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ARTICLE

Neural network aided approximation and
parameter inference of non-Markovian
models of gene expression
Qingchao Jiang 1,5, Xiaoming Fu 1,2,5, Shifu Yan1,5, Runlai Li3, Wenli Du1, Zhixing Cao 1,4✉, Feng Qian1 &

Ramon Grima 2✉

Non-Markovian models of stochastic biochemical kinetics often incorporate explicit time

delays to effectively model large numbers of intermediate biochemical processes. Analysis

and simulation of these models, as well as the inference of their parameters from data, are

fraught with difficulties because the dynamics depends on the system’s history. Here we use

an artificial neural network to approximate the time-dependent distributions of non-

Markovian models by the solutions of much simpler time-inhomogeneous Markovian models;

the approximation does not increase the dimensionality of the model and simultaneously

leads to inference of the kinetic parameters. The training of the neural network uses a

relatively small set of noisy measurements generated by experimental data or stochastic

simulations of the non-Markovian model. We show using a variety of models, where the

delays stem from transcriptional processes and feedback control, that the Markovian models

learnt by the neural network accurately reflect the stochastic dynamics across

parameter space.
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Over the past two decades, stochastic modelling has pro-
vided insight into how cellular dynamics is influenced by
noise in gene expression1–3. The complexity of cellular

biochemistry prevents a full stochastic description of all reaction
events and rather these models are effective, in the sense that each
reaction provides an effective description of a group of processes.
A major assumption behind the majority of stochastic models of
biochemical kinetics is the memoryless hypothesis, i.e., the sto-
chastic dynamics of the reactants is only influenced by the current
state of the system, which implies that the waiting times for
reaction events obey exponential distributions. In the context of
stochastic gene expression, the telegraph model (or the two-state
model)4–6 is a fundamental Markovian model describing pro-
moter switching, transcription and degradation of mature RNA.
While this Markovian assumption considerably simplifies model
analysis7, it is dubious for modelling certain non-elementary
reaction events that encapsulate multiple intermediate reaction
steps. For example, consider a model of transcription that pre-
dicts the distribution of RNA polymerase (RNAP) numbers
attached to the gene but which does not explicitly model the
microscopic processes behind elongation8. In this case, assuming
that RNA synthesis proceeds with approximately constant elon-
gation speed, the reaction modelling termination should occur a
fixed time after the reaction modelling initiation, which implies
that the system has memory and is not Markovian. Of course in
this instance, the model could be made Markovian by extending it
so that it includes the explicit microscopic description of the
movement of the RNAP along the gene9 but this implies a large
increase in the effective number of species, which makes explicit
solution of the Markovian model impossible. Hence in many
cases, a low dimensional stochastic model can be only achieved by
a suitable non-Markovian description. Given their practical
importance, these systems have been the subject of increased
research interest, leading to an exact analytical solution for a few
simple cases and the development of exact Monte Carlo algo-
rithms for the study of those with complex dynamics8,10–16.

Nevertheless, presently the understanding of non-Markovian
models lags much behind that of Markovian models where a
wide range of approximation methods are available. Hence there
is ample scope for the development of methods to tackle the
difficulties inherent in stochastic systems possessing memory.
Given the success of artificial neural networks (ANNs) in solving
scientific problems where traditional methods have made little
progress, it is of interest to consider whether such an approach
could be useful for solving the aforementioned stochastic pro-
blems. Neural networks being universal function approximators
have recently been used to solve partial differential equations
commonly used in physics, biology and chemistry. In particular
these techniques have been used to approximately solve Burgers
equation17–19, the Schrodinger equation18,20 and partial differ-
ential equations describing collective cell migration in scratch
assays21; the ANN-based methods behind the solution of these
problems are a subclass of the universal differential equation
framework that has recently been proposed22.

Inspired by the success of ANNs in other fields, in this article
we develop a novel ANN-based methodology to study non-
Markovian models of gene expression and transcriptional feed-
back. We propose to use an ANN to approximate non-Markovian
models by much simpler stochastic models. Specifically the key
idea is to approximate the chemical master equation (CME) of
non-Markovian models (which we refer to as the delay CME) that
is in terms of the two-time probability distribution by a CME
whose terms are only a function of the current time, i.e. by a time-
inhomogeneous Markov process (see Fig. 1a for an illustration).
Notably, this mapping is achieved without increasing the number

of fluctuating species. We refer to the learnt CME describing the
time-inhomogeneous Markov process as the neural-network
chemical master equation (NN-CME). The latter, because of its
simplified form, can then either be studied analytically using
standard methods or else straightforwardly simulated using the
finite state projection (FSP) method. In what follows, we intro-
duce the ANN-based approximation method by means of a
simple example and then verify its accuracy in predicting time-
dependent molecule number distributions of various realistic
models of gene expression and its superior computational effi-
ciency when compared to direct stochastic simulation. We finish
by showing the orthogonal use of the method to infer the para-
meters of bursty gene expression from synthetic data.

