic
partitioning of cell size at division, (iii) the rate of moving

from one cell cycle stage to the next is a power law of cell
size, and (iv) the burst production rate of the gene product is
independent of cell size. By matching the moments of the
doubling time and replication time, we approximate the
complex model by a model without a cell-size description.
We find that both models display similar oscillatory
behavior for unstable products. For stable products, explicit
modeling of size homeostasis results in a slightly higher
regularity of oscillations for adder and sizerlike strategies.
We also showcase the use of the power spectrum to

determine the values of all the rate parameters in our model
from cell lineage data. The two strengths of our inference
procedure are (i) we do not need an experimental deter-
mination of the relationship between total fluorescence
intensity and molecule number; this is determined auto-
matically from the relationship between fluctuations in the
fluorescence intensity just before and just after division;
(ii) Our analysis takes into account noise due to partitioning
and variability in the cell cycle duration, which has recently
been shown to be crucial to obtain an accurate estimation of
the burst frequency and the burst size [20]. Our analysis
confirms that there is no or very weak dosage compensation
in E. coli, in agreement with previous studies [79]; i.e., at
replication, the expression increases roughly twofold, in
agreement with an expected doubling of the number of gene
copies. Furthermore, we find that for constitutive expression,
while the translational burst frequency increases approxi-
mately linearly with the temperature, the translational burst
size is temperature invariant. Previous studies were con-
ducted at one temperature [5] and hence could not quantify
the thermal dependence of gene expression parameters.
Concluding, we perform an exact frequency analysis of

mRNA and protein fluctuations in a detailed model of gene
circuit elements central to gene expression control. As we
show, there is a wealth of information about subcellular
processes hidden in the frequency content of mRNA and
protein fluctuations within a cell lineage, and we hope our
results will further stimulate work in this area.
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APPENDIX A: MODEL WITH
PROMOTER SWITCHING

Here we consider a more detailed model of stochastic
gene expression dynamics across the cell cycle that
includes promoter switching [see Fig. 7(a) for an illus-
tration)]. When promoter switching is taken into account,
we need some more assumptions which are as follows.
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The specific meaning of the new parameters involved is
listed in Table IV.

(i) The promoter of the gene of interest can switch
between an inactive state G0 and an active state G1

with switching rates u and v before replication [14].
Dosage compensation is modeled as a change in the
switching rate of the promoter from the inactive to
the active state upon replication with its value being

u before replication and gu after replication. This
assumption is supported by experiments [8].

(ii) In each gene state Gi (i ¼ 0, 1), the synthesis of the
gene product, mRNA or protein, occurs at a rate ρi in
bursts of a random size sampled from an arbitrary
distribution μ ¼ ðμnÞ. In previous papers [22], the
synthesis of mRNA in each gene state is assumed to
be nonbursty with μn ¼ δ1;n. On the other hand, in
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FIG. 7. The model with promoter switching. (a) Schematic illustrating the model describing N effective cell cycle stages, gene
replication at stage N0, promoter switching between active (red) and inactive (green) states, bursty production of the gene product in the
two gene states, degradation, and gene dosage compensation induced by a decrease in the activation rate of the gene after replication (see
inset graph). (b) At replication, the gene states of the two daughter copies can be the same as that of the mother copy (inheritance
mechanism) or else they are both reset to the inactive state (reset mechanism). (c),(d) Transition diagram of cellular states under the two
mechanisms. Before replication, a cellular state can be represented by an ordered pair ðr; iÞ, where r is the cell cycle stage, and i is the
gene state of the mother copy; after replication, a cellular state can be represented by an ordered triple ðr; i; jÞ, where i and j are the gene
states of the two daughter copies. See the main text for explanation of the colored arrows. The difference between (c) and (d) is that the
cellular state transitions from ðN0; 1Þ to ðN0 þ 1; 1; 1Þ in (c), while it transitions from ðN0; 1Þ to ðN0 þ 1; 0; 0Þ in (d) [see the arrows in
(c) and (d) that are shown in bold].
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models where mRNA is not explicitly described, the
effective synthesis of protein is usually assumed to
be bursty with the burst size sampled from a geo-
metric distribution μn ¼ pn

Bð1 − pBÞ; this is due to
rapid synthesis of protein molecules from a single
short-lived mRNA molecule [25,26]. Therefore, the
arbitrariness of the burst size distribution allows us
to analyze the dynamics of both mRNA and protein
in a unified model.

