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Optimizing Grouped Convolutions on Edge Devices
Perry Gibson∗, José Cano∗, Jack Turner†, Elliot J. Crowley†, Michael O’Boyle†, Amos Storkey†

∗University of Glasgow, UK †University of Edinburgh, UK

Abstract—When deploying a deep neural network on con-
strained hardware, it is possible to replace the network’s standard
convolutions with grouped convolutions. This allows for substan-
tial memory savings with minimal loss of accuracy. However,
current implementations of grouped convolutions in modern deep
learning frameworks are far from performing optimally in terms
of speed. In this paper we propose Grouped Spatial Pack Convolu-
tions (GSPC), a new implementation of grouped convolutions that
outperforms existing solutions. We implement GSPC in TVM,
which provides state-of-the-art performance on edge devices. We
analyze a set of networks utilizing different types of grouped
convolutions and evaluate their performance in terms of inference
time on several edge devices. We observe that our new implemen-
tation scales well with the number of groups and provides the best
inference times in all settings, improving the existing implementa-
tions of grouped convolutions in TVM, PyTorch and TensorFlow
Lite by 3.4×, 8× and 4× on average respectively. Code is
available at https://github.com/gecLAB/tvm-GSPC/

I. INTRODUCTION

The deployment of deep neural networks onto mobile and
embedded edge devices (e.g. IoT boards, smartphones, robots,
drones, etc) has been relatively slow due to the resource
constraints under which these devices operate. Big, memory-
intensive neural networks typically perform poorly on edge
devices. Because of this, there is a wealth of work concerned
with compressing these networks. However, the predominant
focus on the machine learning side of the problem, where
the main performance metric considered is accuracy, has led
to a proliferation of methods with promising compression
results but non-trivial implications for hardware efficiency.
That is, many neural architecture compression techniques may
not work as expected at the system level where one of the
main metrics considered is the inference time. Turner et al. [1]
demonstrated that compression at the neural architecture level
may have negative effects further down the Deep Learning
Inference Stack, depending on the choices of algorithmic
transformation and the target hardware device.

Many compression techniques revolve around replacing the
standard convolutions in a neural network with grouped convo-
lutions [2]–[5]. These allow for substantial savings in memory
with minimal loss of accuracy, and are becoming increasingly
prevalent. However, when evaluating the implementation of
grouped convolutions present in current state-of-the-art deep
learning frameworks such as PyTorch [6], TensorFlow Lite [7]
and TVM [8], we observe that the measured inference times
are far from the expected ones. Figure 1 shows an initial
experiment where we run WideResNet models using standard
(S) and grouped convolutions (G) on the CPU of the Hikey
970 board for the previous frameworks (note that we use G(g)

Fig. 1: Inference time for WideResNet models using standard (S) and grouped
convolutions (G) on the CPU of the Hikey 970 board for three common deep
learning frameworks. No framework shows the expected behavior: i) faster
execution than standard when using grouped convolutions, G(g) where g is
the number of groups; ii) the time decreases as the number of groups increases.

to denote a grouped convolution using g groups). As we can
see, none of the frameworks provides the theoretical expected
behavior, that is: i) models using grouped convolutions should
execute in less time than the initial model implementing stan-
dard convolutions (S), since the overall number of Multiply-
Accumulate (MAC) operations decreases when using groups
(see Section II); ii) as the number of groups increases (i.e. 2, 4,
8, etc), the number of MACs decreases and thus the execution
time should also decrease.

Motivated by Figure 1, we propose a new implementation
of grouped convolutions, that we call Grouped Spatial Pack
Convolutions (GSPC), which: i) outperforms all the previous
implementations of grouped convolutions present in current
deep learning frameworks; ii) brings us closer to the theoretical
optimal performance level according to the reduction in the
number of MAC operations. As we will see in Section IV,
although the behavior of our solution is consistent, there is still
a small gap with respect to the theoretical expected times (we
leave the investigation of this for future work). Note that since
TVM is currently considered the state-of-the-art framework in
terms of inference performance on edge devices, we integrate
our GSPC implementation into the TVM source code.