Results
Illustration of ANN-aided stochastic model approximation
using a simple model of transcription. We consider a simple
non-Markovian system where molecules are produced at a rate ρ
and are removed from the system (degraded) after a fixed time
delay τ:

+!ρ N; N)
τ
+: ð1Þ

In other words, each molecule has an internal clock that starts
ticking when it is ‘born’, and when this clock registers a time τ,
the molecule ‘dies’. Note that as a convention in this paper, we
use an arrow to denote a reaction in which the products are
formed after an exponentially distributed time and an arrow with
two horizontal lines to denote a reaction, which occurs after a
fixed elapsed time. The above model, which we denote Model I,
describes the fluctuations of nascent RNA (N) numbers due to
constitutive expression. Specifically, the production reaction
models the process of initiation whereby an RNAP molecule
binds the promoter; the delayed-degradation reaction models, in
a combined manner, the processes of elongation and termination
whereby an RNAP molecule travels at a constant velocity along
the gene and finally detaches from the gene, respectively. Note
that the number of RNAPs bound to the gene is equal to the
number of nascent RNA molecules present, irrespective of their
lengths23 (for an illustration see Fig. 2a Model I). We note that
the signal from single-molecule fluorescence in situ hybridization
(smFISH) probes corresponds to measuring the total length of
nascent RNA, summed over multiple molecules present at the
gene; thus the number of nascent RNA estimated from such
experiments leads to a continuous rather than a discrete
number8,24,25. Our present formulation ignores the complexities
introduced by smFISH and is rather compatible with experiments
that can directly quantify the number of RNAPs bound to a
gene26.

It can be shown (see SI Note 1) from first principles that the
delay CME describing the stochastic dynamics of this process is
given by:

d Pðn; tÞ
d t

¼ ρ½Pðn� 1; tÞ � Pðn; tÞ� þ ρ½Pðn; tj0; t � τÞ
� Pðn� 1; tj0; t � τÞ�;

ð2Þ

where P(n, t) is the probability that at time t there are n nascent
RNA molecules bound to the gene. Similarly Pðn; tjn0; t0Þ is the
conditional probability distribution that at time t there are n
molecules given that at a previous time t0, there were n0

molecules. The right hand side of the master equation is a
function of the present time t as well as of the previous time t− τ.
Master equations of this type are typically much more difficult to
solve, analytically or numerically, than conventional master
equations where the right hand side is only a function of the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22919-1

2 NATURE COMMUNICATIONS |         (2021) 12:2618 | https://doi.org/10.1038/s41467-021-22919-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


present time t (because of its simplicity an exact time-dependent
solution of Model I is possible and shown in SI Note 1; see
also12). Hence the key idea of our method is to map the master
Eq. (2) to the new master Eq. (3):

d
d t

Pðn; tÞ ¼ ρ½Pðn� 1; tÞ � Pðn; tÞ�
þNNθðnþ 1; tÞPðnþ 1; tÞ �NNθðn; tÞPðn; tÞ;

ð3Þ
where the function NNθ(n, t) is an effective time-dependent
propensity describing the removal of nascent RNA molecules,
which is to be learnt by the ANN. This is the NN-CME for
reaction scheme (1). Note that this master equation with
NNθ(n, t)= kn is the conventional CME describing the

birth–death process +!ρ N;N!k +, where k is the degrada-
tion rate. By considering the cases n= 0, ..., N of Eq. (3) (where
N is some positive integer much larger than 1), one obtains a
system of N+ 1 differential equations. These equations need to

be closed before they can be solved. First, we can set P(−1)
(t)= 0 since the number of nascent RNA cannot become
negative. Next, since we have truncated space to n= N, it
follows that any terms in the equations corresponding to jumps
from n= N to n= N+ 1 or vice versa, need to be neglected.
This implies that the terms—ρP(N, t) and NNθ(N+ 1, t)P(N+
1, t) are neglected. This is indeed the main idea behind FSP27,
which leads to a finite closed system of differential equations for
the probabilities. Of course to faithfully approximate the
system’s dynamics, N should be chosen large enough such that
P(N, t) ≈ 0; in practice N is chosen such that any further
increase in its value leads to no significant change in the
solution of the master equation. The closed system of equations
can be compactly written in the form

d
d t

PðtÞ ¼ AθðtÞPðtÞ; ð4Þ

with P(t)= [P(0, t), ..., P(N, t)]⊤. The transition matrix
is defined as Aθ=D+Nθ(t), where the two components

Fig. 1 The ANN-aided stochastic model approximation. a Illustration of the key idea behind the method, namely the ANN-aided mapping of a delay master
equation that is in terms of the two-time probability distribution by the simpler neural-network chemical master equation (NN-CME) whose terms are only
a function of the current time. b Illustration of the procedure behind the calculation of the transition matrix and the objective function. For a given set of
weights and biases of the ANN (denoted by θ), taking as input P(t), the ANN’s output gives the transition matrix elements Aθ(t), which then by means of
the Euler method (or more advanced differential equation solvers) is used to predict the distribution at the next time step P(t+Δt). Note that magenta
arrows show the ANN computation while the black dashed arrows show the use of the Euler method. Stochastic simulations that sample the solution of the
delay master equation are used to produce histograms at several time points H(t); finally the distance J(θ) is calculated between the latter and P(t)
(evaluated at the same time points). c Flowchart illustrating all the steps in ANN training. If the objective function calculated as shown in (b) is above a
threshold then the weights and biases of the ANN are updated using back propagation followed by gradient descent; this is repeated until the objective
function is below a threshold.
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are given by

D ¼

�ρ 0 � � � 0 0

ρ �ρ � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � �ρ 0

0 0 � � � ρ 0

2
66666664

3
77777775
;

and

NθðtÞ ¼

0 NNθð1; tÞ � � � 0 0

0 �NNθð1; tÞ � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � �NNθðN � 1; tÞ NNθðN; tÞ
0 0 � � � 0 �NNθðN; tÞ

2
66666664

3
77777775
:

The output NNθ(0, t) is set to 0 to reflect the fact that nascent
RNA cannot be further removed when there is none attached to
the gene.

