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SUMMARY 27 

The human genome encodes thousands of non-coding RNAs.  Many of these terminate 28 

early and are then rapidly degraded, but how their transcription is restricted is poorly 29 

understood.  In a screen for protein-coding gene transcriptional termination factors, we 30 

identified ZC3H4.  Its depletion causes upregulation and extension of hundreds of unstable 31 

transcripts, particularly antisense RNAs and those transcribed from so-called super-32 

enhancers.  These loci are occupied by ZC3H4, suggesting that it directly functions in their 33 

transcription.  Consistently, engineered tethering of ZC3H4 to reporter RNA promotes its 34 

degradation by the exosome.  ZC3H4 is predominantly metazoan - interesting when 35 

considering its impact on enhancer RNAs that are less prominent in single-celled organisms.  36 

Finally, ZC3H4 loss causes a substantial reduction in cell proliferation, highlighting its overall 37 

importance.  In summary, we identify ZC3H4 as playing an important role in restricting non-38 

coding transcription in multi-cellular organisms.  39 

 40 
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INTRODUCTION 56 

Most of the human genome can be transcribed by RNA polymerase II (Pol II).  57 

Among these transcripts are thousands of long non-coding RNAs, broadly classified as 58 

greater than ~200 nucleotides in length (Kopp and Mendell, 2018).  They share some 59 

structural features with coding transcripts, but most of them are rapidly degraded by the 60 

exosome (Davidson et al., 2019; Preker et al., 2008; Schlackow et al., 2017).  Their 61 

degradation is coincident with or shortly after transcriptional termination, which often occurs 62 

within a few kilobases (kb).  The mechanisms for terminating non-coding transcription are 63 

poorly understood, especially by comparison with those operating at protein-coding genes. 64 

Termination of protein-coding transcription is coupled to 3’ end processing of pre-65 

mRNA via cleavage at the polyadenylation signal (PAS) (Eaton and West, 2020).  A PAS 66 

consists of an AAUAAA hexamer followed by a U/GU-rich region (Proudfoot, 2011).  After 67 

assembly of a multi-protein processing complex, CPSF73 cleaves the nascent RNA and the 68 

Pol II-associated product is degraded 5’3’ by XRN2 to promote termination (Eaton et al., 69 

2018; Eaton et al., 2020; Fong et al., 2015).  The Pol II elongation complex is modified as it 70 

crosses the PAS, which facilitates its termination by XRN2 (Cortazar et al., 2019; Eaton et 71 

al., 2020).  Depletion of XRN2 or CPSF73 causes read-through downstream of some long 72 

non-coding genes (Eaton et al., 2020).  However, a substantial fraction of non-coding 73 

transcription is less sensitive to their depletion suggesting the use of alternative 74 

mechanisms.   75 

The Integrator complex aids termination of many non-coding transcripts, with the 76 

archetypal example being snRNAs (Baillat et al., 2005; Davidson et al., 2020; O'Reilly et al., 77 

2014).  Integrator is also implicated in the termination of promoter upstream transcripts 78 

(PROMPTs) and enhancer RNAs (eRNAs) (Beckedorff et al., 2020; Lai et al., 2015; Nojima 79 

et al., 2018).  The mechanism is analogous to that at protein-coding genes, driven by 80 

endonucleolytic cleavage by INTS11.  However, INTS11 activity does not precede XRN2 81 

degradation at snRNA genes (Eaton et al., 2018).  Moreover, while CPSF73 is indispensable 82 

for termination at protein-coding genes, there is evidence of redundant pathways at snRNA 83 

loci (Davidson et al., 2020).  Indeed, CPSF and the cap binding complex-associated factor, 84 

ARS2, are both implicated in the termination of promoter-proximal transcription (Iasillo et al., 85 

2017; Nojima et al., 2015).   86 

 A variety of processes attenuate transcription at protein-coding genes (Kamieniarz-87 

Gdula and Proudfoot, 2019).  Frequently, this is via premature cleavage and polyadenylation 88 

(PCPA) that can be controlled by U1 snRNA, CDK12, SCAF4/8 or PCF11 (Dubbury et al., 89 

2018; Gregersen et al., 2019; Kaida et al., 2010; Kamieniarz-Gdula et al., 2019).  PCPA is 90 
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common on many genes since acute depletion of the exosome stabilises its predicted 91 

products in otherwise unmodified cells (Chiu et al., 2018; Davidson et al., 2019).  Integrator 92 

activity also attenuates transcription at hundreds of protein-coding genes.  93 

A less-studied termination pathway at some intragenic non-coding regions is 94 

controlled by WDR82 and its associated factors (Austenaa et al., 2015).  In mammals, 95 

WDR82 forms at least two complexes: one with the SETD1 histone methyl-transferase and 96 

another composed of protein-phosphatase 1 and its nuclear targeting subunit PNUTS (Lee 97 

et al., 2010; van Nuland et al., 2013).  A version of the latter promotes transcriptional 98 

termination in trypanosomes (Kieft et al., 2020) and the budding yeast homologue of 99 

WDR82, Swd2, forms part of the APT (associated with Pta1) termination complex (Nedea et 100 

al., 2003).  In murine cells, depletion of either WDR82, PNUTS or SET1 causes non-coding 101 

transcriptional termination defects (Austenaa et al., 2015).  Notably, PNUTS/PP1 is 102 

implicated in the canonical termination pathway at protein-coding genes where its 103 

dephosphorylation of SPT5 causes deceleration of Pol II beyond the PAS (Cortazar et al., 104 

2019; Eaton et al., 2020). 105 

Here, we performed a proteomic screen for new termination factors by searching for 106 

proteins that bind to Pol II complexes in a manner that depends on PAS recognition by 107 

CPSF30.  This uncovered ZC3H4, a metazoan zinc finger-containing factor without a 108 

characterised function in transcription.  Because of the nature of our screen, we anticipated 109 

a role for ZC3H4 in 3’ end formation; however, its effects on this process are mild and apply 110 

to a small number of genes.  Its main function is to restrict non-coding transcription, 111 

especially of PROMPT and eRNA transcripts, which are extended by hundreds of kb when 112 

ZC3H4 is depleted.  ZC3H4 interacts with WDR82, the depletion of which causes similar 113 

defects.  Tethered function assays show that ZC3H4 recruitment is sufficient to restrict 114 

transcription and cause RNA degradation by the exosome.  In sum, we reveal ZC3H4 as a 115 

hitherto unknown terminator of promoter-proximal transcription with particular relevance at 116 

non-coding loci. 117 

 118 

RESULTS 119 

The effect of CPSF30 depletion on the Pol II-proximal proteome 120 

The first step of PAS recognition involves the binding of CPSF30 to the AAUAAA 121 

signal (Chan et al., 2014; Clerici et al., 2018; Sun et al., 2018).  We reasoned that 122 

elimination of CPSF30 would impede PAS-dependent remodelling of elongation complexes 123 

and cause the retention or exclusion of potentially undiscovered transcriptional termination 124 
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factors.  We used CRISPR/Cas9 genome editing to tag CPSF30 with a mini auxin-inducible 125 

degron (mAID) (Figure 1A).  The integration was performed in HCT116 cells where we had 126 

previously introduced the plant F-box gene, TIR1, required for the AID system to work 127 

(Eaton et al., 2018; Natsume et al., 2016).  CPSF30-mAID is eliminated by 3 hours of indol-128 

3-acetic acid (auxin/IAA) treatment (Figure 1B).  This results in profound and general 129 

transcriptional read-through downstream of protein-coding genes (Figure 1C and Figure 1- 130 

figure supplement 1A) demonstrating widespread impairment of PAS function. 131 

To identify Pol II interactions sensitive to CPSF30, we further modified CPSF30-132 

mAID cells to homozygously tag the largest subunit of Pol II, Rpb1, with mini(m)-Turbo 133 

(Figure 1D and Figure 1- figure supplement 1B).  mTurbo is an engineered ligase that 134 

biotinylates proximal proteins when cells are exposed to biotin (Branon et al., 2018).  This 135 

occurs within minutes of biotin addition to culture media, which is advantageous for 136 

analysing dynamic proteins such as Pol II.  We chose this approach rather than 137 

immunoprecipitation (IP) because it allows isolation of weak/transient interactions (potentially 138 

disrupted during conventional IP) and may identify relevant proximal proteins that do not 139 

interact with Pol II directly.  Importantly, CPSF30-mAID depletion still induced strong read-140 

through in this cell line (Figure 1 - figure supplement 1C).   141 

CPSF30-mAID:RPB1-mTurbo cells were exposed to biotin before western blotting 142 

with streptavidin horseradish peroxidase (HRP).  This revealed multiple bands with a 143 

prominent one corresponding in size to Rpb1-mTurbo and indicating the biotinylation of its 144 

proximal proteome (Figure 1E).  A small number of endogenously biotinylated factors were 145 

observed in the absence of biotin.  Biotin-exposed samples were subject to tandem mass 146 

tagging (TMT) with mass spectrometry.  We focused on proteins with reduced abundance 147 

after auxin treatment (Supplementary File 1).  The factor most depleted was CPSF30, 148 

confirming that its auxin-dependent depletion is reflected in the data (Figure 1F).  As 149 

expected, Rpb1 was the most abundant factor in all samples consistent with its self-150 

biotinylation seen by western blotting. After CPSF30, the most depleted factors were Fip1, 151 

CPSF100 and WDR33, which are in the CPSF complex.  Otherwise, surprisingly few 152 

proteins showed reduced signal following auxin treatment. This implies that the major effect 153 

of CPSF30 depletion on the Pol II-proximal interactome is to prevent the 154 

recruitment/assembly of the CPSF complex.   155 

 156 

ZC3H4 is a candidate transcription termination factor that is metazoan-enriched 157 

Two poorly characterised factors, ZC3H4 and ZC3H6, were the next most depleted.  158 

They contain CCCH zinc finger motifs flanked by intrinsically disordered regions (Figure 1 – 159 
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figure supplement 2A).  Their potential relationship to canonical 3’ end formation factors is 160 

suggested via known/predicted protein-protein interactions that are collated by the STRING 161 

database (Jensen et al., 2009) (Figure 1 – figure supplement 2B).  ZC3H4 is also co-162 

regulated with mRNA processing factors suggesting a role in RNA biogenesis (Figure 1 – 163 

figure supplement 2C; (Kustatscher et al., 2019)).  Although little is reported on ZC3H4, two 164 

independent studies uncovered it as an interaction partner of WDR82 using Mass 165 

Spectrometry (Lee et al., 2010; van Nuland et al., 2013).  WDR82 plays a key role in 166 

transcriptional termination in yeast, trypanosomes and mice (Austenaa et al., 2015; Kieft et 167 

al., 2020; Nedea et al., 2003).  To verify this interaction, we tagged ZC3H4 with GFP and 168 

performed a “GFP trap” whereby ZC3H4-GFP is captured from whole cell lysates using GFP 169 

nanobody-coupled beads (Figure 1 – figure supplement 2D).  WDR82 robustly co-170 

precipitated with ZC3H4-GFP confirming them as interacting partners.  Although WDR82 is 171 

conserved between human and budding yeast our phylogenetic analysis suggested that 172 