The contributions of this paper are as follows:
• We propose a new algorithm for grouped convolutions,

GSPC, and implement it in TVM.
• We evaluate the performance of GSPC using different

network models on the CPU of several edge devices.
• We compare GSPC against implementations of grouped

convolutions present in widely used deep learning frame-
works, and we show that our solution outperforms them.

• We quantify the performance gap between the theoreti-
cally expected inference times and the measured ones.
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Fig. 2: Standard vs. grouped convolutions: (a) In a standard convolution S,
each filter is convolved with all of the input’s channels; (b) In a grouped
convolution with two groups G(2), half of the filters are applied to each half
of the input for a 2× reduction in parameters used. More generally, a grouped
convolution with g groups uses g× fewer parameters.

We briefly describe grouped convolutions in Section II. In
Section III we discuss our GSPC and the details of the specific
implementation in TVM. Section IV shows our experimental
setup and a performance evaluation of several networks with
grouped convolutions on three edge devices, discussing the
time/accuracy trade off, analyzing different implementations
on TVM and comparing GSPC with other existing imple-
mentations of grouped convolutions. In Section V we discuss
previous related works. Finally, Section VI concludes the paper
and briefly discusses potential ideas for future work.

II. COMPRESSION VIA GROUPED CONVOLUTIONS

Many works [2]–[5], [9], [10] have demonstrated the effi-
cacy of replacing standard convolutions S with grouped con-
volutions for network compression. We denote these grouped
convolutions as G(g) where g is the number of groups. This
allows for a trade off between increased model compression
against reduced accuracy as we increase g.

Consider a standard convolution as depicted in Figure 2(a):
its input consists of Cin channels. Each of Cout filters is
convolved with all of these input channels to produce a single
channel filter output. These outputs are concatenated to give
the Cout channel output of our convolution. Each filter uses
Cin×Kh×Kw parameters, where Kh×Kw is the kernel size
of our filters. As we have Cout filters in total then the overall
parameter cost is Cout × Cin ×Kh ×Kw.

Now, consider instead the case where half of our Cout filters
are convolved with the first Cin/2 channels of the input, and
the other half of our filters are convolved with the second
Cin/2 channels of the input, as depicted in Figure 2(b). Our
filters now only use half as many parameters since each is
now of size Cin/2×Kh×Kw. This is a grouped convolution
using two groups, and the total parameter cost is two times
less than a standard convolution. For g groups the parameter
cost is reduced by a factor of g. A disadvantage of this
grouping is that this prevents channels from mixing across
groups; to counter this, practitioners typically follow grouped
convolutions with a pointwise (kernel size 1) convolution [2],
which incurs an additional Cout × Cout parameter cost.

III. GROUPED SPATIAL PACK CONVOLUTIONS

A. Motivation

There are a number of popular algorithms that imple-
ment standard convolutional layers in neural networks, with
a myriad of trade-offs. For example, direct convolution is
the simplest conceptually, requiring no data reshaping, and
processes data using the “sliding window” that the convolution
operation is often described as. Other approaches like GEMM
convolution reshape and sometimes expand inputs or weights
(which can improve performance by improving the locality of
data), however this increases memory footprint and the reshape
stages may have a non-negligible contribution to the inference
time. For grouped convolutions, the algorithms available and
their potential trade-offs have been explored less.

In TVM, the algorithm used for grouped convolutions on
CPUs is grouped direct convolution. This is a variant of
the standard direct convolution algorithm, and similarly has
the advantage of requiring no additional memory footprint.
However, without any reshaping of data or weights, it suffers
from poor data locality, and thus performance can be sub-
optimal, especially for large layers since parameters may need
to be reloaded from higher levels of cache. For this reason,
direct convolution is rarely used as the algorithmic primitive
for standard convolutional layers. However their effectiveness
for grouped convolutions may have different considerations.

If we observe Figure 1, we see that TVM’s grouped direct
convolution scales well as the number of groups increases,
and outperforms both PyTorch and TensorFlow Lite for large
values of g. This scaling makes sense since the increased g
reduces the number of MACs for grouped convolutional layers
in the model. However, we observe that the time for G(2),
which reduces by 60% the number of MACs, is 4× slower than
the S model in TVM. Given the poor performance of G(2), it
is clear that an alternative approach to grouped convolutions
is required to realize the potential performance improvements
derived from the reduction in the number of MACs.