Next we describe how we train the ANN to infer the effective
transition matrix Aθ(t). We use a multilayer perceptron with a
single hidden layer; this is a simple feedforward ANN consisting
of three layers—an input layer with N+ 1 inputs, a hidden layer
with an arbitrary number of neurons and an output layer with N
outputs. The simplicity of the ANN here used is motivated by the
universal approximation theorem, which states that a single
hidden-layer feedforward ANN is able to approximate a wide
class of functions on compact subsets28,29. The activation
functions used in the hidden layer and output layer are tanh
and relu for all examples. In the output layer, we impose an
increasing set of fixed biases, which we specify later. For more
details of the ANN, including the choice of hyperparameters,
please see SI Table 1. The training procedure consists of three
main steps:

(1) We use stochastic simulations of the birth delayed-degradation
reaction (1) to generate approximate probability distributions
at the time points t 2 ½t1; t2; :::; tNshots

�, where Nshots is the total
number of snapshots. Note that by stochastic simulations in

Fig. 2 ANN-aided stochastic model approximation of various models of transcription. a Illustration of three models of transcription. The models describe
initiation, elongation and termination and specifically predict the numbers of nascent RNAs (equivalently the number of RNAP polymerases, Pol IIs) at the
gene locus. In all models, a nascent RNA molecule detaches after a constant time has elapsed from its binding to the promoter. The models differ in how
they model Pol II binding: in Model I, the binding is modelled as a Poisson process, hence one at a time; in Model II, binding occurs in bursts, whose size
conforms to a geometric distribution; in Model III, the gene switches between active and inactive states, and only the active state permits Pol II binding.
b For all models, the FSP solution of the NN-CME derived by the ANN-aided procedure is in excellent agreement with the SSA of the delay CME. The
accuracy is independent of the modality and skewness of the distribution. The rate constants and other parameters related to the ANN’s training are
specified in SI Table 1.
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this paper, we always mean an exact stochastic simulation
algorithm (SSA) modified to incorporate delays (specifically
Algorithm 2 in ref. 10; for proof of its exactness see ref. 11). Let
these distributions be denoted as H(t).

(2) The initial condition P(0) is set to be the same as H(0). The
N+ 1 elements of this probability vector constitute the
inputs to the ANN. Given some set of weights and biases θ,
the ANN’s N outputs are then taken as the elements of the
matrix Nθ(0), i.e. the nth output of the ANN is NNθ(n, 0).
By a numerical discretization of Eq. (4), given the inputs
and the outputs of the ANN, we obtain P(Δt), where Δt is
the finite time step. This procedure can be iterated to obtain
P(2Δt), P(3Δt), etc. Hence we obtain the probability vector
P(t) at the time points t 2 ½t1; t2; :::; tNshots

�.
(3) We calculate an objective function that is a measure of the

distance between the distributions H(t) and P(t) summed over
all snapshots. If the objective function is larger than a threshold
then update the set of weights and biases by means of back
propagation and gradient descent, and repeat step 2. If the
distance is smaller than the threshold then the procedure ends
and the transition matrix Aθ(t) has been learnt.

Note that since the output of the ANN is the propensities
NNθ(n, t), these must be positive. We choose the set of biases in
the output layer (rn in Fig. 1a for n= 1, ..., N) to be given by
rn ¼ n

τ. This form is inspired by the fact that for the conventional
CME with first-order degradation, NNθ(n, t) is proportional to n,
where the proportionality constant is the effective rate of decay,
which has units of inverse time. Hence intuitively, the effective
removal propensity of the NN-CME is equal to the propensity
assuming first-order degradation plus a correction, which is what
the ANN effectively learns. This choice of biases is also similar to
that of well-known residual network (ResNet)30,31, which helps to
accelerate the convergence of training and reduce computational
cost.

Note also that the objective function is chosen as
JðθÞ ¼ ∑Nshot

j¼1 k HðtjÞ � PðtjÞk22. While there are more accurate
distance measures (such as the Wasserstein distance), we use the
mean-squared-error form for two reasons: (i) it is commonly
used in neural-network training, and (ii) its simple form allows
efficient calculation of derivatives through the chain rule (the
back propagation method). The steps of the training procedure
are illustrated in Fig. 1b, c. Note that while the gradient descent in
Fig. 1c is illustrated using an Euler method, for our training we
used the standard adaptive moment estimation algorithm
(ADAM).