(iii) After replication, the two daughter copies can either
inherit the gene state from the mother copy or both
be reset to the inactive state [19]. To distinguish
between them, we refer to the former as the
inheritance mechanism and the latter as the reset
mechanism [Fig. 7(b)]. The consideration behind the
former mechanism is the copying of the landscape of
histone modifications (implicated in gene activation)
during DNA replication [98]. One plausible explan-
ation for the latter mechanism is that to avoid the
potential risk of conflict between replication and
transcription [99], it is likely that in the region where
replication is ongoing or just completed, there is no
transcription, indicating an inactive state.

We next describe our stochastic model for haploid cells.
The results for diploid cells can be easily deduced from the
haploid case using allelic expression independence (see
Appendix B for details). Based on the stage of the cell cycle
and the states of the gene copies, there are many possible
cellular states. Before replication, the cell can exist in 2N0

cellular states that can be represented by an ordered pair
α ¼ ðr; iÞ, where r ∈ ½1; N0� is the cell cycle stage and
i ¼ 0, 1 is the gene state of the mother copy; after
replication, the cell can exist in 4ðN − N0Þ cellular states
that can be represented by an ordered triple α ¼ ðr; i; jÞ,
where r ∈ ½N0 þ 1; N� is the cell cycle stage and i, j ¼ 0, 1
are the gene states of the two daughter copies. In sum, there
is a total of K ¼ 4N − 2N0 possible cellular states.
The transitions among the K cellular states can be

described by a Markovian model whose transition diagram
is illustrated in Fig. 7(c) for the inheritance mechanism and
Fig. 7(d) for the reset mechanism. The purple arrows show
that upon replication, the cellular state will transition from
ðN0; iÞ to ðN0 þ 1; i; iÞ for the inheritance mechanism and
from ðN0; iÞ to ðN0 þ 1; 0; 0Þ for the reset mechanism.
After division, we randomly track one of the two daughters,

and thus, the cell will transition from ðN; i; jÞ to ð1; iÞ or
ð1; jÞ. The orange arrows illustrate those transitions from
ðN; i; iÞ to ð1; iÞ with rate a, the red arrows illustrate those
from ðN; i; jÞ; i ≠ j to ð1; iÞ with rate a=2, and the green
arrows illustrate those from ðN; i; jÞ; i ≠ j to ð1; jÞ with
rate a=2.
The microstate of the gene of interest can be represented

by an ordered pair ðα; nÞ, where α is the cellular state and n
is the copy number of the gene product. The evolution of
the complete stochastic gene expression dynamics is
governed by a master equation which is given in Sec. S3
in the Supplemental Material [66]. The analytical solutions
of the autocorrelation function and power spectrum for the
current model can be found in Appendix D.
A special case occurs when promoter switching is

much faster than cell cycle progression and gene product
degradation, i.e., f; d ≪ u, v [37]. In this case, gene
switching dynamics will reach rapid equilibrium. As a
result, the effective burst production rate is given by ρeff ¼
ðρ1uþ ρ0vÞ=ðuþ vÞ before replication and it is given by
κρeff ¼ 2ðρ1guþ ρ0vÞ=ðguþ vÞ after replication, where
κ ≥ 1 is a factor characterizing the change in the burst
production rate due to gene replication and dosage com-
pensation. In the absence of dosage compensation, we have
gu ¼ u, and thus, κ ¼ 2. In the fast switching regime, the
two gene states can be combined into a single one, and
hence, the model with promoter switching considered here
reduces to our previous model without promoter switching.
In this case, we do not need to distinguish between the
inheritance and reset mechanisms because they lead to the
same oscillatory behavior.