In this paper, we propose grouped spatial pack convolutions
(GSPC), for the common NCHW data layout1. We modify
and extend the spatial pack convolutions (SPC) algorithm
described in [11], which does not cover grouped convolutions.
Like SPC, GSPC reshapes data, kernels, and outputs to exploit
data locality for the computation. Our extension splits and
computes data along an additional outer dimension for groups.
Since there is no data dependency between groups, this outer
dimension can be leveraged to efficiently divide data between
processing cores. We implement the algorithm using TVM’s
tensor compute language, as it is portable across a wide
variety of platforms, and can generate code which achieves
state-of-the-art performance on many common deep learning
benchmarks. We favored implementing the GSPC algorithm
in TVM, since the predictable scaling of its default grouped
convolutions suggests that TVM’s code generator would be
more likely to give us reasonable scaling.

1Input and output data are 4D arrays in row-major order, where N is the
batch size, C is the number of channels, H and W are height and width.



Fig. 3: Overview of GSPC using a concrete example: two groups, four filters, four input channels, strides of one, and no input padding. Note that the input
size is 1× 4× 2× 2, the kernels size is of dimension 4× 2× 2× 2 and numbers represent indices in the NCHW format.

B. General description

At a high level, GSPC is comprised of four stages. We
expect a 4D input volume of size NCinHinWin, 4D kernels
of size CoutCin/gKhKw, and a 4D output volume of size
NCoutHoutWout

2. GSPC reshapes this data to improve local-
ity. The reshape has two values which represent tile size: TO

and TI , the former for tiling across output channels and the
latter for tiling across input channels. Note that data in the
same tile is related, and thus can enable further optimizations
such as vectorization. We define KPG to be the number of
kernels per group, and CPG as the number of input channels
per group. The four stages of the GSPC algorithm are:

• Reshape 4D kernels into a new 7D volume:
CoutCin/gKhKw → gbKPG

TO
cbCPG

TI
cKhKwTITO.

• Reshape 4D padded input data into a new 6D volume:
NCinHinWin → gNbCPG

TI
cHinTIWin.

• Perform the grouped convolution using the 7D weights
and 6D inputs, storing the output in a temporary
6D volume. The computed 6D volume is of shape
gNbKPG

TO
cHoutWoutTO.

• Reshape the 6D output volume to the desired 4D output.
The kernel reshaping stage can be computed ahead of time

and stored on disk in lieu of the default layout, since it does
not depend on the input data. By reordering our weights and
inputs, we can improve the memory locality of our computa-
tion, which can reduce the cost of loads for elements being
computed on. Similarly, accumulating the convolution on a 6D
intermediate array, and reshaping to 4D output is preferable
to accumulating directly onto 4D as improved locality can
improve cache behavior. The tile sizes are constrained by:

0 < TO ≤ KPG

0 < TI ≤ CPG
(1)

2These are standard layouts used for image data in convolutional neural
networks. The in and out subscripts indicate input and output dimensions
respectively. The Cin/g dimension of the weights is one gth of the input
dimensions (the number of parameters decreased as g increases).

However, the ideal values for these tiles can vary. In the
description of the stages of GSPC, observe that the inner
dimension of the reshaped kernels and the intermediate outputs
is TO. Thus, the SIMD lane size for the target CPU can be a
reasonable default for TO, since data in the inner dimension
is adjacent in memory and can thus be easily vectorized.

Figure 3 illustrates the GSPC algorithm with an example.
We use tile sizes TO = TI = 2, as these are the maximum
values allowed by the constraints (1). The initial data layout is
shown on the left, with the channels split by group for clarity.
The 6D and 7D volumes are shown flattened. We observe
how the input data and kernels are reshaped to improve data
locality. Even in the original data layout, data is divided
between groups and the GSPC reshape stages maintain this
division. The MAC operations can be ordered to reduce the
number of loads for each tile. In this example, each input
value is used twice, thus computing these MACs together is a
load-efficient approach. The outputs reshaping stage is trivial
in this case due to the small output size, and thus from a 1D
memory perspective the reshape is the identity. In the case of
depthwise convolution, output reshaping is also the identity,
which saves N × Cout ×Hout ×Wout copy operations.