ZC3H4 and ZC3H6 are largely restricted to metazoans and are paralogues (Figure 1 - figure 173 

supplement 3A and B).   174 

 175 

ZC3H4 restricts non-coding transcription events 176 

To assess any function of ZC3H4 and/or ZC3H6 in RNA biogenesis we depleted 177 

either or both from HCT116 cells using RNA interference (RNAi) (Figure 2 figure supplement 178 

1A), then deep sequenced nuclear transcripts.  Comparison of these datasets shows that 179 

ZC3H4 loss has a more noticeable impact than ZC3H6 depletion (Figure 2 – figure 180 

supplement 1B).  Specifically, ZC3H6 depleted samples are more similar to control than 181 

those deriving from ZC3H4 loss and ZC3H4/ZC3H6 co-depletion resembles a knock-down of 182 

just ZC3H4.  This was also evident from closer inspection of the data (Figure 2 – figure 183 

supplement 1C), supporting the phylogenetic prediction of their separate functions.  184 

Accordingly, subsequent analyses focus on ZC3H4. 185 

Due to its links with CPSF30 and WDR82, we anticipated that ZC3H4 might affect 186 

transcriptional termination.  We first checked protein-coding genes and found a small 187 

number with longer read-through beyond the PAS when ZC3H4 is depleted (Figure 2A).  188 

However, broader analysis suggests that this is not widespread and far fewer genes exhibit 189 

increased read-through following ZC3H4 loss compared to when CPSF30 is absent (Figure 190 

2B and Figure 2 – figure supplement 2A-D).  Interestingly, the metagene in Figure 2B 191 

revealed slightly more signal antisense of promoters when ZC3H4 is depleted.  This 192 

indicates an effect on non-coding RNA, which is interesting in light of a previously described 193 

function for WDR82 in restricting intragenic transcription (Austenaa et al., 2015).  These 194 
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PROMPT transcripts are normally rapidly degraded  3’5’ by the exosome (Preker et al., 195 

2008).  Figure 2C shows an example PROMPT, upstream of MYC, which is undetectable in 196 

control siRNA treated cells, but abundant following ZC3H4 depletion.  Loss of ZC3H4 also 197 

leads to the extension of this transcript by more than 100 kilobases.  This is made clearer by 198 

comparing the loss of ZC3H4 to AID-mediated depletion of the catalytic exosome (DIS3) 199 

(Davidson et al., 2019).  DIS3 depletion stabilises the usual extent of PROMPT RNA, which 200 

is much shorter than when ZC3H4 is absent.  Importantly, meta-analysis reveals similar 201 

effects at many other PROMPTs (Figure 2D).  These data strongly suggest that PROMPT 202 

transcripts are stabilised and extended in the absence of ZC3H4, presumably because its 203 

normal function restricts their transcription.   204 

The finding that PROMPTs are affected by ZC3H4 suggested a role in the 205 

transcription/metabolism of antisense/non-coding RNAs.  We therefore extended our search 206 

for potential ZC3H4 regulated transcription to enhancer regions since they also produce 207 

short RNAs that are degraded by the exosome (Andersson et al., 2014).  eRNAs can be 208 

found in isolation and in clusters called super-enhancers (SEs) (Pott and Lieb, 2015).  SEs 209 

are thought to be important for controlling key developmental genes with strong relevance to 210 

disease (Hnisz et al., 2013).  ZC3H4 depletion has a clear effect over SE regions 211 

exemplified by the MYC SE where upregulation and extension of eRNAs is obvious (Figure 212 

2E).  Acute depletion of DIS3 illustrates the normally restricted range of individual eRNAs 213 

within the cluster.  This effect is general for other SEs as demonstrated by the metaplots in 214 

Figure 2F.  We also checked the effect of CPSF30 depletion on example PROMPT and SE 215 

transcription, which are very modest and consistent with the lack of antisense effect seen by 216 

metagene in Figure 1C (Figure 2 – figure supplement 2E).  Consistently, PROMPTs 217 

susceptible to ZC3H4 were not enriched in PASs compared to those unaffected by it and 218 

harbour a slightly lower density (Figure 2 – figure supplement 2F).  Overall, these data 219 

strongly suggest that ZC3H4 is important for regulating transcription across many PROMPTs 220 

and SEs.   221 

Comparison of ZC3H4 and Integrator effects 222 

 ZC3H4 has some functions in common with the Integrator complex.  This is a 223 

metazoan-specific assembly with regulatory functions at non-coding loci (Lai et al., 2015; 224 

Mendoza-Figueroa et al., 2020; Nojima et al., 2018).  We previously sequenced chromatin-225 

associated RNA derived from HCT116 cells RNAi depleted of the Integrator backbone 226 

component INTS1 (Davidson et al., 2020).  Chromatin-associated RNA is purified via 227 

urea/detergent extraction and is enriched in nascent RNAs (Wuarin and Schibler, 1994).  228 

Metagene analysis of this data at protein-coding genes shows a mild effect of Integrator 229 
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depletion over PROMPT regions (Figure 3A).  It also reveals an accumulation of promoter-230 

proximal RNAs in the coding direction consistent with a recent report on its function as an 231 

attenuator of protein-coding transcription (Lykke-Andersen et al., 2020).  Because of this 232 

function, Integrator depletion can lead to increased expression of a subset of mRNAs (Elrod 233 

et al., 2019; Lykke-Andersen et al., 2020; Tatomer et al., 2019).  HAP1 is an example of a 234 

gene where this is seen (Figure 3B).  Similarly, we saw evidence for increased mRNA 235 

expression on some genes when ZC3H4 was depleted (Figure 3C).  Interestingly these two 236 

genes are selectively effected by Integrator or ZC3H4 respectively and additional examples 237 

of this are shown in Figure 3 – figure supplement 1A.  Bioinformatic analysis revealed 238 

around 1000 genes affected by INTS1 or ZC3H4 depletion with little overlap between the 239 

two conditions (Figure 3D, Supplementary File 4).  Indeed, analysis of recently published 240 

metabolically labelled RNA-seq data from HeLa cells depleted of the catalytic Integrator 241 

subunit or ZC3H4 reveals several hundred upregulated mRNAs - also with minimal overlap 242 

(Austenaa et al., 2021; Lykke-Andersen et al., 2020) (Figure 3 – figure supplement 1B). 243 

When searching for characteristics of these targets in our HCT116 data, we found that 244 

transcripts upregulated following either ZC3H4 or INTS1 loss are normally expressed at 245 

lower levels than unaffected genes (Figure 3E).  This is consistent with the idea that they are 246 

subject to repression by these two factors under these experimental conditions.         247 

The most prominent effects of ZC3H4 were observed at PROMPT and SE regions 248 

where, again, Integrator is implicated (Lai et al., 2015; Nojima et al., 2018).  Where ZC3H4 249 

effects are evident over PROMPT regions, they are generally more substantial than those 250 

seen after Integrator loss, exemplified by the ITPRID2 PROMPT in Figure 3F and via meta-251 

analyses (Figure 3 – figure supplement 1C and D).  At SEs, ZC3H4 depletion generally 252 

results in a greater stabilisation and elongation of eRNA, compared to INTS1 knock-down, 253 

exemplified at the MSRB3 SE (Figure 3G).  Meta-analysis confirms less effect of INTS1 254 

depletion at SEs versus the impact of ZC3H4 (compare Figures 3H and 2F).  We note that 255 

these INTS1 data are on chromatin-associated RNA whereas ZC3H4 images are obtained 256 

from nuclear RNA.  However, as chromatin-associated RNA is more enriched in nascent 257 

transcripts this would be expected to capture more extended non-coding transcription and 258 

not less as is the case here.  Moreover, previously published analyses of Integrator effects 259 

on transcription do not report the long extended non-coding (PROMPT/eRNA) transcripts 260 

that we observe when ZC3H4 is depleted (Beckedorff et al., 2020; Lykke-Andersen et al., 261 

2020). 262 

 263 

Rapid ZC3H4 depletion and re-expression confirms the functions found by RNA-seq 264 
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 ZC3H4 RNAi suggests its widespread involvement in non-coding RNA synthesis and 265 

the regulation of a subset of protein-coding transcripts.  However, RNAi depletion was 266 

performed using a 72 hr protocol and might result in indirect or compensatory effects.  To 267 

assess whether these effects are a more direct consequence of ZC3H4 loss, we engineered 268 

HCT116 cells for its rapid and inducible depletion.  CRISPR/Cas9 was used to tag ZC3H4 269 

with an E.coli derived DHFR degron preceded by 3xHA epitopes (Figure 4A; (Sheridan and 270 

Bentley, 2016)).  In this system, cells are maintained in trimethoprim (TMP) to stabilise the 271 

degron, removal of which causes protein depletion.  Western blotting demonstrates 272 

homozygous tagging of ZC3H4 and that ZC3H4-DHFR is depleted following TMP removal 273 

(Figure 4B).  Depletion was complete after overnight growth without TMP but substantial 274 

protein loss was already observed after 4 hrs allowing us to assess the consequences of 275 

more rapid ZC3H4 depletion. 276 

 TMP-mediated depletion can also be reversed by its re-administration facilitating a 277 

test of whether ZC3H4 effects are reversed by its reappearance.  The western blot in Figure 278 

4C illustrates this by showing that TMP withdrawal depletes ZC3H4-DHFR, which re-279 

appears following 4 hrs TMP addition.  To ask whether ZC3H4 effects are an immediate 280 

consequence of its loss and if they are reversed following its re-appearance, RNA was 281 

isolated from the three conditions shown in the western blot.  This was analysed by qRT-282 

PCR to assess the levels of extended PROMPT (HMGA2, ITPRID2) and SE (MSRB3, 283 

DLGAP1) RNAs (Figure 4D).  All were increased following ZC3H4 loss suggesting that the 284 

effects that we observed by RNAi are not due to compensatory pathways.  Although 4 hr 285 

TMP re-administration does not restore ZC3H4 to full levels, it was sufficient to reverse the 286 

effects of its depletion at all tested amplicons.  The timescale over which the effect can be 287 

reversed suggests that transcripts induced by ZC3H4 loss remain relatively unstable.  Rapid 288 

ZC3H4 depletion also confirmed the prediction, from our RNA-seq, that the extended 289 

PROMPT transcripts result from the aberrant transcription of these loci (Figure 4 – figure 290 

supplement 1A and B). 291 

 Another key observation from our nuclear RNA-seq was the potential for ZC3H4 to 292 

restrict the levels of a subset of protein-coding transcripts.  The long-term nature of RNAi 293 

and its detection via nuclear RNA-seq means that it could be an indirect or post-294 

transcriptional effect, respectively.  To test whether mRNA upregulation is an immediate and 295 

transcriptional response to ZC3H4 loss, we isolated chromatin-associated RNA from ZC3H4-296 

DHFR cells grown with or without TMP for 4 hrs.  To additionally confirm their specificity to 297 

ZC3H4 (vs Integrator), we also depleted the catalytic Integrator subunit utilising our 298 

previously engineered cell line in which INTS11 is tagged with a small molecule assisted 299 

shut-off module (Chung et al., 2015; Davidson et al., 2020). qRT-PCR was used to detect 300 
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three transcripts (NWD1, ENO3 and PJVK) that were upregulated by ZC3H4 loss but not 301 