APPENDIX B: OSCILLATIONS FOR
DIPLOID CELLS

Suppose that we have computed the analytical solutions
of the autocorrelation function RðtÞ and the power spec-
trum GðξÞ for haploid cells. For diploid cells, we assume
that the two alleles act independently of each other.
Under the assumption of allelic expression independence,
let nðtÞ and n0ðtÞ denote the expression levels of the two
alleles at time t, which are independent and identically
distributed. Then for diploid cells, the autocorrelation
function is given by

RdipoidðtÞ ¼ CovSS½nð0Þ þ n0ð0Þ; nðtÞ þ n0ðtÞ�
¼ 2CovSS½nð0Þ; nðtÞ� ¼ 2RðtÞ;

and thus, the power spectrum is given by

GdipoidðξÞ ¼ 2GðξÞ:

Since the two functions differ only by a constant for haploid
and diploid cells, they lead to the same oscillatory behavior.
Thus,we need to focus only on haploid cells inwhat follows.

TABLE IV. Model parameters that are not included in Table I
and their meaning.

Meaning of model parameters

u Gene switching rate from OFF to ON before replication
gu Gene switching rate from OFF to ON after replication
v Gene switching rate from ON to OFF
ρ0 Burst production rate when the gene is OFF
ρ1 Burst production rate when the gene is ON

CHEN JIA and RAMON GRIMA PHYS. REV. X 11, 021032 (2021)

021032-20



APPENDIX C: DERIVATION OF THE GENE
EXPRESSION MEAN, AUTOCORRELATION

FUNCTION, AND POWER SPECTRUM
FOR THE MODEL WITHOUT
PROMOTER SWITCHING

Let rðtÞ denote the cell cycle stage and let nðtÞ denote the
copy number of the gene product in an individual cell at
time t, respectively. To proceed, let

m0rðtÞ ¼
X∞
n¼0

pr;n ¼ P(rðtÞ ¼ r);

m1rðtÞ ¼
X∞
n¼0

npr;n ¼ EnðtÞIfrðtÞ¼rg;

m2rðtÞ ¼
X∞
n¼0

nðn − 1Þpr;n ¼ EnðtÞ(nðtÞ − 1)IfrðtÞ¼rg

be the zeroth, first, and second factorial moments of the gene
product number in cell cycle stage r, where IA denotes the
indicator function of the set A. Let mk ¼ ðmkαÞ denote the
row vector whose components are the kth factorial moments
in all cell cycle stages. It then follows from Eq. (3) that m0,
m1, and m2 satisfy the following differential equations:

_m0ðtÞ ¼ m0ðtÞW00;

_m1ðtÞ ¼ m1ðtÞW11 þm0ðtÞW01;

_m2ðtÞ ¼ m2ðtÞW22 þm1ðtÞW12 þm0ðtÞW02: ðC1Þ

Moreover, it is easy to check that

W01 ¼ BS; W12 ¼ 2BS; W02 ¼ H00ð1ÞS;

where B ¼ P∞
n¼1 nμn is the mean burst size of the gene

product, and S ¼ diagðρ;…; ρ; κρ;…; κρÞ is the diagonal
matrix whose diagonal entries are the burst production rates
in all cell cycle stages. FromEq. (C1), at the steady state, the
zeroth, first, and second factorial moments are given by

m0 ¼ ð1=N;…; 1=NÞ;
m1 ¼ −Bm0SW−1

11 ;

m2 ¼ −½2Bm1 þH00ð1Þm0�SW−1
22 : ðC2Þ

In the nonbursty case, it is easy to check thatH00ð1Þ ¼ 0; in
the bursty case, it is easy to check that H00ð1Þ ¼ 2B2.
Therefore, the steady-state gene expression mean is
given by

hni ¼ m11 ¼ −Bm0SW−1
11 1:

Since we know the expressions of m0, S, and W11,
straightforward calculations show that

hni ¼ ρB
ηf

�
wþ κð1 − wÞ þ ðκ − 1Þawη;N þ 1 − κaη;N

ηð2aη;N − 1Þ
�
:

This gives the analytical expression of the gene expres-
sion mean.
Since Eq. (C1) is a set of linear differential equations, its

time-dependent solution is given by

m1ðtÞ ¼ m1ð0ÞeW11t þ B
Z

t

0

m0ð0ÞeW00sSeW11ðt−sÞds:

From now on, we assume that the system has reached the
steady state. Given the initial cell cycle stage rð0Þ ¼ r and
initial copy number nð0Þ ¼ n of the gene product, it
follows that

EnðtÞ ¼ m1ðtÞ1

¼ nereW11t1þ B
Z

t

0

ereW00sSeW11ðt−sÞ1ds;

where 1 denotes the column vector whose components are
all 1, and er denotes the row vector whose rth component is
1 and all other components are all 0. This clearly shows that

E½nðtÞjrð0Þ; nð0Þ�

¼ nð0Þerð0ÞeW11t1þ B
Z

t

0

erð0ÞeW00sSeW11ðt−sÞ1ds:

Therefore, at the steady state, we have

Enð0ÞnðtÞ¼
X
r

Enð0ÞIfrð0Þ¼rgE½nðtÞjαð0Þ;nð0Þ�

¼
X
r

Enð0ÞIfrð0Þ¼rg½nð0Þerð0ÞeW11t1

þB
Z

t

0

erð0ÞeW00sSeW11ðt−sÞ1ds�

¼
X
r

Enð0Þ2Ifrð0Þ¼rgereW11t1

þB
Z

t

0

X
r

Enð0Þ2Ifrð0Þ¼rgereW00sSeW11ðt−sÞ1ds

¼
X
r

ðm1rþm2rÞereW11t1

þB
Z

t

0

m1rereW00sSeW11ðt−sÞ1ds

¼ðm1þm2ÞeW11t1þB
Z

t

0

m1eW00sSeW11ðt−sÞ1ds;

where m1 and m2 are the steady-state first and second
factorial moments given in Eq. (C2). Since the autocorre-
lation function is defined asRðtÞ¼Enð0ÞnðtÞ−Enð0ÞEnðtÞ,
we finally obtain the explicit expression of the autocorre-
lation function, which is given in Eq. (5).

FREQUENCY DOMAIN ANALYSIS OF FLUCTUATIONS OF mRNA … PHYS. REV. X 11, 021032 (2021)

021032-21



We next compute the analytical expression of the power
spectrum. Recall that all the eigenvalues λ0;…; λ2N−1 of
W00 andW11 have been computed in Eqs. (7) and (8). Since
W00 is a circulant matrix, it is easy to check that there exists
a complex orthogonal matrix

R ¼ 1ffiffiffiffi
N

p

0
BBBBB@

1 1 � � � 1

ω0 ω1 � � � ωN−1

� � � � � � � � � � � �
ωN−1
0 ωN−1

1 � � � ωN−1
N−1;

1
CCCCCA

such that W00 is diagonalized, i.e.,

R̄0W00R ¼

0
BBBBB@

λ0

λ1

. .
.

λN−1

1
CCCCCA
;

where R̄0 denotes the conjugate transpose of R. Similarly,
W11 can be diagonalized as

R̄0M−1W11MR ¼

0
BBBBB@

λN

λNþ1

. .
.

λ2N−1

1
CCCCCA
;

where M is a diagonal matrix, which is given by

M ¼

0
BBBBB@

1

2−1=N

. .
.