Algorithm 1 describes the grouped spatial pack convolutions
for the NCHW layout. The stride hyperparameter is defined with
Sh, Sw. Note that the number of input and output channels
should be divisible by the number of groups, so we can evenly
split data between the groups. The costs of the complex index
arithmetic is reduced by TVM’s ahead-of-time compilation for
individual workloads. This means that expressions involving
constants are simplified, which greatly reduces the number of
computations at runtime.

The main loop of kernel reshaping (lines 2 − 4) is nested
with depth 7, with each loop representing a dimension of the
reshaped kernel volume. The same is true for inputs reshaping
(6− 8), with a nested loop depth of 6. The main convolution
loop (10−18) is over the 6 dimensions of the temporary output
volume, with an additional 3 loops over CPG and the kernel
dimensions. For performance, these loops can be reordered.



Algorithm 1 Grouped Spatial Pack Convolutions (GSPC)
X : inputs of shape NCinHinWin

W : kernels of shape CoutCin/gKhKw

TI , TO: Tile sizes (constrained by equation 1)
KPG← Cout

g
, CPG← Cin

g

Kernels Reshaping
1: Allocate W ′ of dimension gbKPG

TO
cbCPG

TI
cKhKwTITO

2: for Dimensions of W ′ : j, k, c, h, w, ci, co do
3: w ←W [c× TO + co+ j × KPG][c× TI + ci][h][w]
4: W ′[j][k][c][h][w][ci][co]← w

Inputs Reshaping
5: Allocate X ′ of dimension gNbCPG

TI
cHiTIWi

6: for Dimensions of X ′ : j, n, C, h, c, w do
7: x← X[n][C × TI + c+ CPG× j][h][w]
8: X ′[j][n][C][h][c][w]← x

Perform convolution
9: Allocate Y ′ of dimension gNbKPG

TO
cHoWoTO

10: for Dimensions of Y ′: j, n, occ, oh, ow, ocv do
11: y ← 0
12: for c = 0 to CPG do
13: for kh = 0 to Kh do
14: for kw = 0 to Kw do
15: x ← X ′[j][n][b ic

TI
c][oh × Sh + kh][c mod

TI ][ow × Sw + kw]
16: w ←W ′[j][occ][b ic

TI
c][kh][kw][c mod TI ][ocb]

17: y += x× w

18: Y ′[j][n][occ][oh][ow][ocb]← y

Outputs Reshaping
19: Allocate Y of dimension NCoutHoutWout

20: for Dimensions of Y : n, c, h, w do
21: y ← Y ′[b c

KPGc][n][b
c

TO
c mod bKPG

TO
c][h][w][(c mod

TO) mod KPG]
22: Y [n][c][h][w]← y

C. Description of TVM compute and schedules

We implement GSPC in TVM3, as it generates efficient code
for tensor programs, provides the best time for the S model,
and scales well as g increases, despite the poor performance
of G(2). Figure 4 gives an overview of the TVM stack.
Expressing new algorithms in TVM has two main stages.

The first stage is describing the algorithm in TVM’s com-
pute language. This is conveniently accessed via a Python
API. These compute descriptions are used to generate TVM
intermediate representation (IR) code which can be compiled
to a variety of backends such as LLVM, OpenCL, and CUDA.
The algorithm implementation can be used as part of a
computation graph generated from a neural network definition.

The second stage is manipulating the generated intermediate
representation of the code to improve performance. This uses
TVM’s schedule language, which is also accessible via a
Python API. A schedule is a set of transformations applied
to the IR for a given algorithm, and can be specialized for
a given platform (e.g. CUDA, x86, ARM CPU, etc). This
includes primitives for applying loop unrolling, loop fusion,
loop fission, loop reordering, vectorization, and parallelization.

3The source code is available at https://github.com/gecLAB/tvm-GSPC/

Fig. 4: Overview of the relevant parts of TVM’s stack. Light boxes are
provided by us: including the benchmark models, and the definition for GSPC.
Dark boxes are unaltered parts of the TVM compiler infrastructure.