Integrator depletion.  Spliced versions of all three were increased after 4 hrs of ZC3H4 302 

depletion, but unaffected by loss of the catalytic Integrator subunit INTS11 (Figure 4E).  The 303 

effectiveness of INTS11 depletion is illustrated by the substantial increase in U1 snRNA 304 

read-through RNA in its absence.  This demonstrates that some mRNAs are immediately 305 

and selectively upregulated following ZC3H4 loss.     306 

We next asked whether the ZC3H4 interactor, WDR82, impacts the levels of 307 

PROMPT and SE transcripts.  Accordingly, ZC3H4-DHFR cells were treated with control or 308 

WDR82-specific siRNAs (Figure 4F).  We also co-depleted ZC3H4 and WDR82 by removing 309 

TMP from cells first transfected with WDR82 siRNAs.  WDR82 depletion enhanced the level 310 

of all tested transcripts suggesting that it functionally overlaps with ZC3H4 (Figure 4G).  311 

There was no synergistic effect of their co-depletion implying that WDR82 and ZC3H4 do not 312 

act redundantly at the tested loci.  WDR82 is found in complexes containing protein 313 

phosphatase 1 (PP1) and the SETD1A/B methyl transferases (Lee et al., 2010; van Nuland 314 

et al., 2013).  We found that the former but not the latter is implicated in the stability of the 315 

non-coding transcripts selected for this experiment (Figure 4 – figure supplement 1C-E).         316 

ZC3H4 occupies a broad region at a subset of promoters 317 

 We have demonstrated that depletion of ZC3H4 causes widespread defects in non-318 

coding transcription and supresses a subset of protein-coding RNAs.  As these effects are 319 

seen following rapid ZC3H4 depletion, we hypothesised that they may be directly mediated 320 

by its recruitment to relevant loci.  Consistently, its capture in our mTurbo experiment 321 

supports its proximity to chromatin and the presence of CCCH zinc finger domains predict 322 

nucleic acid binding capability.  Therefore, its genomic occupancy was globally investigated 323 

by performing ZC3H4 chromatin immunoprecipitation and sequencing (ChIP-seq) alongside 324 

that of Pol II.    325 

ZC3H4 occupies genes with binding broadly resembling that of Pol II and showing 326 

the greatest enrichment over promoter regions (Figure 5A).  However, many genes that are 327 

occupied by Pol II do not recruit ZC3H4 (Figure 5B).  This might result from low affinity of the 328 

ZC3H4 antibody or that its recruitment to chromatin is bridged since ZC3H4 also directly 329 

crosslinks to RNA in cells (Figure 5 – figure supplement 1A).  However, its differential gene 330 

occupancy is consistent with the selective effects of its depletion.  Interestingly, ZC3H4 331 

occupies a broader promoter region than Pol II suggesting that its function is not restricted to 332 

the precise transcriptional start site.  The width of this peak often corresponds to the normal 333 

extent of PROMPT and eRNA transcription, which is elongated in its absence.  RPL13 is 334 

shown as an example of recruitment of ZC3H4 upstream of the promoter, where its loss 335 
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causes stabilisation and extension of the antisense transcript (Figure 5C).  ZC3H4 is also 336 

strongly recruited to SEs consistent with the RNA effects observed on them following its loss 337 

(Figure 5D).  This is exemplified by the MSRB3 region and generalised by metaplots in 338 

figure 5E.  Although our analyses of eRNA and PROMPTs were guided by our RNA-seq 339 

findings, an unbiased search for peaks of ZC3H4 and Pol II signal confirmed proportionally 340 

greater ZC3H4 occupancy at distal intergenic regions (encompassing SEs) (Figure 5F). 341 

Overall, the HCT116 ChIP-seq demonstrates direct recruitment of ZC3H4 to potential 342 

targets.  One mentioned caveat is the low ChIP efficiency of the ZC3H4 antibody; however, 343 

a ZC3H4 ChIP-seq experiment was recently made available by the ENCODE consortium 344 

(Partridge et al., 2020).  This used a flag-tagged construct and was performed in HEPG2 345 

cells allowing a comparison of our data to that obtained with a high-affinity antibody and in 346 

different cells.  Consistent with our findings, flag-ZC3H4 occupies a subset of Pol II-bound 347 

regions and shows broader distribution than Pol II around promoters (Figure 5G).  Although 348 

HEPG2 cells express fewer SEs than HCT116 cells, the transcribed DLGAP1 example 349 

confirms its occupancy of these regions in both cell types (Figure 5 – figure supplement 1B).  350 

In contrast, the MYC SE is only expressed in HCT116 cells and is not occupied by ZC3H4 in 351 

HEPG2 cells.  In further agreement with our data, bioinformatics assignment of flag-ZC3H4 352 

binding sites yielded “promoter and enhancer-like” as the most enriched terms (Partridge et 353 

al., 2020). 354 

 355 

Engineered recruitment of ZC3H4 suppresses transcription 356 

 The consequences of ZC3H4 recruitment to targets are predicted to be their early 357 

termination and subsequent degradation by the exosome, based on the known fate of 358 

PROMPTs and eRNAs.  To test whether ZC3H4 recruitment can promote these effects, we 359 

established a tethered function assay.  ZC3H4 was tagged with bacteriophage MS2 coat 360 

protein to engineer its recruitment to a reporter containing MS2 hairpin binding sites (MS2hp-361 

IRES-GFP; Figure 6A).  Importantly, RNA from this reporter is unaffected by endogenous 362 

ZC3H4 (Figure 6 – figure supplement 1A).  HCT116 cells were transfected with either of 363 

these three constructs together with MS2hp-IRES-GFP and reporter expression assayed by 364 

qRT-PCR.  Compared to the two controls, tethered ZC3H4-MS2 significantly reduced 365 

reporter RNA expression (Figure 6B).  ZC3H4-MS2 expression does not affect the same 366 

reporter lacking MS2 hairpins (Figure 6 – figure supplement 1B).  This directly demonstrates 367 

that ZC3H4 recruitment is sufficient to negatively regulate RNA expression, mirroring the 368 

upregulation of its endogenous targets seen when it is depleted. 369 
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PROMPTs and eRNAs are degraded on chromatin and we wanted to test whether 370 

ZC3H4-MS2 exerted its effect on these nascent RNAs.  The reporter experiments above are 371 

on total RNA so whether ZC3H4-MS2 exerted its effect at the gene (plasmid) or following its 372 

release was uncertain.  Therefore, we purified chromatin-associated RNA using a salt and 373 

urea-based extraction (Wuarin and Schibler, 1994).  As mentioned previously, this 374 

fractionation enriches nascent endogenous RNAs.  However, nascent RNAs associated with 375 

transfected plasmids also co-purify within this fraction (Dye et al., 2006).  Accordingly, cells 376 

were transfected with MS2hp-IRES-GFP and either ZC3H4-MS2 or MS2-GFP.  We included 377 

an additional primer set to detect RNA uncleaved at the bovine growth hormone (BGH) 378 

poly(A) site.  Because poly(A) site cleavage is co-transcriptional, this primer set should 379 

robustly detect Pol II-associated transcripts.  This amplicon and that upstream of the MS2 380 

hairpins were reduced in this chromatin fraction, strongly suggesting that tethered ZC3H4 381 

acts on nascent RNA (Figure 6C). 382 

 The exosome targets released PROMPT and eRNA transcripts, which could be 383 

promoted by ZC3H4. The results we present for endogenous loci are consistent with this 384 

since PROMPTs and eRNAs are upregulated and elongated when ZC3H4 is depleted.  To 385 

test whether recruited ZC3H4 leads to exosome decay, we transfected MS2hp-IRES-GFP, 386 

together with either MS2-GFP or ZC3H4-MS2, into DIS3-AID cells that were then treated or 387 

not with auxin to eliminate the catalytic exosome.  RNA upstream and downstream of the 388 

MS2 hairpins was detected by qRT-PCR and their ratio plotted (Figure 6D).  Enhanced 389 

levels of upstream versus downstream amplicon were associated with transfection of 390 

ZC3H4-MS2 and is more prominent after depletion of DIS3.  This is consistent with the 391 

hypothesis that recruited ZC3H4 promotes the release of RNA that is a DIS3 substrate 392 

(Figure 6E).  Results presented above show that ZC3H4 functions in transcriptional 393 

regulation.  ZC3H4 may also regulate the stability of its targets; however, to our knowledge, 394 

it has not been found to prominently co-purify with the exosome.   395 

 Finally, we were interested to determine the overall relevance of ZC3H4 to cell 396 

health/growth.  This is made simpler by the ZC3H4-DHFR cell line, which allows permanent 397 

depletion of ZC3H4 by culturing cells without TMP.  Accordingly, we performed colony 398 

formation assays on these cells grown in the presence or absence of TMP (Figure 6F).  Loss 399 

of ZC3H4 was associated with smaller colonies, which demonstrates the importance of 400 

ZC3H4 for growth/proliferation. 401 

 402 

DISCUSSION 403 
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 We have discovered that ZC3H4 controls unproductive transcription, especially at 404 

non-coding loci.  This conclusion is based on its recruitment to loci that give rise to 405 

transcripts that are stabilised and elongated when it is depleted.  Moreover, tethering ZC3H4 406 

to a heterologous reporter RNA is sufficient to promote degradation of the transcript by the 407 

exosome.  We propose that ZC3H4 recruitment drives some of the early transcriptional 408 

termination that is characteristic of many non-coding RNAs, particularly PROMPT and eRNA 409 

transcripts.  The function of ZC3H4 in restraining their transcription may at least partly 410 

explain why PROMPT and eRNA transcripts accumulate as short species when the 411 

exosome is depleted. 412 

 Our discovery of ZC3H4 adds to an increasing number of termination pathways. Most 413 

of these are more relevant during the initial stages of transcription, rather than the more 414 

intensively studied process that occurs at the end of protein-coding genes.  This is evident 415 

from comparing the general requirement for CPSF30 at the 3’ end of protein-coding genes 416 

with the more selective impact of ZC3H4 that is focused more promoter-proximally.  The 417 

effects of ZC3H4 depletion are reminiscent of recent findings on the Integrator complex, 418 

which also controls the early termination of transcription (Elrod et al., 2019; Lykke-Andersen 419 

et al., 2020; Tatomer et al., 2019).  Our initial comparison of transcripts sensitive to either 420 

Integrator or ZC3H4 suggests that they can act on separate RNA targets.  An exciting 421 

possibility is that multiple early termination pathways may contribute to conditional gene 422 

regulation.  It will be important to establish whether ZC3H4 and/or Integrator are naturally 423 

utilised to regulate transcription in this manner.  Their predominance in metazoans may 424 

enable complex gene regulation, for example across cell types or during development.  425 

 ZC3H4 has been proposed as an equivalent to Drosophila Suppressor of Sable 426 

(Su(s)), which negatively regulates transcription via promoter-proximal termination (Brewer-427 

Jensen et al., 2016; Kuan et al., 2004).  ZC3H4 and Su(s) share little sequence homology, 428 

but they have similar structural makeup with zinc fingers flanked by largely disordered 429 

regions.  Su(s) depletion stabilises selected RNAs and causes their aberrant elongation and 430 

stability, mirroring what we see globally following ZC3H4 depletion.  There is no known 431 

catalytic activity for ZC3H4 or Su(s), but they are related to CPSF30 which shows 432 

endonuclease activity in Drosophila and Arabidopsis (Addepalli and Hunt, 2007; Bai and 433 