Once the matrix Aθ(t) is learnt, Eq. (4) can be integrated
numerically to obtain the time-dependent probability vector at all
times in the future. In Fig. 2b (first row), we show that the
solution of the learnt NN-CME is practically indistinguishable
from distributions estimated from stochastic simulations of
Model I (1)—hence this implies that the ANN training protocol
is effective as a means to map a master equation with terms
having a non-local temporal dependence to a master equation
with terms having a purely local temporal dependence.

Testing the accuracy and computational efficiency of ANN-
aided stochastic model approximation on more complex
models of transcription. To verify that the accurate mapping
characteristics are not specific to Model I, we next consider the
application of the procedure to learn the NN-CME of two more
complex transcription models incorporating delay (see Fig. 2a).
We consider Model II, which is the same as Model I, except that
the binding of RNAPs to the promoter occurs in bursts whose

size i is distributed according to the geometric distribution bi/(1
+ b)i+1; this can be described by the reaction scheme:

+ �!
αbi

ð1þbÞiþ1

iN; i ¼ 0; 1; 2; :::

N)
τ
+;

ð5Þ

where α stands for the burst frequency and b is the mean burst
size. This is a minimal delay model to describe the phenomenon
of transcriptional bursting32. The delay CME describing the
nascent RNA dynamics is given by (see SI Note 2):

∂tPðn; tÞ ¼ ∑
1

m¼1

αbm

ð1þ bÞmþ1 ½Pðn�m; tÞ � Pðn; tÞ�

þ ∑
1

m¼1

αbm

ð1þ bÞmþ1 ∑
n0
Pðn0; tÞ Pðnþm; tjn0 þm; t � τÞ½

� Pðn; tjn0 þm; t � τÞ�:
ð6Þ

This equation can be solved analytically for the time-dependent
probability distribution (see SI Note 2).

We also consider Model III wherein the promoter switches
between an active and inactive state, RNAP binding occurs only
in the active state, which is followed by delayed degradation
modelling the RNAP movement along the gene and its
detachment; this can be described by the reaction scheme:

G!ρ Gþ N; G"
σoff

σon
G?; N)

τ
+; ð7Þ

where G and G⋆ stand for the active and inactive gene state,
respectively, and σon and σoff are the activation and inactivation
rates, respectively. It can be shown that in the limit of large σoff
(compared to σon), Model III reduces to Model II, whereas in the
opposite limit of small σoff, it reduces to Model I. Hence Model III
can describe both constitutive and bursty transcription, as well as
regimes in between. The delay CME describing nascent RNA
dynamics is given by (see SI Note 3):

d P0ðn; tÞ
d t

¼�σonP0ðn; tÞ þ σoffP1ðn; tÞ þ∑
n0
ρP1ðn0; t � τÞ

P01ðn; tj0; t � τÞ � P01ðn� 1; tj0; t � τÞ� �
;

dP1ðn; tÞ
d t

¼ σonP0ðn; tÞ � σoffP1ðn; tÞ
þ ρ½P1ðn� 1; tÞ � P1ðn; tÞ� þ∑

n0
ρP1ðn0; t � τÞ

P11ðn; tj0; t � τÞ � P11ðn� 1; tj0; t � τÞ� �
;

ð8Þ

where Pi(n, t) is the probability that the gene is in state i at time t
and the number of nascent RNA is n; note that i= 0, 1 where 0 is
the inactive state and 1 is the active state. Similarly Pijðn; tjn0; t0Þ
denotes the conditional probability distribution that at time t the
gene is in state i and the number of molecules is n, given that at a
previous time t0, the gene was in state j and the number of
molecules was n0. We note that an exact closed-form solution for
the steady-state distribution of this model was reported in ref. 8.
The method involves writing the time-evolution equation for the
characteristic function and solving it explicitly by means of the
Dyson series. Solutions are in fact also possible if the model is
modified to predict the signal from smFISH, which necessitates
the use of continuous rather than discrete nascent RNA numbers.

Note that as for the delay CME describing Model I, the delay
CMEs describing Models II and III also have terms on the right
hand side, which are a function of the two-time probability
distribution. These terms which stem from delayed degradation,
make analytical and numerical solution of the delay master
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equations non-trivial. However the ANN-aided procedure to
solve Models II and III is as easy to implement as for Model I.
By replacing the two-time probability distribution terms on the
left-hand sides of Eqs. (6) and (8) by terms of the type NNθ(n, t)
(see SI Note 4 for details), one can map the delay master
equations into NN-CMEs of the form d

d tPðtÞ ¼ AθðtÞPðtÞ, where
the transition matrix Aθ(t) is learnt by the same training
procedure as before. Note that the NN-CME for Model III is
none other than the telegraph model of gene expression4 but
modified to allow degradation propensities to be some general
function of nascent copy number and time, and specific to each
promoter state.

In Fig. 2b rows 2, 3 and 4, we show the comparison between
the time-dependent distribution of nascent RNA predicted by
the NN-CME and stochastic simulations of the reaction
schemes corresponding to Models II and III. The agreement
is excellent at all times and for all models, independent of
the modality and skewness of the distribution. This reinforces
the result that the ANN-aided procedure enables an accurate
mapping of master equations with terms having a non-local
temporal dependence (via the two-time probability distribu-
tion) to master equations with terms having a purely local
temporal dependence.