A well designed schedule is key in reaching near optimal
performance. In our experience, even small changes in the
schedule have yielded large changes in the speed of the gen-
erated code, sometimes by an order of magnitude. However,
the potential for improvement from a schedule is constrained
by properties of the underlying algorithm. For example, the
poor data locality of the standard direct convolution algo-
rithm means that only modest improvements can be achieved.
Whereas in some algorithms, for example GSPC, even simple
transformations can yield large performance improvements.
We reorder the nested loops of the convolution to make TO

the innermost loop. This can be leveraged for vectorization,
hence why TO is set to the SIMD lane size of the target CPU
by default if this is permitted by the constraint.

The schedule language includes primitives to expose various
aspects of the schedule as tunable parameters that can be
adjusted for different data shapes on a given platform to
improve performance. For example, exploring loop reordering
may reduce inference time for some layer configurations but
not others, or unrolling an inner loop may or may not give
a performance boost depending on the number of iterations.
A strength of TVM is the autoTVM project [12], which
allows exploration of this tuning space (autotuning) to improve
inference time performance for target architectures. For large
models, the autotuning process is very time consuming, as the
search space can be very large (e.g. individual models can
take hours to tune, especially on constrained edge devices).
Some autotuning algorithms can also get stuck in suboptimal
manifolds of the search space and require restarting. More
efficient autotuning, including the use of transfer learning to
reuse knowledge about successful configurations for similar
platforms or data shapes, is an area of active research.

Tuning parameters exposed by our GSPC schedule include
varying the tile sizes, and optionally unrolling the Kw loop
of the convolution stage. There may be scope for additional
improvements to the GSPC schedule, which could further
reduce inference time. For example, a potential optimization
could investigate the impact of interleaving portions of the
reshaping and computation stages to reduce the footprint of
the intermediate arrays by reusing a subset of their memory.



TABLE I: Hardware features of the devices used in the experiments.

Device CPU L1 Cache (I+D) L2 (+L3) Cache RAM Instruction Set
Desktop Intel i7-8700 (6 cores) @ 3.2 GHz 192K + 192K 1.5M (+12M) 16GB DDR3 x86 64-bit

HiKey 970 Arm Cortex-A73 (4 cores) @ 2.4 GHz 256K + 256K 2M shared 6GB LPDDR4 ARMv8-A 64-bit
Arm Cortex-A53 (4 cores) @ 1.8 GHz 128K + 128K 1M shared

Raspberry Pi3B Arm Cortex-A53 (4 cores) @ 1.2 GHz 64K + 64K 512K shared 1GB LPDDR2 ARMv8-A 64-bit

IV. EVALUATION

A. Experimental setup

1) Datasets and Networks: We consider two datasets
widely adopted for image classification tasks, CIFAR-10 [13]
and ImageNet [14], and we use the float32 type to represent
data values. We evaluate three deep neural network models,
WideResNet-40-2 and ResNet-34 which are good representa-
tives of residual network types, and MobileNetV2 which is
a widely used model for edge devices. Some details of these
models are the following:

• WRN-40-2: we use a Wide Residual Network (WRN)
[15] with 40 layers and width-multiplier 2 that requires
2.2 million parameters. We use the network as defined
for CIFAR-10 classification.

• ResNet-34: we use a Residual Network with 34 layers
[16] that requires 21.8 million parameters. We use the
ImageNet definition of the network.

• MobileNetV2: we use a Mobile Network [3] with 53
layers that requires 3.5 million parameters. We use its
original ImageNet definition.

We train networks for the previous three models where the
standard convolutions are replaced with a grouped convolution
followed by a pointwise standard convolution (as discussed in
Section II). We consider the following grouped convolutions:
G(g) ∀ g ∈ {2, 4, 8, 16, N}, where N is the number of
input channels to each convolution. Note that the default
architecture of MobileNetV2 uses g = N , so the original
architecture is actually the MobileNetV2 G(N) model. Also
note that although pointwise convolutions incur a parameter
cost, their inference time is negligible relative to grouped
convolutions. This is because the operation is equivalent to a
matrix multiplication over inputs and parameters, with a low
number of MACs, and no data reshaping is required.

For WRN-40-2 and ResNet-34, networks were trained with
attention transfer [17] on 1 and 4 NVIDIA TITAN X GPUs
for 200 and 100 epochs respectively using Stochastic Gradient
Descent (SGD) with momentum 0.9 to minimize cross-entropy
loss, learning rate of 0.1 and weight decay 0.0005 (WRN-
40-2) and 0.0001 (ResNet-34). For MobileNetV2, we trained
networks with varying values of g on 1 NVIDIA TITAN RTX
GPU for 150 epochs using SGD with momentum 0.9, learning
rate of 0.05 and weight decay 0.0004.