Tolias, 1996).  It remains to be seen whether ZC3H4 possesses any catalytic activity or 434 

mediates its effects through interaction partners.  Interestingly, IP and mass spectrometry 435 

indicates that WDR82 may be the only interacting partner of Su(s) (Brewer-Jensen et al., 436 

2016).  WDR82 has been shown to bind to Pol II phosphorylated on Serine 5 of its C-437 

terminal domain, which may provide a means to recruit ZC3H4 to promoter-proximal regions 438 

(Lee and Skalnik, 2008). 439 
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The recruitment of ZC3H4 to promoters is consistent with our observation that 440 

promoter-proximal transcription is most affected by its absence.  Since depletion of ZC3H4 441 

causes extended transcription of its targets, it is reasonable to suppose that it normally 442 

restricts their transcription in some fashion.  This might be by controlling the escape of 443 

promoter-proximally paused polymerases or by acting closer to the 3’ end of its target 444 

transcripts.  The fact that ZC3H4 acts somewhat selectively (e.g. not all PROMPTs and 445 

mRNAs are its targets) suggests that elements of specificity are required to explain its 446 

mechanism.  Most obviously, this could be sequences within DNA or RNA, to which ZC3H4 447 

(and Su(s)) binds via ChIP and XRNAX, respectively (see Figure 5 and Figure 5 – figure 448 

supplement 1A).  While our paper was under revision, another report identified ZC3H4 as 449 

affecting the transcription of intragenic loci in mammalian cells (Austenaa et al., 2021). In 450 

agreement with our findings, non-coding transcripts were affected by ZC3H4 depletion. It 451 

was proposed to terminate some non-coding transcripts as a result of spurious/weak 452 

splicing. Similarly, Su(s) regulation of transcription was linked to the presence of a cryptic 5’ 453 

splice site (Kuan et al., 2004).  This suggests involvement with U1 snRNA, which recognises 454 

this sequence.  While U1 snRNA inhibition does cause some stabilisation of PROMPTs, it 455 

does not generally result in their longer extension and so other cis-acting sequences and 456 

processes may additionally contribute (Oh et al., 2017).  Our evidence that ZC3H4 binds 457 

RNA in cells suggests that it may directly interact with some of its target transcripts and it will 458 

be important to delineate any sequence determinants. 459 

Beyond transcriptional regulation, ZC3H4 occupancy of SEs is interesting.  Other 460 

notable SE-associated factors (e.g. BRD4 and MED1) are much more generally implicated in 461 

Pol II transcription than ZC3H4 (Sabari et al., 2018).  Moreover, they are transcriptional 462 

activators whereas ZC3H4 appears to suppress transcription (or, at least, its RNA output).  463 

Many SE-bound factors are found to have phase separation properties explaining why large 464 

clusters of factors accumulate at these regions (Cho et al., 2018).  While we do not know 465 

whether ZC3H4 can phase separate, it contains large regions of intrinsic disorder, which can 466 

promote this property (Figure 1 – figure supplement 2A).  In general, ZC3H4 may offer a new 467 

way to study enhancer clusters, particularly the importance of restricting transcription across 468 

these regions. 469 

In conclusion, we have uncovered ZC3H4 as a factor with a function in restricting 470 

transcription.  Its most notable effects are at non-coding loci where transcriptional 471 

termination mechanisms are less understood than at protein-coding genes.  Further 472 

dissection of ZC3H4 and its targeting should reveal additional important insights into how 473 

this unstable portion of the transcriptome is controlled.  The non-overlapping effects of 474 
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Integrator and ZC3H4 at protein-coding genes indicate the possibility that multiple factors 475 

may control gene output via premature transcriptional termination. 476 
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 487 

MATERIALS AND METHODS 488 

Key Resources Table 

Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

Cell line 
(Human) 

HCT116- 
CPSF30-
mAID 

In-house This paper  

Cell line 
(Human) 

HCT116- 
CPSF30-
mAID:RPB1-
mTurbo 

In-house This paper  

Cell line 
(Human) 

HCT116- 
ZC3H4-HA-
DHFR 

In-house This paper  

Cell line 
(Human) 

HCT116- 
DIS3-AID 

In-house PMID: 
30840897 
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Cell line 
(Human) 

HCT116-
PNUTS-AID 

In-house This paper  

Cell line 
(Human) 

HCT116-
INTS11-
SMASh 

In-house PMID: 
33113359 

 

Recombinant 
DNA reagent 

3xHA-
mTurbo-
NLS_pCDNA
3 

Addgene RRID #: 
Addgene_1071
72 

 

Recombinant 
DNA reagent 

px300 Addgene RRID #: 
Addgene_4223
0 

 

Recombinant 
DNA reagent 

ZC3H4- 
pcDNA3.1(+)-
C-eGFP 

Genscript   Custom 
synthesis  
 

ENTS000002
53048 

Recombinant 
DNA reagent 

pSL-MS2-6x  Addgene RRID #: 
Addgene_2711
8 

 

Recombinant 
DNA reagent 

pcDNA3.1(+)IR
ES GFP  

Addgene RRID #: 
Addgene_5140
6 

 

Antibody CPSF30  Bethyl RRID #: 
AB_2780000 
Cat #: A301-
585A-T 

(1:1000) 

Antibody RNA Pol II  Abcam RRID #: 
AB_306327 
Cat #: ab817 

Now 
discontinued 
at abcam 
(1:1000 for 
western blot. 
4-5ug used for 
ChIP qPCR 
and –seq, 
respectively) 
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Antibody PNUTS 

 

 

Bethyl RRID #: 
AB_2779219 
Cat #: A300-
439A-T 

(1:1000) 

Antibody WDR82  Cell Signalling RRID #: 
AB_2800319 
Clone: D2I3B 
Cat #: 99715 

(1:1000) 

Antibody EXOSC10  Santa Cruz RRID #: 
AB_10990273 
Cat #: sc-
374595 

(1:2000) 

Antibody ZC3H4  Atlas 
Antibodies 

RRID #: 
AB_10795495 
Cat #: 
HPA040934 

(1:1000) 

Antibody HA tag  Roche RRID #: 
AB_390918 
Clone: 3f10 
Cat #: 
11867423001 

(1:2000) 

Antibody GFP  Chromotek 

 

Clone: PABG1 
Cat #: PABG1-
100 
RRID #: 
AB_2749857 
 

(1:2000) 
 

Antibody TCF4/TCF7L2  

 

 

Cell Signalling RRID #: 
AB_2199816 
Clone: C48H11 
Cat #: 2569 

(1:1000) 

Chemical 

compound drug 

TMP Sigma Cat #: T7883  

Chemical 

compound drug 

IAA Sigma Cat #: 12886  

Commercial 

assay, kit 

Lipofectamine 

RNAiMax 

Life 
Technologies 

Cat #: 
13778075 
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Commercial 

assay, kit 

JetPRIME PolyPlus Cat #: 114-01  

Commercial 

assay, kit 

Streptavidin 

Sepharose High 

Performance 

slurry  

GE Healthcare Cat #: GE28-
9857-38 

 

Commercial 

assay, kit 

GFP TRAP 

magnetic 

agarose  

Chromotek RRID #: 
AB_2827592 
Cat #: gtd-100 

 

Commercial 

assay, kit 

Dynabeads α-

Mouse  

Life 
Technologies 

RRID #: 
AB_2783640 
Cat #: 11201D 

 

Commercial 

assay, kit 

Dynabeads α-

Rabbit 

Life 
Technologies 

RRID #: 
AB_2783009 
Cat #: 11203D 

 

Commercial 

assay, kit 

SimpleChIP® 

Plus Enzymatic 

Chromatin kit  

Cell Signalling Cat #: 9005  

Commercial 

assay, kit 

TruSeq 

Stranded Total 

RNA Library 

Prep Kit  

Illumina Cat #: 
20020596 

 

Commercial 

assay, kit 

NEBNext® 

Ultra™ II DNA 

Library Prep Kit 

for Illumina® 

NEB Cat #: E7645S  

Commercial 

assay, kit 

Ribo-Zero Gold 

rRNA removal 

kit  

Illumina Cat #: 
20040526 
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Commercial 

assay, kit 

Ampure XP 

beads  

Beckman 
Coulter 

Cat #: A63880  

Commercial 

assay, kit 

RNAClean XP 

Beads  

Beckman 
Coulter 

Cat #: A63987  

Software, 

algorithm 

BamTools (Barnett et al., 
2011) 

RRID #: 
SCR_015987 

v2.4.0 

Software, 

algorithm 

BEDtools (Quinlan and 
Hall, 2010) 

RRID #: 
SCR_006646 

v2.26.1 

Software, 

algorithm 

Bioconductor https://biocond
uctor.org/ 

RRID #:  
SCR_006442 

v3.11 

Software, 

algorithm 

DeepTools (Ramirez et al., 
2014) 

RRID #: 
SCR_016366 

v3.3.0 

Software, 

algorithm 

DESeq2 (Love et al., 
2014) 

RRID #:  
SCR_015687 

v1.28.1 

Software, 

algorithm 

featureCounts (Liao et al., 
2013, 2014) 

RRID #: 
SCR_012919 

v2.0.0 

Software, 

algorithm 

FIMO (Grant et al., 
2011) 

RRID #: 
SCR_001783 

v5.3.3 

Software, 

algorithm 

genomicRanges http://biocondu
ctor.org/packag
es/release/ 
bioc/html/Geno
micRanges 

RRID #: 
SCR_000025 

v1.40.0 

Software, 

algorithm 

ggplot2 https://cran.r-
project.org/web
/packages/ggpl
ot2 

RRID #: 
SCR_014601 

v3.3.3 
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Software, 

algorithm 

Hisat2 (Kim et al., 
2015) 

RRID #: 
SCR_015530 

v2.1.0 

Software, 

algorithm 

IGV (Robinson et 
al., 2011) 

RRID #: 
SCR_011793 

v2.8.2 

Software, 

algorithm 

MACS2 (Zhang et al., 
2008) 

RRID #: 
SCR_013291 

v2.2.6 

Software, 

algorithm 

pheatmap https://cran.r-
project.org/web
/packages/phe
atmap 

RRID #: 
SCR_016418 

v1.0.12 

Software, 

algorithm 

R https://cran.r-
project.org/ 

NA  v4.0.4 

Software, 

algorithm 

Rstudio https://rstudio.c
om/ 

RRID #: 
SCR_000432 

v1.3.1093 

Software, 

algorithm 

rtracklayer https://biocond
uctor.org/packa
ges/ 
release/bioc/ht
ml/rtracklayer 

NA v1.48.0 

Software, 

algorithm 

SAMTools (Li et al., 2009) RRID #: 
SCR_002105 

v.1.11 

Software, 

algorithm 

Trim_galore! https://github.c
om/FelixKrueg
er/ 
TrimGalore/ 

RRID #: 
SCR_011847 

v.0.6.5dev 

 489 

Cell culture 490 

HCT116 parental cells and engineered cell lines were tested negative for 491 

mycoplasma and cultured in Dulbecco modified eagle medium, supplemented with 10% 492 

foetal calf serum and penicillin streptomycin (Gibco). For RNAi, 6 or 24-well dishes were 493 

transfected with siRNA using Lipofectamine RNAiMax (Life Technologies) following the 494 

manufacturers’ guidelines. The transfection was repeated 24 hours later and, 48 hours after 495 
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the first transfection, RNA was isolated. For MS2 assays, cells were seeded in 24-well 496 

dishes overnight, then transfected with 50ng MS2hp-IRES-GFP and 100ng of MS2-GFP, 497 