Next, we test the computational efficiency of the ANN-aided
procedure compared to stochastic simulations. Figure 3a shows
the Hellinger distance between the probability distribution of
nascent RNA numbers according to the NN-CME and the exact
analytical solution of Model I (see SI Note 1) as a function of the
number of snapshots Nshots and of the number of stochastic
simulations used to train the ANN. As expected, increasing the
number of snapshots and the number of stochastic simulations in
the ANN’s training enhances the accuracy of the NN-CME’s
distribution (manifested as a reduction in the Hellinger distance).
More interestingly, we found that the NN-CME obtained from
training the ANN with just a thousand stochastic simulations
outputs a distribution that has the same Hellinger distance from
the exact distribution as the one obtained from a histogram
generated using 30,000 stochastic simulations (direct simulation).
Moreover in this case, the time-to-acquire samples plus the time
for ANN training takes 1/6 of the computation time if we only use
simulations. Another way of distinguishing our method and
stochastic simulations is to compare the distributions predicted by
both methods, given the same number of stochastic simulations; as
shown in Fig. 3b, while at short times, the two are comparable, at
long times the NN-CME’s prediction is far more accurate than
that of the SSA. Note that training can also be done in steady state,
i.e. solving the algebraic equations Aθ(t)P(t)= 0; the precision and
efficiency of this alternative mode of training the ANN is
illustrated and discussed in Fig. S2.

Note that the mapping enabled by the ANN-aided procedure,
from delay master equations to NN-CMEs, is also supported by
theory for those models which can be solved exactly (see SI
Note 5). For Model I, it can be shown that the effective propensity
NNθ(n, t) is zero for t < τ and otherwise linear in the nascent copy
number n (and independent of time); hence in steady-state
conditions, the effective propensity is the same as expected from a
first-order degradation process. For Model II, the effective
propensity NNθ(n, t) is zero for t < τ and otherwise non-linear
in the nascent copy number n (and independent of time). In
Fig. 4a we show that for Model II, the effective propensity
obtained by the ANN-aided approximation method is in good
agreement with the theoretically predicted effective propensity
evaluated in steady-state conditions (t≫ τ). The non-linearity of
the propensity is an emergent feature of the mapping procedure
when transcriptional bursting is present (linear behaviour is

observed for Model I). In Fig. 4b, c, we show how the degree of
non-linearity varies with the non-dimensional parameter ατ,
which is the ratio of the bursting frequency to the frequency at
which nascent RNA gets removed (the elongation rate). The
deviations from the conventional linear scaling of the propensity
with nascent RNA numbers are manifest when the bursts are
produced much slower than the elongation rate. In the inset of
Fig. 4b, we show that for hundreds of genes in mouse embryonic
stem cells, the value of ατ is considerably <1 thus showing that
the effective degradation propensities for nascent RNA are
generally non-linear; often the propensities can be well-
approximated by a Hill function (with Hill coefficient <1) over
the relevant molecule number range. Since Model II is a good
approximation to Model III when gene expression occurs in
bursts, it follows that the results shown for Model II also apply to
Model III. Note that this also implies that the standard telegraph
model of gene expression4 (equivalent to the NN-CME of Model
III with a linear degradation propensity) is not a suitable effective
Markovian description for the nascent RNA statistics of most
eukaryotic genes.

Rapid exploration of parameter space and the prediction of a
novel type of zero-inflation phenomenon. Given the computa-
tional efficiency of the ANN-aided model approximation, one
would expect it to be useful as a means to rapidly explore the
phases of a system’s behaviour across large swathes of parameter
space. This endeavour is only possible if the NN-CME’s predic-
tions are accurate across parameter space, which is yet to be seen
since we have only shown its accuracy for few parameter sets in
Figs. 2 and 3. In what follows, we explicitly verify that the NN-
CME can correctly capture all the phases of Model III’s
behaviour.

We consider the case when the gene spends most of its time in
the OFF state (the bursty regime of gene expression). In this case,
Model III is well-approximated by Model II (see SI Note 3), and
by means of the exact analytical solution of the latter, we identify
four regions (I–IV; see Fig. 5a) according to the type of steady-
state distribution (see Fig. 5b and its caption for their description).
Specifically phase IV is the only region of space where bimodal
distributions (peak at zero and at a non-zero value) are found.
Theory shows that the conditions (see SI Note 2) that need to be
satisfied for this bimodality to manifest are

2þ 2
b

α
< τ <

bþ 1
b þ 2

α
; b > 1: ð9Þ

By using the NN-CME to randomly sample points in parameter
space, we find the same as the theoretical prediction: the
distributions are unimodal (dots) except in Region IV where they
are bimodal (crosses). Hence this verifies the accuracy of our
method across parameter space.