2−ðN−1Þ=N

1
CCCCCA
:

With these notations, it then follows from Eq. (5) that all the
coefficients uk, 0 ≤ k ≤ N − 1 associated with the eigen-
values of W00 are given by

uk ¼ ½ðm1 þm2ÞMR�k½R̄0M−11�k

− B
XN
i¼1

½m1R�i½R̄0SMR�ik½R̄0M−11�k
λi−1 − λNþk−1

; ðC3Þ

and all the coefficients uk, N ≤ k ≤ 2N − 1 associated with
the eigenvalues of W11 are given by

uk ¼ B
XN
j¼1

½m1R�k½R̄0SMR�kj½R̄0M−11�j
λk−1 − λNþj−1

: ðC4Þ

Note that if the cell cycle frequency is increased from f to αf
with some α > 1, while keeping η ¼ d=f, N, and hni as
fixed, then the parameters d, a, and ρ will become αd, αa,
and αρ, respectively. It then follows from Eqs. (7) and (8)
that all the eigenvalues λk, 0 ≤ k ≤ 2N − 1will become αλk.
In addition, it follows from Eq. (C2) that bothm1 andm2 are
invariant under the above transformation. Since S becomes
αS under the above transformation, it follows fromEqs. (C3)
and (C4) that all the coefficients uk, 0 ≤ k ≤ 2N − 1 will
remain the same. These results show that the power spectrum
(autocorrelation function) will be stretched (compressed)
along the horizontal axis by a factor of α.

APPENDIX D: ANALYTICAL EXPRESSIONS OF
THE AUTOCORRELATION FUNCTION AND
POWER SPECTRUM FOR THE MODEL WITH

PROMOTER SWITCHING

While the model with promoter switching is complex
due to the large variety of biological processes that it
captures, its autocorrelation function can still be computed
exactly as

RðtÞ ¼ ðm1 þm2ÞeW11t1 − ðm11Þ2

þ B
Z

t

0

m1eQsSeWðt−sÞ1ds; ðD1Þ

where m1 ¼ ðm1αÞ and m2 ¼ ðm2αÞ are two row vectors
whose components are the first and second factorial
moments of the gene product number in all cellular states,
1 is the column vector whose components are all 1, S ¼
diagðραÞ is the diagonal matrix whose diagonal elements
are the burst production rates in all cellular states, Q ¼
ðqαβÞ is the generator matrix of cellular state transitions [see
Figs. 7(c) and 7(d) for the transition diagram which has
some orange, red, and green arrows], and W11 ¼ ðwαβÞ is
another matrix obtained from Q by replacing the rates of
the orange arrows by a=2, replacing the rates of the red
arrows by pa=2, replacing the rates of the green arrows by
qa=2, and subtracting d from the diagonal entries (see
Sec. S4 in the Supplemental Material [66] for the proof and
the detailed expressions of each term).
Note that the autocorrelation function RðtÞ in Eq. (D1) is

expressed in matrix form. A more explicit expression can
be obtained by expanding the matrix exponentials eW11t and
eQs in terms of their eigenvalues and eigenvectors. We find
that the autocorrelation function (power spectrum) can be
rewritten as the linear combination of 2K − 1 exponential
(Lorentzian) functions:

RðtÞ ¼
X2K−1
k¼1

ukeλkt; GðξÞ ¼
X2K−1
k¼1

−2ukλk
4π2ξ2 þ λ2k

;

whereK is the number of cellular states, λ0;…; λ2K−1 are all
the eigenvalues of the two matrices Q and W11, and uk are
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suitable constants (see Sec. S4 in the Supplemental
Material [66] for the proof and the specific expressions
of uk). SinceQ andW11 are bothK × K matrices, they have
a total of 2K eigenvalues.