ZC3H4-MS2 or ZC3H4-GFP using JetPRIME® (PolyPlus) for 24 hours.  To deplete DIS3-498 

AID or PNUTS-AID, auxin was used at a final concentration of 500uM.  To deplete ZC3H4-499 

DHFR, cells were washed twice in PBS and grown in media with or without TMP (30uM). 500 

Cell line generation and cloning 501 

CPSF30-mAID and CPSF30-mAID:RPB1-mTurbo cells were generated using 502 

CRISPR/Cas9-mediated homology-directed repair (HDR).  CPSF30 and RPB1 homology 503 

arms and gRNA sequences are detailed in Supplementary File 7.  The mTurbo insert derives 504 

from 3xHA-mTurbo-NLS_pCDNA3 (#107172, Addgene). For ZC3H4 degron cells, 3xHA-505 

DHFR was amplified from existing CPSF73-HA-DHFR constructs (published in (Eaton et al., 506 

2018)) using non-homologous end-joining (NHEJ) as described in (Manna et al., 2019).  507 

PNUTS-AID cells were constructed using the protocol described in (Davidson et al., 2019).  508 

In general, 6cm dishes of cells were transfected with 1ug of guide RNA expressing px300 509 

plasmid (#42230, Addgene) and 1ug of each HDR template/NHEJ PCR product.  Three days 510 

later cells were seeded, as appropriate, into hygromycin (30µg/ml, final) neomycin 511 

(800µg/ml, final) or puromycin (1µg/ml, final). ZC3H4 cDNA was purchased from Genscript 512 

in a pcDNA3.1(+)-C-eGFP vector.  The MS2hp-IRES-GFP reporter was made by inserting a 513 

BamH1/EcoRV restriction fragment from pSL-MS2-6x (#27118, Addgene) into 514 

pcDNA3.1(+)IRES GFP (#51406, Addgene) also digested with BamH1/EcoRV.    515 

Turbo sample preparation 516 

 10 cm dishes at ~80% confluency were labelled with 500 µM biotin for 10 mins and 517 

the labelling reaction quenched immediately by washing cells in ice cold PBS. Cells were 518 

lysed in RIPA buffer (150 mM NaCl, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS, 50 519 

mM Tris-HCl at pH 8, 5 mM EDTA at pH 8) containing protease inhibitors (cOmplete mini 520 

EDTA-free tablets, Roche) for 30 mins on ice, then clarified via centrifugation. 350 uL of 521 

washed Streptavidin Sepharose High Performance slurry (GE Healthcare) was incubated 522 

with biotinylated or control lysates with inversion at room temperature for 1 hour. Samples 523 

were then washed twice with RIPA buffer, twice with Urea buffer (2 M urea, 50 mM Tris HCl 524 

pH 8), twice with 100 mM sodium carbonate and once with (20 mM Tris HCl pH 8, 2 mM 525 

CaCl2). Residual final wash buffer was used to re-suspend the beads, which were then flash 526 

frozen in liquid nitrogen and sent for Tandem Mass Spectrometry at The University of Bristol 527 

Proteomics Facility.  528 

 529 

Identifying mass spectrometry candidates 530 
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 First, contaminant proteins (e.g. keratin) or those that are known to be preferentially 531 

biotinylated in ligase assays (e.g. AHNAK) were excluded. Samples with an average 532 

abundance ratio of < 0.70 were classified as having a decreased interaction with RNA 533 

polymerase II following CPSF30 depletion. Finally, proteins with < 5 peptides were 534 

discarded. Remaining candidates were plotted in Figure 1F.   535 

qRT-PCR 536 

 1 µg of total RNA (DNase treated) was reversed transcribed using random hexamers 537 

according to manufacturer’s instructions (Protoscript II, NEB); cDNA diluted to 50uL. qPCR 538 

was performed using LUNA SYBR (NEB) on a Rotorgene (Qiagen). Fold changes were 539 

calculated using Qiagen’s software based on delta CT values.  Graphs were plotted using 540 

Prism (GraphPad).  Numbers underpinning qPCR-derived bar graphs are provided in source 541 

data file 1. 542 

Antibodies 543 

 CPSF30 (A301-585A-T, Bethyl), RNA Pol II (ab817, Abcam), PNUTS (A300-439A-T, 544 

Bethyl), WDR82 (D2I3B, Cell Signalling), EXOSC10 (sc-374595, Santa Cruz), ZC3H4 545 

(HPA040934, Atlas Antibodies), HA tag (clone 3f10, 11867423001, Roche), GFP (PABG1, 546 

Chromotek), TCF4/TCF7L2 (C48H11, Cell Signalling).  Uncropped western blots are 547 

provided in source data file 2. 548 

GFP Trap 549 

 10 cm dishes were transfected (5ug plasmid, 24 hrs), washed with PBS and lysed for 550 

30 mins on ice in 1 mL lysis buffer (150 mM NaCl, 2.5 mM MgCl2, 20 mM Tris HCl pH 7.5, 1 551 

% Triton X-100, 250 units Benzonase [Sigma]).  Samples were then clarified through 552 

centrifugation (12000xg, 10 mins), split in two and incubated with 25ul of GFP TRAP 553 

magnetic agarose (Chromotek) for 1hr with rotation at 4°C.  Beads were washed 5x with 554 

lysis buffer and samples eluted by boiling in 2xSDS buffer before analysis by western 555 

blotting.  556 

Nuclear RNA-Seq 557 

Nuclei were extracted from 1x 30mm dish of cells per condition using hypotonic lysis 558 

buffer (10 mM Tris pH5.5, 10 mM NaCl, 2.5 mM MgCl2, 0.5% NP40) with a 10% sucrose 559 

cushion and RNA was isolated using Tri-reagent. Following DNase treatment, RNA was 560 

Phenol Chloroform extracted and ethanol precipitated. After assaying quality control using a 561 

Tapestation (Agilent), 1 μg RNA was rRNA-depleted using Ribo-Zero Gold rRNA removal kit 562 

(Illumina) then cleaned and purified using RNAClean XP Beads (Beckman Coulter). Libraries 563 



1 
 

were prepared using TruSeq Stranded Total RNA Library Prep Kit (Illumina) and purified 564 

using Ampure XP beads (Beckman Coulter). A final Tapestation D100 screen was used to 565 

determine cDNA fragment size and concentration before pooling and sequencing using 566 

Hiseq2500 (Illumina). 567 

ChIP-qPCR 568 

 Cells were cross-linked for 10 mins at room temperature (1% Formaldehyde) and 569 

quenched for 5 mins (125mM Glycine).  Cells were washed in PBS, pelleted (500xg) and 570 

resuspended in 400ul RIPA buffer (150 mM NaCl, 1% NP40, 0.5% sodium deoxycholate, 571 

0.1% SDS, 50 mM Tris-HCl at pH 8, 5 mM EDTA at pH 8).  Sonication was then performed 572 

in a Bioruptor (30 seconds on/30 seconds off x10 on high setting) and debris pelleted 573 

(13000rpm x 10mins).  Supernatants were then incubated for 2hr at 4oC with 40ul of sheep 574 

anti-mouse dynabeads to which 4ug of anti-Pol II (or, as a control, nothing) was pre-bound.  575 

Beads were washed 6x with RIPA buffer and then bound chromatin was eluted by 30 min 576 

incubation at room temperature with rotation (500ul 0.1 M NaHCO3 + 1% SDS).  Cross-links 577 

were reversed overnight at 65oC with the addition of 20ul 5M NaCl.  Following phenol 578 

chloroform extraction and ethanol precipitation, chromatin was resuspended in 100ul water 579 

of which 1ul was used per qPCR reaction.   580 

ChIP-Seq 581 

ChIP libraries were prepared using SimpleChIP® Plus Enzymatic Chromatin kit 582 

(9005, Cell Signalling) according to manufacturer’s instructions. 5µg of RNA Pol II (abcam, 583 

8WG16) or ZC3H4 (HPA040934, Atlas Antibodies) were used for immunoprecipitation, 584 

Dynabeads α-Mouse / α-Rabbit (Life Technologies) were used for capture.  585 

Chromatin RNA isolation 586 

HCT116 cells were scraped into PBS, pelleted, incubated in hypotonic lysis buffer 587 

(HLB; 10 mM Tris.HCl at pH 7.5, 10 mM NaCl, 2.5 mM MgCl2, 0.5% NP40), underlayered 588 

with 10% sucrose (w/v in HLB) on ice for 5 mins, then spun at 500 xg to isolate nuclei. 589 

Supernatant and sucrose was removed and nuclei re-suspended in 100 μL of NUN1 (20 mM 590 

Tris-HCl at pH 7.9, 75 mM NaCl, 0.5 mM EDTA, 50% glycerol, 0.85 mM DTT), before being 591 

incubated with 1 mL NUN2 (20 mM HEPES at pH 7.6, 1 mM DTT, 7.5 mM MgCl2, 0.2 mM 592 

EDTA. 0.3 M NaCl, 1 M urea, 1% NP40) on ice for 15 mins. Samples were spun at 13, 000 593 

xg to pellet chromatin, this was dissolved in Trizol and RNA extracted.  594 

Colony formation assays 595 
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ZC3H4-DHFR cells were seeded into 100mm dishes and maintained in the presence 596 

or absence of TMP for 10 days, with media replaced every 3 days.  Colonies were fixed in 597 

ice cold methanol for 10 mins and then stained with 0.5% crystal violet (in 25% methanol) for 598 

10 minutes. 599 

XRNAX 600 

We essentially followed the protocol of (Trendel et al., 2019). HCT116 cells were 601 

grown overnight in the presence or absence of doxycycline in 10 cm dishes. 24 hr later, 602 

dishes were washed with PBS, UV cross linked (Stratalinker 1800 150 mJ/cm2), or not, then 603 

re-suspended in 4.5 mL Trizol (Sigma). 300 uL of chloroform was added, samples agitated 604 

on a ThermoMixer (Eppendorf) for 5 mins, span at 12000xg for 15 minutes, then the 605 

interphase carefully aspirated into fresh tubes. The interphase was washed thrice with Tris-606 

SDS (10 mM Tris-HCL pH 7.5, 1 mM EDTA, 0.1 % SDS), before being dissolved in 1 mL 607 

Tris-SDS. 1 uL glycogen, 60 uL of 5M NaCl and 1 mL isopropanol were added and samples 608 

precipitated at -20’C for 10 minutes, then pelleted at 18, 000xg for 15 mins. Precipitated 609 

protein was washed with 70 % ethanol, air dried, re-suspended in 180 uL water and pellets 610 

dissolved on ice. DNA was removed via TurboDNase (ThermoFisher) treatment, before 611 

samples were re-pelleted, re-dissolved in RNase buffer (150 mM NaCl, 20 mM Tris-HCL pH 612 

7.5, 2.5 mM MgCl2) and RNA digested with RNase H (NEB) and 1 uL of RNAse T1 (Roche). 613 

4 x SDS loading buffer was added before gel electrophoresis and western blotting.   614 

Computational analysis 615 

 All sequencing data were uploaded to the Galaxy web platform and processed as 616 

detailed below; usegalaxy.org and usegalaxy.eu servers were used.  617 

Datasets (GEO accessions) 618 

Data newly generated in this paper (GSE163015); Pol II HEPG2 ChIP-seq 619 

(GSE32883); ZC3H4 HEPG2 ChIP-seq (GSE104247); DIS3-AID HCT116 RNA-seq 620 

(GSE120574); INTS1 RNAi Chromatin-associated RNA-seq (GSE150238).  4sU labelled 621 