We also note that bimodality in the bursty regime is
unexpected because the standard model of gene expression
(Model II/III with delayed degradation replaced by first-order
degradation2,5,33) predicts a unimodal steady-state distribution,
which is well-approximated by a negative binomial distribution.
Note that Model III is more appropriate to model nascent RNA
dynamics than the standard model of gene expression because
unlike mature RNA, nascent RNA typically does not get degraded
while the RNAP is traversing the gene; rather nascent ‘degrada-
tion’ occurs after a finite elapsed time when it detaches from the
gene and becomes mature RNA. Hence Region IV can be
understood as delay-induced bimodality or a delay-induced zero-
inflation phenomenon. Since there is evidence that the delay time
is stochastic rather than fixed34,35 we also used the NN-CME to
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investigate how the nascent RNA distributions change with
variance in the delay time when the mean is kept constant: as
shown in Fig. 5c, we find that a large increase in the variability
of the delay time tends to destroy the peak at zero. Note that
for systems with stochastic delay, the training of the ANN-aided
approximation remains the same as for those with fixed delay;
the advantage of our method is that it can just as easily solve
non-Markovian models with stochastic delay as those with

deterministic delay whereas analytically only the latter are
amenable to exact solutions when the reaction system is simple
enough.

In summary, we find that delayed degradation induces an extra
mode peaked at n= 0, a type of zero-inflation phenomenon. This
phenomenon is commonly seen in single-cell RNA-seq data, and
it is usually attributed to the expression drop-off caused by
technical noises or sequencing sensitivity36. It has also been

Fig. 3 Evaluating the performance of the ANN-aided model approximation. a Precision and computational efficiency of the ANN-aided model
approximation as a function of sample size and number of snapshots. The method is benchmarked on Model I since the time-dependent solution of the
delay CME is exactly known (see SI Note 1) and hence the accuracy of our method can be precisely quantified. A measure of the accuracy is the average
Hellinger distance (HD) between the NN-CME and exact distributions at four different time points. The computation time is equal to the time-to-acquire
samples plus time for training. Each data point in the graphs is averaged on three independent trainings. Note that the NN-CME obtained from training with
103 samples produces a distribution that is as precise as that from 3 × 104 samples using the SSA of the delay CME (shown as a black dashed line); in this
case the computation time of the NN-CME is also just 1/6 of the SSA. b Comparison of the NN-CME distributions, exact analytical distributions and
histograms from stochastic SSA simulations of the delay CME at two different time points; the sampling for both training and the SSA is 103. Note that the
NN-CME leads to much more accurate distributions than the SSA for the same number of samples. The rate constants and other parameters related to the
ANN’s training are specified in SI Table 1.

Fig. 4 Effective degradation propensity of Model II. a Comparison of the effective degradation propensity NNθ(n) in steady-state conditions predicted by
theory (solid purple line; Eq. S36 in the SI) and computed by the ANN-aided approximation (green dots). Note that the two agree in Region I where the
nascent RNA probability is sufficiently high so that the neural-network coefficients are well-trained. The two are not matched in Region II, since the neural-
network coefficients are under trained such that the neural-network output is not reliable. b Shows the square of the Pearson correlation coefficient R2

between the effective propensity and the nascent RNA number as a function of the non-dimensional parameter ατ. The non-linearity of the effective
propensity rapidly increases as the burst frequency α decreases below the elongation frequency τ−1. Inset shows the histogram of ατ for 368 genes in
mouse embryonic stem cells (see SI Note 6 for details of the histogram). c Shows the effective propensity as a function of nascent RNA numbers for points
A, B and C labelled in (b). The function is almost independent of nascent RNA number for small ατ (point A), well-approximated by a Hill function of the
nascent RNA number for intermediate ατ (point B), and a linear function of nascent RNA number for large ατ (point C). Note that the Hill function fits (for
points A and B) are only valid over the region shown and break down for larger n. The kinetic parameters of Model II are the same as Fig. 2 and the NN-
CME is trained at steady state (solving Aθ(t)P(t)= 0) using 2 × 105 samples.
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shown37,38 that it may arise from an extra number of gene states.
However our results suggest that delay due to elongation (when
the variability in elongation times is small) is another important
source contributing to the zero-inflated distributions evident in
RNA-seq data.

Learning the effective master equation of genetic feedback
loops from partial abundance data. Feedback inhibition of gene
expression is a common phenomenon in which gene expression is
downregulated by its protein product. Given there is sufficient
time delay in the regulation process as well as sufficient non-
linearity in the mass-action law describing the kinetics of certain
reaction steps39, feedback inhibition can lead to oscillatory gene
expression such as that observed in circadian clocks40.

Here we consider a simple genetic negative feedback loop (see
Fig. 6a) whereby (i) a protein X is transcribed by a promoter, (ii)
subsequently after a fixed time delay τ, X turns (via some set of
unspecified biochemical processes) into a protein Y and (iii)
finally Y binds the promoter and reduces the rate of transcription
of X. Unlike Models I–III considered earlier, the delay master
equation corresponding to this model has no known analytical
solution. Simulation trajectories verify oscillatory behaviour of
this circuit; see Fig. 6b. We use the simulated trajectories of
mature protein Y to train the ANN (the objective function only
measures the distance between the ANN-predicted distribution of
Y and the distribution from stochastic simulations), in a similar
way as previous examples (see SI Note 7). In Fig. 6c, d, we show
that the time-dependent distributions of both proteins and their

means output using the NN-CME are in excellent agreement with
the SSA, even clearly capturing the damped oscillatory behaviour;
while for Y, this is maybe not so surprising, for X, it is remarkable
because simulated trajectories of X were not used in the training
of the ANN. Hence this shows that the ANN-aided model
approximation can learn the effective form of master equations
from partial trajectory information, a very useful property if the
training data are sparse and available only for some molecular
species as commonly the case with experimental data.