2) Hardware platforms: The platforms used in this work
are listed in Table I. There are two edge boards (Hikey 970,
Raspberry Pi3B) that include both CPU and GPU, however in
this work we focus on CPU evaluation, and we leave GPU
investigation for future work. We also analyze a standard

TABLE II: Inference time in ms for WRN-40-2 models with standard (S) and
grouped (G) convolutions when running on the platforms in Table I.

Model Params MACs Top1 Desktop HiKey RPi3
S 2242.26K 328.30M 4.79 8.23 65 811

G(2) 1357.68K 198.15M 4.87 9.20 51 530
G(4) 813.36K 118.52M 5.00 5.84 34 307
G(8) 541.20K 78.71M 5.05 4.65 24 199
G(16) 405.12K 58.80M 5.13 4.51 20 158
G(N) 292.22K 44.83M 6.57 2.14 16 122

TABLE III: Inference time in ms for ResNet-34 models with standard (S)
and grouped (G) convolutions when running on the platforms in Table I.

Model Params MACs Top1 Desktop HiKey RPi3
S 21.79M 3.67G 26.73 107 1096 7466

G(2) 13.22M 2.25G 26.13 99 636 5700
G(4) 8.14M 1.39G 26.58 62 426 3334
G(8) 5.60M 0.97G 27.24 41 304 2344
G(16) 4.34M 0.75G 27.99 34 259 1749
G(N) 3.13M 0.56G 30.16 23 204 1285

TABLE IV: Inference time in ms for MobileNetV2 models with standard (S)
and grouped (G) convolutions when running on the platforms in Table I.

Model Params MACs Top1 Desktop HiKey RPi3
S 44.05M 5.56G 26.03 166 1207 13770

G(2) 23.75M 2.92G 25.90 135 776 7603
G(4) 13.59M 1.60G 26.34 75 733 4608
G(8) 8.52M 0.95G 26.84 47 495 2625
G(16) 5.98M 0.62G 27.06 37 429 1808
G(N) 3.50M 0.31G 28.20 15 134 812

desktop CPU. Therefore, we evaluate Arm and Intel processors
that implement two different instruction set architectures with
frequencies ranging from 1.2GHz to 3.2GHz. Note that the
CPU of the Hikey board implements the big.LITTLE [18]
architecture (4 big cores + 4 LITTLE cores), but in this work
we only use the big cores. Finally, the memory hierarchy
varies significantly across platforms. All these features give
us a diverse set of configurations for evaluation.

B. Speed vs Accuracy analysis

Tables II, III and IV show the inference time in milliseconds
for all the network models considered using standard (S) and
grouped (G) convolutions for WRN-40-2, ResNet-34 and Mo-
bileNetV2 respectively when running on the three platforms
under study4 using our GSPC implementation in TVM. The
tables also show the total parameter cost, the number of MACs,

4Note that all times are for 1 thread execution, since we verified that threads
affect quite differently the performance of each platform, thus not providing
a completely fair comparison. We leave the threads analysis for future work.



(a) WRN-40-2 (b) ResNet-34 (c) MobileNetV2

Fig. 5: Inference time in ms for network models with standard (S) and grouped (G) convolutions when running on the CPU of the Hikey 970 board. We
compare the measured and expected times of our GSPC and the default TVM implementation for both tuned and untuned versions of the code.

and the Top1 error of each network model. The number of
MACs is obtained with the following formula:

MACs =
N × Cin × Cout ×Kh ×Kw ×Hout ×Wout

g
(2)

where N is the batch size (N = 1 for all experiments),
Cin is the number of input channels, Cout is the number of
output channels, Hout and Wout are the height and width of
the layer’s output respectively, Kh ×Kw is the kernel size of
each convolution, and g is the number of groups.