RNA differential expression in HeLa cells depleted of INTS11 or ZC3H4 (GSE133109, 622 

GSE151919). 623 

RNA-Seq alignment 624 

 FASTA files were trimmed using Trim Galore! and mapped to GRCh38 using HISAT2 625 

using default parameters (Kim et al., 2015). Reads with a MAPQ score of < 20 were 626 

removed from alignment files using SAMtools (Li et al., 2009). Finally, BigWig files were 627 

generated using DeepTools and visualised using IGV (Ramirez et al., 2014). 628 
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ChIP alignment and visualisation 629 

 All samples were mapped against GRCh38 using BWA, default settings. Reads with 630 

a MAPQ score of < 20 were removed along with PCR duplicates from alignment files using 631 

SAMtools. Processed BAM files were converted to BigWig files using DeepTools: all 632 

samples were normalised to RPKM with a bin size of 1. Aligned files were visualised using 633 

IGV.  634 

ChIP peak calling 635 

 For ZC3H4 and INPUT, broad peaks were called separately using MACS2 with a 636 

changed “lower mfold” (2) and default settings. For each experiment, bedtools was used to 637 

establish common peaks from individual reps (Intersect Intervals), creating a bed file of high 638 

confidence peaks.  For ZC3H4, peaks called in the INPUT sample were subtracted via 639 

bedtools. All bed files were annotated and plotted in R using ChipSeeker (Yu et al., 2015). 640 

Gene heatmaps 641 

 For ChIP heatmaps, computematrix (DeepTools) was used to generate score files 642 

from ChIP bigwig files using an hg38 bed file; parameters used for each heat map are 643 

detailed in figure legends. Plots were redrawn in R.  Transcription read-through analysis was 644 

calculated for each condition by comparing the first 1 kb downstream of the TES to a 500 bp 645 

region directly preceding the TES (PAS).  A log2 ratio (depletion/control) was then applied to 646 

identify increased read-through.  647 

Super-enhancer metaplots 648 

 A bed file with the coordinates of super-enhancer locations from dbSUPER in 649 

HCT116 cells was used as a basis (Khan and Zhang, 2016). All regions that had clusters of 650 

MED1, Pol II and H3K27ac ChIP signal were retained as bone fide regions of interest, those 651 

without were discarded. A log2 ratio of experiment vs input was prepared using 652 

BamCompare of DeepTools - for RNAseq metaplots, BAM files were split by strand. A score 653 

file for the regions in the amended SE bed file was generated via the computematrix function 654 

of DeepTools using the log2 BamCompare output file. Results were plotted in R-studio using 655 

ggplot2.  656 

Gene plots and metaplots 657 

 Split strand metagene plots were generated using RPKM normalised sense and 658 

antisense (scaled to -1) bigwig coverage files separately with further graphical processing 659 

performed in R. For identifying ZC3H4 PROMPT regions ncRNA genes were filtered from 660 

hg38 refgene gtf file to give protein-coding genes that were used with feature counts on 661 
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siCont RNAseq (Liao et al., 2014), to gain read count and gene length. Transcripts per 662 

million (TPM) were calculated for each gene and genes with an expression of < 5 were 663 

filtered out to give a list of expressed genes. Next, divergent promoters, or genes with 664 

neighbours within 5kb of their promoter, were excluded to minimise background. Finally, this 665 

gene list was converted to a bed file, then computematrix (DeepTools) used to generate a 666 

score file from log2 siCont Vs condition bigwigs; results were plotted in R.   667 

Differential gene expression 668 

 FeatureCounts was used to count mapped reads over exons and differential 669 

expression was performed using DESeq2 (Liao et al., 2014; Love et al., 2014).  670 

PROMPT poly-A site detection  671 

 For PROMPT analysis, we used a catalogue of 961 PROMPTs generated by de novo 672 

assembly following acute DIS3 depletion (Davidson et al., 2019). Due to the variable length 673 

of each PROMPT, we searched for the two consensus poly-A site motifs (AWTAAA) across 674 

the full transcript sequence using FIMO (online). We then calculated the total occurrence of 675 

poly-A sites across each PROMPT transcript per kb and separated them into two groups; 676 

those that show upregulation (log2FC ≥1) in the absence of ZC3H4 and those with no 677 

change of downregulated expression. Plots were drawn in R. 678 

 679 

ZC3H4 homologue identification  680 

To identify ZC3H4 homolog protein sequences, sequences from UniRef100 (UniProt 681 

Consortium, 2014) were searched using a profile HMM search: ‘hmmsearch’, part of HMMer 682 

V3.2.1 (Eddy, 2011), with PANTHER (Mi et al., 2019) hidden Markov model PTHR13119, 683 

corresponding to zinc finger CCCH-domain containing proteins. Profile HMM search hits 684 

were filtered using a 1e-100 e-value threshold; this search identified 1513 UniRef100 685 

sequences with PTHR13119 domains (representing a total of 1646 UniProtKB sequences). 686 

PTHR13119 domains from human and mouse were aligned using TCoffee Expresso mode 687 

(Armougom et al., 2006), and multiple sequence alignment figure (Figure 1 – figure 688 

supplement 3B) was rendered with ESPscript (Robert and Gouet, 2014). 689 

Phylogenetic tree reconstruction 690 

Identified PTHR13119 domains were aligned using MAFFT v7.4 (Katoh and 691 

Standley, 2013); sites composed of more than 75% of gaps were removed from the multiple 692 

sequence alignment with trimAl (Capella-Gutierrez et al., 2009). The PTHR13119 domain 693 

phylogeny was reconstructed under maximum likelihood with IQ-TREE v1.6.9 (Nguyen et al., 694 
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2015). The best-fitting substitution matrix was determined by ModelFinder (Kalyaanamoorthy 695 

et al., 2017), as implemented in IQ-TREE. Branch support values were based on 1000 696 

ultrafast bootstraps (Minh et al., 2013). Phylogenetic Tree figure was rendered with iToL 697 

(Letunic and Bork, 2019).  Multiple sequence alignment and phylogenetic tree files are 698 

deposited on Zenodo (https://doi.org/10.5281/zenodo.4637127). 699 

Primers, siRNAs and other nucleic acid sequences 700 

Sequences are provided in Supplementary File 7. 701 
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 931 

FIGURE LEGENDS 932 

Figure 1: Proximity labelling of CPSF30-sensitive Pol II interactions by mTurbo  933 

a) Schematic of the strategy used to tag CPSF30 with the mini auxin-inducible degron 934 

(mAID). Guide RNA-expressing Cas9 plasmid and homology-directed repair (HDR) plasmids 935 

are shown and the resulting modification to CPSF30 is represented with each inserted 936 

element labelled.  937 

b) Western blot demonstrating CPSF30 depletion. Parental HCT116-TIR1, or CPSF30-mAID 938 

cells, were treated +/- auxin for 3 hours then blotted.  CPSF30 protein is indicated together 939 

with a non-specific product, marked by an asterisk, used as a proxy for protein loading. 940 

c) Metagene analysis of 1795 protein-coding genes demonstrating increased downstream 941 

transcription, derived from sequencing nuclear RNA, following auxin treatment (3hr) of 942 

CPSF30-mAID cells. TSS = transcription start site, TES = transcription end site (PAS), read-943 

through signal is normalised against gene body.  RPKM is Reads Per Kilobase of transcript, 944 
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per Million mapped reads.  Positive and negative signals represent sense and antisense 945 

reads, respectively. 946 

d) Schematic of our strategy to identify new factors involved in transcription termination. 947 

CPSF30-mAID cells edited to contain Rpb1-mTurbo (blue circle on Pol II).  The addition of 948 

biotin induces mTurbo-mediated biotinylation (orange haze) of factors proximal to Pol II.  949 

CPSF complex is shown as an example of what might be captured by this experiment. 950 

e) Western blot showing streptavidin HRP probing of extracts from CPSF30-mAID: RPB1-951 

mTurbo cells.  Prior treatment with auxin (3hr)/biotin (10 mins) is indicated.  The high 952 

molecular weight species in the + biotin samples corresponds in size to Rpb1-mTurbo (*). 953 

f) Heat map detailing proteins with the largest decrease in Pol II interaction. Data 954 

underpinning heat map are from mass spectrometry analysis of streptavidin sequestered 955 

peptides (+/- CPSF30) performed in triplicate. Labelling was for 10 minutes.  956 

 957 

Figure 2: ZC3H4 depletion stabilises unproductive transcripts.  958 

a) IGV track of the transcription read-through defect at PTPN11 following CPSF30 or ZC3H4 959 

depletion. Blue and red tracks indicate sense/anti-sense transcripts respectively, grey bar 960 

indicates a change in y-axis scale so that comparatively weaker read-through signals can be 961 

visualised next to the gene body (left scale for upstream of TES; right for downstream). Y-962 

axis scale is RPKM. 963 

b) Metagene comparison of transcription upstream, across, and downstream of, protein-964 

coding genes in nuclear RNA from CPSF30-mAID cells treated or not with auxin and from 965 

HCT116 cells transfected with control or ZC3H4 siRNAs.  CPSF30 traces are from the same 966 

samples presented in Figure 1C.  Positive and negative signals represent sense and 967 

antisense reads, respectively. 968 

c) IGV track view of transcription at the MYC PROMPT in RNA-seq samples obtained from 969 

control or ZC3H4 siRNA treated HCT116 cells.  We also show a track from HCT116 cells 970 

acutely depleted of DIS3-AID (DIS3 +IAA) (Davidson et al., 2019) to highlight the normal 971 

extent of this unstable transcript. Y-axis scale is RPKM. 972 

d) Log2 fold change of siZC3H4 vs siControl or DIS3 + vs - auxin for RNA upstream of 6057 973 

non-neighbouring, actively transcribed genes, plotted as heat maps. Line graphs are an XY 974 

depiction of heat map data.  Log2 fold changes are smaller in siZC3H4 samples versus DIS3 975 

depletion because this is an average of all genes in the heat map, a smaller fraction of which 976 

are affected by ZC3H4. 977 
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e) IGV plot of a known SE upstream of MYC (the location is shown by blue bar under trace).  978 

Samples are shown from HCT116 cells treated with control or ZC3H4 siRNAs as well as 979 

DIS3-AID cells treated with auxin (the latter from (Davidson et al., 2019)) to show the normal 980 

extent of unstable eRNAs over this region.  Y-axis scale is RPKM. 981 

f) Log2 fold change of RNA signal for siZC3H4 vs siControl or DIS3 + vs - auxin for 111 SEs. 982 

The bed file detailing super-enhancer coordinates in HCT116 cells was taken from 983 

dbSUPER.org.  984 

 985 

Figure 3: Comparison of ZC3H4 and Integrator effects 986 

a) Metagene analysis of chromatin-associated RNA-seq performed on cells treated with 987 

control or INTS1-specific siRNA.  The plot shows signals upstream, across and downstream 988 

of protein-coding genes.  Y-axis scale is RPKM.  Positive and negative values represent 989 

sense and antisense reads, respectively. 990 

b/c) IGV traces of HAP1 and NWD1 genes derived from chromatin-associated RNA-seq in 991 

control and INTS1 siRNA treated samples and nuclear RNA-seq from control or ZC3H4 992 

siRNA treatment.  NWD1 transcripts are affected by ZC3H4 but not INTS1 whereas the 993 

opposite is true for HAP1 RNAs.  Y-axes scales are RPKM.   994 

d) Venn diagram showing the number of mRNAs upregulated ≥ 2-fold, padj ≤0.05 following 995 