ANN-aided inference of the parameters of bursty transcription.
With a small modification, the ANN-aided model approximation
technique besides constructing an approximate NN-CME model,
it can also infer the values of kinetic parameters of the data used
for training. This is brought about by optimizing not only the
weights and biases of the ANN but also simultaneously for the
kinetic parameter values. In Fig. 7, we show the results of this
method using training data generated by the SSA of Model II with
parameters (burst frequency α and size b) that have been mea-
sured for five mammalian genes41. Comparing the latter true
parameter values with those obtained from the ANN-aided
inference, we conclude that the inference procedure leads to
accurate results. Note that the 95% confidence intervals of the
estimates are obtained using the profile likelihood method (see SI
Note 8 and Fig. 7a, b for an illustration).

We also show that the distribution solution of the NN-CME
(which is obtained at one go, together with the inferred
parameters) is practically indistinguishable from distributions

Fig. 5 Stochastic bifurcation diagram for Model III in the bursty regime (σoff≫ σon) using the NN-CME and comparison with theory. a From an
analytical approximation of Model III in the bursty regime, the space is divided into four regions according to the type of distributions (shown in b): type I, a
unimodal distribution with mode= 1; type II, a unimodal distribution with mode= 0; type III, a unimodal distribution with mode > 1; type IV, a bimodal
distribution with two modes at zero and a non-zero value. Region IV is highlighted in green since it is a phase that does not exist in the bursty regime of the
standard model of gene expression (Model III with delayed degradation replaced by first-order degradation)—this is hence delay-induced bimodality. The
lines defining the division of space are: solid line is ð2þ 2

bÞ=α and the dashed line is ðbþ 1
b þ 2Þ=α, which respectively are the lower and upper bounds

on τ given by Eq. (9). To check the accuracy of the ANN-aided model approximation for Model III, we used it to compute the NN-CME and then solved
using FSP to obtain nascent number distributions for 200 points in parameter space. These are randomly sampled from the space {ρ= 2.11, σoff∈ 2.11 ×
[10−1, 10], σon= 0.0282, τ∈ [10, 103]} (left) and {ρ= 2.11, σoff= 0.609, σon= 0.0282 × [10−1, 10], τ∈ [10, 103]} (right). Dots denote parameter sets for
which the NN-CME distributions are unimodal and crosses show those for which the distributions are bimodal. The fact that the vast majority of crosses
fall in region IV and the dots outside of it shows that the NN-CME agrees with the analytical approximation of Model III (parameter sets, which mismatch
between the NN-CME and theory, are highlighted with red arrows and are very few in number). Note in the left figure of (a), the burst frequency is fixed to
α= 0.0282 (left) while in the right figure, we use α0= 0.0282 and the burst size is fixed to b= 3.46. c The NN-CME is learnt from stochastic simulations
of the delay model of Model III with the added feature that the elongation time τ is a random variable sampled from two different lognormal distributions
(see top figure). In the middle and bottom figures, we show that the delay-induced bimodality (phase IV) disappears as the variance on the elongation time
τ increases at constant mean. The rate constants and other parameters related to the ANN’s training are specified in SI Table 1.
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constructed using the SSA of Model II (the quantile–quantile
plots in Fig. 7c are linear with unit slope and zero intercept). In
Fig. S3, we show the application of the ANN-aided inference to
Model III.

Discussion
In this paper, we have shown how the training of a three-layer
perceptron with a single hidden layer is enough to approximate
the delay CME of a non-Markovian model by the NN-CME,
which is a master equation with time-dependent propensities
(time-inhomogeneous Markov process). Notably, this mapping
has been achieved without increasing the effective number of
species in the model. Since the NN-CME has no delay terms, it
simplifies analysis and simulation; for e.g. the NN-CME can be
accurately approximated by a wide range of standard methods7

and its solution is straightforward using FSP27. The method hence
enables the efficient study of much more complex non-
Markovian models of gene regulation than has been possible to
exactly solve analytically or using numerical/simulation methods
applied directly to the delay master equation. For example, we
showed that our ANN-based method easily solves an extension of
Model III where we incorporate noise in the delay time associated
with elongation and termination (Fig. 5c), as well as a multi-
species model of transcriptional feedback involving delayed
maturation of proteins followed by binding to the promoter
(Fig. 6). In contrast, the dynamics of these systems cannot be
obtained by applying FSP directly to the non-Markovian delay

master equation or using analytical methods reported for non-
Markovian stochastic gene expression models8. We note that
while neural networks have been recently used to approximate
partial differential equations in physics, chemistry and biology, to
our knowledge, our work represents their first use in approx-
imating equations describing the time-evolution of stochastic
processes in continuous time and with a discrete state space, e.g.
systems describing cellular biochemistry where the discreteness is
an important feature of the system due to the low copy number of
DNA and mRNA molecules involved42.