As we can see in the tables, the reduction in the number of
parameters, and thus the number of MACs, derived from using
grouped convolutions provides between ~4-17× of speedup
in the inference time across platforms and networks, the
Raspberry Pi device and the MobileNetV2 network being the
combination that provides the highest improvements. We also
observe that on the desktop the inference time for G(2) is
not reduced with respect to the corresponding S model as
on the other two platforms, it even increases for WRN-40-2.
However, the time decreases for every subsequent G model.
This observation suggest that the schedule is not properly
optimized for the Intel x86-64 architecture of the desktop. In
TVM, the schedules can be optimized for a given hardware
architecture and the default S model is taking advantage of
this, as we checked that it has schedules for both Intel and
Arm architectures. However, we optimized the schedule of our
GSPC code primarily for the Hikey platform, as we performed
most of our experiments on it. Optimizing GSPC for the Intel
architecture should provide better times for the G models, but
we leave this optimization for future work.

Related to the accuracy of the models, we see in Tables II,
III and IV that the increase in Top1 error can vary from almost
2% for WRN-40-2 to 3.5% for ResNet-34 when we compare
the S and G models. We also see that the overall error is much
higher for the models using the ImageNet dataset (~30% vs
~7%), since a 1000-way classification is harder than a 10-way
one. Therefore, these results provide different options to the
user for selecting a model based on the time/accuracy trade
off. The best solution for a given application will depend on
its specific requirements and the hardware platforms available.
For example, if the target platform is very constrained like the
Raspberry Pi, it could be better to sacrifice some accuracy in

favor of speeding up the inference time. However, for a more
powerful platform like the desktop it can be better to maximize
accuracy, as the all times are below 166ms.

C. TVM analysis

Figure 5 shows the Measured versus the Expected5 inference
time for all the models considered for the three networks
under study when running on the Hikey 970 platform. We
compare GSPC with the default implementation of grouped
convolutions in TVM, and we consider the tuned (i.e. we
use the autoTVM [12] tool mentioned in Section III-C) and
untuned versions of the code in both cases. Note that the times
in Tables II, III and IV correspond to GSPC untuned times.
The reason is that the tuning process is very time consuming
and error prone, especially in constrained devices. Based on
our tuning experience on the Hikey board, we estimate that
getting the required tuned times on the Raspberry Pi board
using the same number of tuning iterations would take weeks.
Our key observations in Figure 5 are as follows:

• GSPC improves the times of the default TVM imple-
mentation of the G(2)-G(16) models for the three net-
works for both tuned and untuned versions of the code.
However, for G(N) the default TVM implementation
is slightly better than GSPC (~5-22% across networks)
for the untuned version. Initially, we thought that the
most likely reason for that could be the overhead created
by the reshaping stages of GSPC, which for G(N) are
maximized relative to the computation time. However, we
optimized these reshaping stages for our G(N) models
and we obtained the current differences. We leave for
future work to investigate this problem further.

• When we consider the tuned versions of G(N), GSPC
provides better times than the default TVM implemen-
tation (~3-34% across networks). However, note that
for MobileNetV2 the tuned times that we obtained for
the default TVM implementation were worse than the
untuned ones for all G models. For this reason, in Figure
5c the tuned times are the same as the untuned ones. We
could not find an explanation for this strange result, but
we double-checked it running the tuner several times.

5Computed from the inference time of the S model on a given platform by
obtaining the time of a single MAC operation and then extrapolating.



(a) WRN-40-2 (b) ResNet-34 (c) MobileNetV2

Fig. 6: Inference time in ms for network models with standard (S) and grouped (G) convolutions when running on the CPU of the Hikey 970 board. We
compare the tuned version of GSPC and default TVM against PyTorch and TensorFlow Lite.

• There are differences between the expected and measured
times for both tuned and untuned versions across all G
models and networks. This performance gap is ~7-99%
for untuned and ~27-72% for tuned versions respectively.
Note that the expected times are theoretical estimations
based on the structure of the code for the standard con-
volution, which should not be considered as true optimal
values. In some cases, it can be possible to outperform
the expected time (see G(2) in Figure 5b), for reasons
such as more data fitting in a lower level of cache.

Overall, our GSPC implementation is on average 3.4× faster
than the default TVM code for all the tuned/untuned G models.

D. Frameworks comparison

Figure 6 shows the inference time of GSPC and other imple-
mentations of grouped convolutions in current deep learning
frameworks for all the G models of the three networks under
study when running on the CPU of the Hikey board. The figure
also shows the times for the S models. We consider the tuned
version of both GSPC and default TVM. The other frameworks
analyzed are PyTorch [6] and TensorFlow Lite [7].