ZC3H4 depletion versus INTS1 loss and the overlap between the two sets. Genes that 996 

showed increased expression due to transcription read-through from an upstream gene were 997 

also discarded by assessing coverage over a 1 kb region preceding the TSS, relative to 998 

untreated cells.  Gene lists are provided in Supplemental File 3. 999 

e) Graphs demonstrating the expression level of mRNA transcripts upregulated (log2FC >1) 1000 

following ZC3H4 or INTS1 depletion by comparison with transcripts unaffected by loss of 1001 

either factor.  Y-axis shows normalised gene counts (i.e. expression level). 1002 

f) Comparison of chromatin-associated RNA-seq in control and INTS1 siRNA treated 1003 

samples with nuclear RNA-seq derived from control or ZC3H4 siRNA treatment.  The 1004 

ITPRID2 PROMPT is displayed and y-axes are RPKM (note the different scales between 1005 

ZC3H4 and INTS1 samples). 1006 

g) Comparison of chromatin-associated RNA-seq in control and INTS1 siRNA treated 1007 

samples with nuclear RNA-seq derived from control or ZC3H4 siRNA treatment.  The 1008 

MSRB3 SE is displayed and y-axes are RPKM (note the different scales between INTS1 and 1009 

ZC3H4 samples). 1010 
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h) Metaplot of RNA-seq profile over super-enhancers following INTS1 depletion (log2 fold 1011 

depletion/control over 111 super-enhancer as line graphs).  The bed file detailing super-1012 

enhancer coordinates in HCT116 cells was taken from dbSUPER.org. 1013 

 1014 

Figure 4: Transcriptional dysregulation following acute ZC3H4 loss.  1015 

a) Schematic detailing how the DHFR degron works. E. Coli dihydrofolate reductase (DHFR) 1016 

is fused to the C-terminus of ZC3H4, which is stabilised by trimethoprim (TMP).  When TMP 1017 

is removed ZC3H4-DHFR is degraded.  1018 

b) Western blot of HCT116 parental and HCT116 ZC3H4-DHFR cells +/- TMP. TMP was 1019 

withdrawn for 4 hours or overnight, EXOCS10 is used as a loading control, αHA recognises 1020 

a HA peptide before the DHFR tag, while αZC3H4 recognises native protein.  1021 

c) Western blot of ZC3H4-DHFR cells grown under the following conditions: +TMP, -TMP 1022 

(4hr), -TMP (4hr) followed by +TMP (4hr).  ZC3H4-DHFR is detected using αHA and 1023 

EXOSC10 is shown as a loading control. 1024 

d) qRT-PCR analysis of PROMPT and SE transcripts in ZC3H4-DHFR cells grown under the 1025 

conditions represented in c) (rescue refers to –TMP then +TMP for re-establishing ZC3H4).  1026 

Graph shows fold change versus +TMP following normalisation to spliced actin. N=3.  Error 1027 

bars are standard error of the mean (SEM). *. ** and *** denote p values of <0.05, 0.01 and 1028 

0.001 respectively.  ITPRID2 5’ and 3’ primers are at approximately -500bp and -7kb relative 1029 

to its TSS.  HMGA2 5’ and 3’ primers are at approximately -1.8kb and -7.1kb relative to its 1030 

TSS. 1031 

e) qRT-PCR analysis of spliced PJVK, ENO3 and NWD1 mRNAs and RNU1-1 read-through 1032 

(RT) in ZC3H4-DHFR cells grown with or without (4hr) TMP and INTS11-SMASh cells grown 1033 

with or without asunaprevir (ASN; 36 hrs).  Graph shows fold change versus control (+TMP 1034 

for ZC3H4-DHFR samples and –ASN for INTS11-SMASh samples), following normalisation 1035 

to spliced actin.  N=3.  Error bars are SEM. * and ** denote p values of <0.05 and 0.01 1036 

respectively.   1037 

f) Western blot of extracts derived from HCT116 cells transfected with control or WDR82-1038 

specific siRNAs.  The blot shows WDR82 and, as a loading control, EXOSC10. 1039 

g) qRT-PCR of PROMPT and SE transcripts in ZC3H4-DHFR cells transfected with control 1040 

or WDR82 siRNAs before withdrawal, or not, of TMP (14hr).  Graph shows fold change by 1041 

comparison with control siRNA transfected ZC3H4-DHFR cells maintained in TMP following 1042 
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normalisation to spliced actin transcripts. N=3.  Error bars are SEM.  * and ** denote p<0.05 1043 

and 0.01, respectively. 1044 

 1045 

Figure 5: ZC3H4 occupies regions where transcription is affected by its absence. 1046 

a) ZC3H4 ChIP profile over protein-coding genes is similar to Pol II. Heat map 1047 

representation of ZC3H4 and Pol II ChIP-seq occupancy over the gene body +/- 3 kb.  1048 

b) ZC3H4 occupies fewer promoters than Pol II. IGV track view of ZC3H4 and Pol II 1049 

occupancy over KAZALD1 and FABP5 genes, Pol II is present at both genes, while ZC3H4 1050 

is only present at KAZALD1.  Scale is counts per million (CPM).  Shaded blue box shows 1051 

peak of Pol II and ZC3H4 at KAZALD1 and of Pol II over FABP5.  1052 

c) RNA-seq (HCT116 cells treated with control or ZC3H4 siRNA) and ChIP-seq (Pol II, 1053 

ZC3H4 and input) profiles at RPL13.  ZC3H4 occupancy is focused more on the PROMPT 1054 

transcript region (blue box) than the TSS where, in contrast, the Pol II signal is maximal.  1055 

RNA-seq scale is RPKM and ChIP-seq is CPM.   1056 

d) ZC3H4 ChIP occupancy mirrors Pol II at super-enhancers. IGV track view of ZC3H4 and 1057 

Pol II occupancy over the SE at the MSRB3 locus. HCT116 super-enhancer gene track is 1058 

from dbSUPER and depicted as blue bars.  1059 

e) Log2 fold change of ZC3H4 and Pol II vs input at SEs shown as a line graph. Halo 1060 

denotes 95% confidence level. 1061 

f) ChIPseeker analysis of peak distribution of ZC3H4 and Pol II.  Occupancy regions are 1062 

colour-coded and the number of ChIP peaks expressed as a proportion of 100%. 1063 

g) Heat map showing Pol II and ZC3H4 ChIP occupancy in HEPG2 cells obtained via the 1064 

ENCODE consortium.  Occupancy +/- 2 kb of the TSS is shown. 1065 

 1066 

Figure 6: Directed recruitment of ZC3H4 recapitulates its effects on endogenous 1067 

targets 1068 

a) Schematic of the MS2 system. A reporter plasmid (MS2hp-IRES-GFP) expressing a GFP 1069 

transcript with 6 x MS2 hairpins upstream of an IRES and GFP gene.  ZC3H4-MS2 or MS2-1070 

GFP can be specifically tethered to the MS2 hairpins to assess consequent effects on 1071 

transcription/RNA output.  Positions of primer pairs used in qRT-PCR experiments 1072 

elsewhere in the figure are indicated by labelled horizontal lines under reporter. POI is 1073 

protein of interest. 1074 
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b) qRT-PCR analysis of total RNA isolated from MS2hp-IRES-GFP transfected cells co-1075 

transfected with either MS2-GFP, ZC3H4-GFP or ZC3H4-MS2.  The level of reporter RNA is 1076 

plotted (“UP” amplicon) as a percentage of that obtained in the MS2-GFP sample following 1077 

normalisation to spliced actin. N=3.  Error bars are SEM. * denotes p<0.05. 1078 

c) qRT-PCR analysis of chromatin-associated RNA isolated from MS2hp-IRES-GFP 1079 

transfected cells co-transfected with either MS2-GFP or ZC3H4-MS2.  The level of reporter 1080 

RNA upstream of the MS2 hairpins (UP) and transcripts yet to be cleaved at the BGH 1081 

poly(A) site (BGH UC) are plotted as a percentage of that obtained in the MS2-GFP sample 1082 

following normalisation to spliced actin. N=3.  Error bars are SEM.  * denotes p<0.05. 1083 

d) qRT-PCR analysis of total RNA isolated from MS2hp-IRES-GFP transfected DIS3-AID 1084 

cells co-transfected with either MS2-GFP or ZC3H4-MS2 – simultaneously treated or not 1085 

with auxin (14hr in total).  The graph shows the ratio of RNA species recovered upstream 1086 

(UP) versus downstream (DOWN) of the MS2 hairpins. N=4.  Error bars are SEM.  * denotes 1087 

p<0.05. 1088 

e) Schematic detailing an interplay between ZC3H4 and DIS3 that sees transcription stop 1089 

and nascent RNA degraded 1090 

f) Colony formation assay of ZC3H4-DHFR cells grown in the presence or absence of TMP.  1091 

Cells were grown for 10 days before crystal violet staining. 1092 

 1093 

SUPPLEMENTAL FIGURE LEGENDS 1094 

Figure 1 – figure supplement 1 1095 

a) IGV track views of the transcription termination defect at PCBP1, PSMC2, LSM8 and 1096 

CAV2 genes in the presence (CPSF30-IAA) or absence of (CPSF30 +IAA) in CPSF30-mAID 1097 

cells. Signal is RPKM.  1098 

b) Western blot demonstrating bi-allelic modification of RPB1 (Pol II) with mTurbo.  The 1099 

clone employed in Figure 1 is shown against cells parental HCT116 cells unmodified at 1100 

RBP1.  The upshift of Pol II signal shows the bi-allelic modification of RPB1.  EXOSC10 1101 

serves as a loading control. 1102 

c) qRT-PCR of total RNA isolated from CPSF30-mAID: RPB1- mTurbo cells treated or not 1103 

with auxin (3hr).  An amplicon located ~10kb downstream of the HMGA2 PAS was used to 1104 

assay transcriptional read-through presented as a fold change versus minus auxin after 1105 

normalising to spliced actin mRNA.  n=2.  Individual data points are shown. 1106 
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 1107 

Figure 1 – figure supplement 2 1108 

a) Schematic of ZC3H4 and ZC3H6 showing the three CCCH zinc finger domains.  A 1109 

predictor of natural disordered region (PONDR) analysis shows that the only ordered region 1110 

coincides with these domains.  Graph generated via PONDR.com, set to VSL2.   1111 

b) STRING analysis of ZC3H4 and ZC3H6 indicate interactors with 3’ end processing 1112 

complex. Image was taken from string.db.org, confidence value was set to medium (0.4).  1113 

The thickness of lines between nodes is indicative of the confidence in interaction. 1114 

c) Proteins that are co-regulated with ZC3H4 according to ProteomeHD using a score cut-off 1115 

set to 0.98.  Table shows GO term analysis of the potentially co-regulated factors. 1116 

d) Co-immunoprecipitation of WDR82 using ZC3H4-GFP as bait.  Blot shows input (5%) and 1117 

immunoprecpitated material probed with antibodies to WDR82 or GFP.  Cells untransfected 1118 

with ZC3H4-GFP act as a negative control. 1119 

 1120 

Figure 1 – figure supplement 3 1121 

a) Maximum-likelihood phylogenetic tree of zinc finger CCCH-domains (1513 sequences; 1122 