We find that to obtain an accurate NN-CME, training only
needs a small sample size (of the order of a thousand SSA tra-
jectories which is computationally cheap), it can be done with
partial data (some species data can be missing) and simultaneously
one can obtain estimates of the kinetic parameters. The latter is
particularly relevant if the training data are collected experimen-
tally, e.g. by measuring nascent RNA numbers using live-cell
imaging techniques (such as the MS2 system) at several time
points for many cells43,44. Our ANN-based inference method rests
upon the matching of distributions and hence similarly to non-
ANN-based methods developed in refs. 45,46, it avoids the pitfalls
of moment-based inference47,48. We note that the vast majority of
existing inference methods are for stochastic systems with no
delayed reactions; a notable exception is ref. 49. We also note that
the ability to approximate solutions of delay master equations
from simulated data while simultaneously optimizing for the
parameters has not been demonstrated before; deep learning fra-
meworks have previously achieved similar feats for deterministic

Fig. 6 NN-CME accurately predicts the properties of a stochastic auto-regulatory model of oscillatory gene expression when only partial data are used
for ANN training. a Illustration of a model of auto-regulation whereby a protein X is transcribed by a gene, then it is transformed after a delay time τ into a
mature protein Y, which binds the promoter and represses transcription of X. The functions J1(Y) and J2(Y) can be found in SI Note 7. b Two typical SSA
simulations of proteins X and Y, clearly showing that single-cell oscillations while noisy, they are sustained. c, d The NN-CME is obtained from training the
ANN using only protein Y data from SSA simulations of the delay model of the auto-regulatory model. Surprisingly, the NN-CME’s solution for the temporal
variation of the mean number of both proteins X and Y, and for their distributions is in excellent agreement with that of the SSA. Note the distributions in
(d) are for the three time points labelled A, B and C in (c). The rate constants and other parameters related to the ANN’s training are specified in SI Table 1.
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models18,21 and more recently for stochastic models described by
multi-dimensional Fokker–Planck equations50,51.

The ANN-based procedure described in this article is most
useful to learn effective propensities of those biomolecular pro-
cesses which we don’t know how to model well using a Marko-
vian approach. The input data for the ANN’s training can be
experimental data or that generated by a complex model. The
complex model could be non-Markovian as in this paper or else
could be a Markovian model with many more species and reac-
tions than the effective Markovian model that the ANN is trying
to learn. In some cases the procedure will show that a mapping is
not possible. For example, here we have shown that the standard
telegraph model of gene expression (equivalent to the NN-CME
of Model III with a linear degradation propensity) is not a suitable
Markovian description for the nascent RNA dynamics of most
eukaryotic genes (it is typically a good description for mature
RNA dynamics as has been analytically shown in ref. 9).

Recent work has shown that differential equation models
describing the time-evolution of average agent density can be
learnt (using sparse regression) from agent-based model simula-
tions of spatial reaction-diffusion processes52. Such models can
describe for e.g. intracellular biochemical processes in crowded
conditions53 or multi-scale tissue dynamics including cell
movement, growth, adhesion, death, mitosis and chemotaxis54–56.
Some of these models have been shown to display non-
Markovian behaviour57. While here we showcased the ANN-
based method using non-Markovian delay CMEs, one could also
use for training, data generated by spatially resolved particle-
based simulations, as the examples above. The application of our
method would provide a master equation that effectively captures
stochastic dynamics at the population level of description and
avoids the pitfalls of commonly used analytical approximation
methods, e.g. mean-field approximations, to obtain reduced sto-
chastic descriptions.

Fig. 7 ANN-aided model approximation seamlessly integrates the inference of kinetic parameters and approximation of the delay CME by a NN-CME.
The unknown kinetic parameters can be treated in the same way as neural-network coefficients (weight and biases) and optimized to minimize the
objective function. Application to Model II. a Sketch of the computation of the 95% confidence interval (CI) of the inferred kinetic parameters. Blue areas
indicate the 95% confidence region, while the grey area shows the non-confidence region. Both solid and dashed red lines show the profile likelihoods (PLs)
of burst frequency α and burst size b, respectively (See SI Note 8 for details). b Inferred values of α and burst size b (dots), their 95% CIs (error bars) and
the true values (green lines) for five mammalian genes. Inference by using ANN-aided model approximation is robust against size of dataset: Dataset A
(blue, 100 snapshots and 104 cells) and Dataset B (red, 50 snapshots and 103 cells) produce similar results. c Quantile–quantile plots for the steady-state
distributions of the NN-CME and those obtained from the SSA; the linearity confirms that the ANN-aided model approximation can accurately approximate
the distribution using the NN-CME even when the optimization is over both the kinetic parameters and the neural-network coefficients. The rate constants
and other parameters related to the ANN’s training are specified in SI Table 1.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22919-1

10 NATURE COMMUNICATIONS |         (2021) 12:2618 | https://doi.org/10.1038/s41467-021-22919-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The experimental data shown as an inset in Fig. 4b can be found at https://doi.org/
10.5281/zenodo.4643094.

Code availability
The codes, readme file and data for ANN-aided model approximation can be found at
https://doi.org/10.5281/zenodo.4643094. The codes are implemented by Julia 1.4.2
and its package Flux v0.10.4, DifferentialEquations v6.15.0 and
DiffEqSensitivity v6.26.0.
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