As we can see, GSPC provides the best results for all the G
models of the three networks, clearly outperforming the default
TVM and the other two frameworks, up to 8× and 4× better
than PyTorch and TensorFlow Lite respectively. To the best of
our knowledge, GSPC is the most efficient implementation,
in terms of inference time, of grouped convolutions available.
We also observe that TensorFlow Lite performs much better
than PyTorch for all the G models of WRN-40-2 and for the
G(2)-G(16) models of ResNet-34, whereas PyTorch is better
for G(N) of ResNet-34 and all the G models of MobileNetV2.
However, none of these frameworks scales as expected for the
G models according to the number of MAC operations.

V. RELATED WORK

It is well-established that many modern neural networks are
over-parameterized for inference [19]. A focus on achieving
state-of-the-art results has led to bloated network architectures
with diminishing returns when new parameters are added [20].
Given that most of the energy consumption and execution
time in such networks is dedicated to convolution [21], it
is desirable to reduce convolutional over-parameterization for
use in resource-constrained settings. One popular method to

exploit parameter redundancy is to split standard convolutions
into groups along the channel dimension. These grouped
convolutions first appeared in AlexNet [22] due to GPU
memory constraints, and have since featured prominently in
the network compression literature [2]–[5], [9].

As the number of groups is increased, the parameter cost
of a grouped convolution decreases at the expense of repre-
sentational capacity. In the extreme case where there are as
many groups as there are convolutional channels we obtain
depthwise convolutions. In MobileNets [2] for example, the
authors replace standard convolutions with pairs of depthwise
convolutions and pointwise (1 × 1) convolutions, the latter
of which allows for channel mixing to restore capacity. The
technique is known as depthwise separable convolutions [23].
Similarly, in [4] the authors take the standard block used in
ResNets [16] consisting of two standard convolutions, and
replace each convolution with a grouped and pointwise pair.
The number of groups can be varied to trade off accuracy
against parameter total.

However, leveraging parameter reductions into better hard-
ware performance remains difficult. Many frameworks trans-
form convolution into matrix-matrix multiplication in order to
exploit pre-existing, highly optimized subroutines [24], which
may not be composable with any dimensionality perturbations
caused by cheapening. Only recently has attention turned to
direct convolution itself [25], and though code generation
frameworks promise performance portability for custom con-
volutions [8], [26]–[28], they have been shown to lack the
generality required to adopt such radical neural architecture
changes to a vast hardware landscape [29].

Common approaches to convolution include direct convo-
lution, Winograd convolution [30], and GEMM convolution.
Winograd convolution involves mapping data into Fourier
space to allow multiplications to become additions. GEMM
convolution is especially popular on GPUs, where the input
data is expanded and reshaped using a method known as
im2col, so that convolution can be computed as a well opti-
mized matrix multiplication with libraries such as OpenBLAS
[31] and ATLAS [32]. TVM’s default approach to standard
convolution on the CPU is an algorithm known as spatial
packed convolution (SPC), described in [11]. Tradeoffs in
performance can vary across platforms and architecture.



VI. CONCLUSION

In this paper we have proposed Grouped Spatial Pack
Convolutions (GSPC) as a new and more efficient imple-
mentation of grouped convolutions. We have implemented
GSPC in TVM, which provides state-of-the-art performance
on edge devices. We have evaluated several network models
implementing grouped convolutions for two datasets on three
edge devices with different hardware architectures. We have
also compared our implementation against existing solutions
in current deep learning frameworks, outperforming them in
all settings. Finally, we observed that even though models
based on grouped convolutions significantly improve the per-
formance of the initial standard model, the expected inference
time, based on the number of MAC operations, does not
translate into measured performance. We leave to further study
this performance gap for future work. We also leave for future
work to analyze the performance of GSPC on the big.LITTLE
[18] architecture and embedded GPUs (e.g. Arm Mali) present
in current edge devices. Additionally, translation of other
approaches to standard convolution into the group convolution
domain, e.g. Winograd, and investigation of their performance
trade-offs across different benchmarks and devices. Finally,
considering power [33] is also an area for future research.
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