APPENDIX E: POWER SPECTRUM FOR STABLE
GENE PRODUCTS

For stable gene products with η ≪ 1, the power spectrum
can be simplified as in Eq. (13), where

A ¼ 2ðln 2Þ2Jhni
�
γ þ 2

3N

�

þ 1

ðln 2Þ2 þ
2B
3 ln 2

�
γ − 2þ 3

ln 2

�

if the gene expression is bursty,

A ¼ 2ðln 2Þ2Jhni
�
γ þ 2

3N

�
þ 1

ðln 2Þ2

if the gene expression is nonbursty, and

Hk ¼
�
wþ κð1 − wÞ þ ðκ − 1Þ sin ð2kwπÞ

2kπ

�
2

þ ðκ − 1Þ2sin4ðkwπÞ
k2π2

is a function of κ and w, where J is given in Eq. (16).

APPENDIX F: POWER SPECTRUM FOR
UNSTABLE GENE PRODUCTS

For unstable gene products with η ≪ 1, when cell cycle
duration variability is not too large, the power spectrum can
be written more explicitly as (see Sec. S2 in the
Supplemental Material [66] for the proof)

GðξÞ ≈ 2ðκ − 1Þ2ρ2B2N sin2ðkwπÞ
η2f

X½N=2�

k¼1

GkðξÞ; ðF1Þ

where

GkðξÞ ¼
2k2π2f2 þ ðπ2ξ2 − a2 cos θk sin2 θk=2Þ

4k6π6f4 þ N2ðπ2ξ2 − a2 cos θk sin2 θk=2Þ2
;

with θk ¼ 2kπ=N. Here the functionG1ðξÞ controls the first
off-zero peak, and the functions GkðξÞ; k ≥ 2 control the
peaks at higher-order harmonic frequencies. In analogy to
the case of stable gene products, the position of the off-zero
peak is given by ξ ¼ ða=πÞ cos θ1 sinðθ1=2Þ < aθ1=2π ¼
a=N ¼ f, which is smaller than the cell cycle frequency f.
WhenN ≫ 1, the peak position is approximately equal to f
since sin θ ≈ θ and cos θ ≈ 1when θ is small. Moreover, the
width of the off-zero peak is given by D ¼ 2πf=N, and the

height of the off-zero peak is given in Eq. (17). From
Eq. (F1), the height and width of the spectral peak at the kth
harmonic frequency are given by sin2ðkwπÞ= sin2ðwπÞk4H
and k2D, respectively. In particular, the height of the
spectral peak at f is 24 sin2ðwπÞ= sin2ð2wπÞ times greater
than that at 2f and 34 sin2ðwπÞ= sin2ð3wπÞ times greater
than that at 3f. Moreover, the width of the spectral peak at
f is 22 ¼ 4 times lesser than that at 2f and 32 ¼ 9 times
lesser than that at 3f.

APPENDIX G: ESTIMATION OF w AND κ FOR
EACH CELL LINEAGE

For a single-cell lineage, let nðtÞ be the time course data
at time t and Tk be the kth division time. Since the burst
production rate increases from ρ to κρ upon replication, we
can fit the data between two division times by the mean-
field approximation given in Eq. (20). In other words, we
use a piecewise linear function to approximate the gene
expression levels between two division events. Since w
represents the proportion of cell cycle before replication,
the replication time between Tk and Tkþ1 is on average
given by Tk þ wðTkþ1 − TkÞ. Thus, the first part of the
piecewise linear approximation is given by

n̂ðtÞ ¼ nðTkÞ þ ρBðt − TkÞ
for any Tk ≤ t ≤ Tk þ wðTkþ1 − TkÞ, and the second part
of the piecewise linear approximation is given by

n̂ðtÞ ¼ nðTkÞ þ ρBwðTkþ1 − TkÞ
þ κρB½t − Tk − wðTkþ1 − TkÞ�

for any Tk þ wðTkþ1 − TkÞ < t ≤ Tkþ1, where nðTkÞ is the
gene expression level at time Tk. Then the distance between
the time course data nðtÞ and the piecewise linear approxi-
mation n̂ðtÞ is given by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM−1

t¼0

½nðtÞ − n̂ðtÞ�2
vuut ; ðG1Þ

where M is the number of time points measured. When
η ¼ 0, it follows from Eq. (10) and l’Hôpital’s rule that

hni ¼ ρB
2f

�
3κ − ðκ − 1Þwð4 − wÞ þ 1

N
ðκwþ 1 − wÞ

�
:

Moreover, the sample mean of the time course data can be
estimated as

hni ¼ 1

M

XM−1

t¼0

nðtÞ:

Therefore, ρB can be represented using w and κ as
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ρB ¼ 2fhni
3κ − ðκ − 1Þwð4 − wÞ þ 1

N ðκwþ 1 − wÞ :

Finally, the parameters w and κ can be estimated by
minimizing the distance D in Eq. (G1) using the least-
squares criterion.

APPENDIX H: ESTIMATION OF THE
FLUORESCENCE INTENSITY
PER PROTEIN MOLECULE

Suppose that cell division occurs at a particular time. Let
nb be the protein copy number just before division and let
na be the protein copy number just after division. Since we
assume symmetric binomial partitioning at cell division, na
and nb are related by the following equality:

Pðna ¼ mÞ ¼
X∞
n¼m

Cn;m

�
1

2

�
n
Pðnb ¼ nÞ: ðH1Þ

Therefore, the means of na and nb are related by

hnai¼
X∞
m¼0

mPðna ¼mÞ¼
X∞
m¼0

m
X∞
n¼m

Cn;m

�
1

2

�
n
Pðnb ¼ nÞ

¼
X∞
n¼0

�
1

2

�
n
Pðnb ¼ nÞ

Xn
m¼0

mCn;m

¼
X∞
n¼0

�
1

2

�
n
Pðnb ¼ nÞ2n−1n

¼ 1

2

X∞
n¼0

nPðnb ¼ nÞ¼ 1

2
hnbi; ðH2Þ

and the second factorial moments of na and nb are related by

hnaðna−1Þi¼
X∞
m¼0

mðm−1ÞPðna¼mÞ

¼
X∞
m¼0

mðm−1Þ
X∞
n¼m

Cn;m

�
1

2

�
n
Pðnb¼ nÞ

¼
X∞
n¼0

�
1

2

�
n
Pðnb ¼ nÞ

Xn
m¼0

mðm−1ÞCn;m

¼
X∞
n¼0

�
1

2

�
n
Pðnb ¼ nÞ2n−2nðn−1Þ

¼ 1

4

X∞
n¼0

nðn−1ÞPðnb ¼ nÞ¼ 1

4
hnbðnb−1Þi:

ðH3Þ

Let μb be the mean of the fluorescence intensity just before
division, let μa be the mean of the fluorescence intensity just
after division, and let β be the fluorescence intensity per
protein molecule. It then follows from Eq. (H2) that

μa ¼ βhnai ¼
1

2
βhnbi ¼

1

2
μb: ðH4Þ

Let σb be the standard deviation of the fluorescence intensity
just before division and let σa be the standard deviation of
the fluorescence intensity just after division. Combining
Eqs. (H2) and (H3) shows that

σ2a ¼ β2½hnaðna − 1Þi þ hnai − hnai2�

¼ β2
�
1

4
hnaðna − 1Þi þ 1

2
hnbi −

1

4
hnbi2

�

¼ 1

4
σ2b þ

1

4
βμb: ðH5Þ

Let γb ¼ σ2b=μb be the Fano factor of the fluorescence
intensity just before division and let γa ¼ σ2a=μa be the
Fano factor of the fluorescence intensity just after division.
Combining Eqs. (H4) and (H5) finally shows that

γa ¼
1

2
γb þ

1

2
β:
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