795 parsimony informative sites) inferred under the JTT+R8 model. Clades of ZC3H4-like 1123 

and 845 ZC3H6-like domains are delimited by dashed lines. CCCH-domains identified using 1124 

the PANTHER hidden Markov model PTHR13119 against the UniProtKB protein database 1125 

(non redundant version: UniRef100; external node size represents protein cluster size). 1126 

Branch support values ≥90% (based on 1000 ultrafast bootstraps) are indicated by grey 1127 

circles. Red stars show SwissProt reviewed protein sequences; external nodes are color-1128 

coded according to their taxonomic lineage. Scale bar represents the number of estimated 1129 

substitutions per site. Virtually all recovered sequences were from metazoan organisms—1130 

except for a group of fungal sequences from ascomycetes. The resulting phylogenetic tree 1131 

shows the dichotomy between the ZC3H4 and ZC3H6 domains, which are found in the same 1132 

set of organisms.  This indicates that they are paralogues and have likely diverged their 1133 

function following gene duplication. The ancestral gene coding for ZC3H4/6 was likely lost 1134 

from the non-vertebrates and subsequently underwent a duplication event leading to the 1135 

ZC3H4- and ZC3H6-like paralogues in vertebrates.  Primary data are available in 1136 

Supplementary File 2 and deposited at Zenodo  (https://doi.org/10.5281/zenodo.4637127). 1137 

b) Multiple sequence alignment of ZC3H4 and ZC3H6 homologs. PTHR13119 domains from 1138 

human and mouse SwissProt sequences were aligned using structural information (PDB 1139 
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structure: 2CQE; zinc-finger domain; helices are displayed as coils) using TCoffee (Expresso 1140 

mode). Conserved regions are indicated by blue boxes; identical and similar residues (based 1141 

on physicochemical properties) are marked in red and yellow, respectively. Sequence 1142 

identifiers correspond to UniProt/SwissProt accession numbers and to boundaries of 1143 

identified PTHR13119 domains. Alignment figure was rendered with ESPscript.  1144 

 1145 

Figure 2 – figure supplement 1 1146 

a) qRT-PCR and western blotting evidence of the effectiveness of ZC3H6 and ZC3H4 1147 

depletion respectively.  Graph shows fold reduction of ZC3H6 mRNA in cells treated with 1148 

ZC3H6 siRNAs versus those transfected with control siRNA.  N=3, error bars are SEM.  ** is 1149 

p<0.01.  Western blotting of ZC3H4 in HCT116 cells treated with control siRNAs or ZC3H4-1150 

targeting siRNAs.  The blot was probed with a ZC3H4 antibody revealing strong depletion 1151 

versus the EXOSC10 loading control.  1152 

b) Pearson’s correlation of siControl, siZC3H4, siZC3H6 and siZC3H4+6 of RNAseq BAM 1153 

files performed by DEEPTOOLS.   1154 

c) IGV traces exemplifying two genomic regions with clear RNA accumulation following 1155 

ZC3H4 depletion.  While this is also seen following ZC3H4/ZC3H6 co-depletion, it is not 1156 

evident following the depletion of ZC3H6 alone.  This was generally seen, supporting the 1157 

correlation analysis in b).  y-axis scale is RPKM. 1158 

 1159 

Figure 2 – figure supplement 2 1160 

a) Heatmaps showing the effects of CPSF30-mAID or ZC3H4 depletion on read-through 1161 

beyond protein-coding genes.  Coloured scale bar indicates the magnitude of effect (log2 1162 

scale).  Read-through was scored as a ratio of reads upstream (500bp) and downstream 1163 

(1kb) of the PAS.  The lists associated with this heatmap are provided in Supplementary File 1164 

3.   1165 

b) Graph showing the number of protein-coding genes with read-through enhancements of 1166 

greater than 0.5, 1, 2 or 3 on a log2 fold scale.  This illustrates that the effects of CPSF30-1167 

mAID loss are both wider spread and larger than those associated with depletion of ZC3H4. 1168 

c) Venn diagram showing the number of genes bioinformatically scored as having increased 1169 

read-through (log2 fold of 1 or more) following CPSF30-mAID or ZC3H4 loss and those that 1170 

are common between the two conditions. 1171 
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d) IGV tracks of individual genes (MAGED1 and DLG3) to exemplify the lack of 3’ 1172 

termination defect following ZC3H4 depletion.  As a control for bone fide read-through, the 1173 

same tracks are shown in samples obtained from CPSF30-mAID cells treated or not (3hr) 1174 

with auxin. Grey bar indicates a change in scale (left scale for upstream of PAS; right for 1175 

downstream) so that comparatively weaker read-through signals can be visualised next to 1176 

the gene body. y-axis scale is RPKM. 1177 

e) CPSF30 depletion shows little effect at super-enhancers and PROMPTs. IGV track view 1178 

of the MYC super-enhancer and PROMPT in RNA-seq data obtained from CPSF30-mAID 1179 

cells treated or not (3hr) with auxin.  y-axis scale is RPKM. 1180 

f) Plot showing the density of PAS sequences (AWTAAA) in PROMPTs upregulated or 1181 

unaffected by ZC3H4 loss.  Y-axis plots number of PAS sequences/kb. 1182 

Figure 3 – figure supplement 1 1183 

a)  IGV snapshots showing examples of protein-coding genes selectively upregulated by 1184 

ZC3H4 (PJVK and ENO3) or Integrator (TM7SF2 and GFPT2).  Y-axis represents RPKM. 1185 

b) Venn diagram showing representing the number of protein-coding transcripts (determined 1186 

by DESEQ2) that show increased levels in previously published 4sU labelling experiments 1187 

performed on HeLa cells depleted of INTS11 or ZC3H4 (Austenaa et al., 2021; Lykke-1188 

Andersen et al., 2020).  Gene lists are provided in Supplementary File 5.  Notably, manual 1189 

curation of this list revealed the presence of false positive hits, especially in the INTS11 data, 1190 

due to DESEQ2 scoring interference of transcription from neighbouring genes as 1191 

upregulation.   1192 

c) Venn diagram showing the number of PROMPTs showing upregulation (log2 fold of 1 or 1193 

more) following ZC3H4 or INTS1 loss from HCT116 cells and those that are common 1194 

between the two conditions. 1195 

d) Graph showing the number of PROMPTs enhanced by greater than 0.5, 1, 2 or 3 on a 1196 

log2 fold scale following the loss of ZC3H4 or INTS1.  This illustrates that the effects of 1197 

ZC3H4 loss are both wider spread and larger than those associated with depletion of INTS1.  1198 

The list of targets in each case is provided in Supplementary File 6. 1199 

 1200 

Figure 4 – figure supplement 1  1201 

a) Pol II ChIP over ITPRID2 and MYC PROMPT regions.  Graphs plot Pol II occupancy as a 1202 

percentage of input at amplicons ~2, 4 and 8kb upstream of each gene.  N=4.  Error bars are 1203 
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SEM. * denotes p of <0.05.  The schematic illustrates the approximate location of each 1204 

primer pair. 1205 

b) qRT-PCR analysis of extended ITPRID2 and MYC PROMPTs (-8kb amplicons) in 1206 

chromatin-associated RNA isolated from ZC3H4-DHFR cells grown with or without (4hr) 1207 

TMP.  Y-axis displays fold change versus +TMP following normalisation to spliced actin 1208 

levels.  n=3.  Error bars are SEM.  * and ** denote p values of <0.05 and 0.01 respectively.  1209 

c) Western blot showing acute depletion of PNUTS (the nuclear targeting subunit of PP1 1210 

phosphatase), tagged with an auxin-inducible degron (PNUTS-AID).  Blot shows extracts 1211 

from unmodified HCT116 cells and PNUTS-AID cells which were treated or not with auxin 1212 

(3hr).  WDR82 is used as a loading control. 1213 

d) qRT-PCR of PROMPT and SE transcripts in PNUTS-AID cells treated or not with auxin (3 1214 

hr).  Graph shows fold change by comparison with non-auxin treated cells following 1215 

normalisation to spliced actin transcripts. N=3.  Error bars are SEM.  * and ** denote p 1216 

values of <0.05 and 0.01 respectively. 1217 

e) qRT-PCR analysis of PROMPT and SE transcripts in HCT116 cells treated with control 1218 

siRNAs or siRNAs against both SETD1A and B.  Quantitation shows fold change versus 1219 

cells transfected with control siRNAs following normalisation to spliced actin levels.  Note 1220 

that the PROMPT and SE targets that are increased following ZC3H4 loss show relatively 1221 

little change following depletion of SETD1A and B.  The success of the RNAi is indicated by 1222 

the strong reduction of SETD1A and B mRNAs. N=3.  Error bars show SEM.  ** denotes p 1223 

value of <0.01. 1224 

Figure 5 – figure supplement 1 1225 

a) XRNAX analysis of ZC3H4 RNA binding in cells.  Samples show input and those isolated 1226 

following UV treatment or not.  Bands representing each protein are labelled accordingly.  1227 

ZC3H4 is recovered in a UV-dependent manner indicating that it is directly bound to RNA in 1228 

cells.  The same is true of EXOSC10 that, as an exoribonuclease, acts as a positive control.  1229 

TCF4 is a DNA binding transcription factor and acts as a negative control. 1230 

b) ZC3H4 only marks transcribed super-enhancers. IGV track view of ZC3H4 and Pol II 1231 

occupancy at two different super-enhancers, DLAGAP1 present in both HEPG2 and 1232 

HCT116 (top tracks) and the MYC super-enhancer (bottom tracks) that is only present in 1233 

HCT116 cells. HEPG2 and HCT116 super-enhancer annotation is under each track as blue 1234 

bars and was obtained from dbSUPER.  Y-axis shows CPM. 1235 

Figure 6 – figure supplement 1 1236 
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a) qRT-PCR of ZC3H4-DHFR cells transfected with MS2-IRES-GFP before growth in the 1237 

presence or, to deplete ZC3H4, absence of TMP (4 hr).  Graph shows percentage of each 1238 

amplicon following TMP removal relative to that found in the presence of TMP following 1239 

normalisation to spliced actin transcripts.  N=3.  Error bars show SEM.  * denotes p<0.05. 1240 

b) qRT-PCR of HCT116 cells transfected with IRES-GFP and either a control beta-globin 1241 

plasmid (NTC) or ZC3H4-MS2.  The graph shows the percentage of GFP RNA versus 1242 

control following normalisation to spliced actin transcripts.  N=3.  Error bars show SEM.   1243 

SUPPLEMENTARY FILES 1244 

Supplementary File 1 1245 

Mass spectrometry data associated with the Pol II-miniTurbo experiment. 1246 

Supplementary File 2 1247 

Underpinning data for phylogenetic analyses. 1248 

Supplementary File 3 1249 

Log2 fold changes in read-through following CPSF30 or ZC3H4 depletion from HCT116 1250 

cells. 1251 

Supplementary File 4 1252 

List of mRNAs that are upregulated following ZC3H4 depletion (nuclear RNA-seq) or INTS1 1253 
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Figure 1-figure supplement 2
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