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Invoking Deep Learning for Joint Estimation of Indoor LiFi
User Position and Orientation

Mohamed Amine Arfaoui∗, Mohammad Dehghani Soltani, Iman Tavakkolnia, Ali Ghrayeb,
Chadi Assi, Majid Safari, and Harald Haas

Abstract—Light-fidelity (LiFi) is a fully-networked bidirec-
tional optical wireless communication (OWC) technology that
is considered as a promising solution for high-speed indoor
connectivity. In this paper, the joint estimation of user 3D position
and user equipment (UE) orientation in indoor LiFi systems
with unknown emission power is investigated. Existing solutions
for this problem assume either ideal LiFi system settings or
perfect knowledge of the UE states, rendering them unsuitable
for realistic LiFi systems. In addition, these solutions consider
the non-line-of-sight (NLOS) links of the LiFi channel gain as a
source of deterioration for the estimation performance instead of
harnessing these components in improving the position and the
orientation estimation performance. This is mainly due to the
lack of appropriate estimation techniques that can extract the
position and orientation information hidden in these components.
In this paper, and against the above limitations, the UE is
assumed to be connected with at least one access point (AP),
i.e., at least one active LiFi link. Fingerprinting is employed as
an estimation technique and the received signal-to-noise ratio
(SNR) is used as an estimation metric, where both the line-
of-sight (LOS) and NLOS components of the LiFi channel are
considered. Motivated by the success of deep learning techniques
in solving several complex estimation and prediction problems,
we employ two deep artificial neural network (ANN) models, one
based on the multilayer perceptron (MLP) and the second on the
convolutional neural network (CNN), that can map efficiently the
instantaneous received SNR with the user 3D position and the
UE orientation. Through numerous examples, we investigate the
performance of the proposed schemes in terms of the average
estimation error, precision, computational time, and the bit
error rate. We also compare this performance to that of the
k-nearest neighbours (KNN) scheme, which is widely used in
solving wireless localization problems. It is demonstrated that
the proposed schemes achieve significant gains and are superior
to the KNN scheme.

Index Terms—Artificial neural networks, deep learning, LiFi,
orientation estimation, position estimation, visible light.

I. INTRODUCTION

With the dramatic increase in the data traffic, fifth generation
(5G) and beyond networks must urgently provide high data
rates, seamless connectivity, ubiquitous coverage and ultra-
low latency communications [1], [2]. In addition, with the
emergence of the Internet of-Things (IoTs) networks, the
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number of connected devices to the internet is increasing dra-
matically [3]. This fact implies not only a significant increase
in data traffic, but also the emergence of IoT services with
crucial requirements, such as higher data rates, higher con-
nection density, ultra reliable and low latency communication
(URLLC) [4]. Nowadays, the availability of location and data
of mobile terminals at the communications stations (access
points (APs) and base stations (BSs)), i.e., their knowledge by
the telecommunications operators, has become a key factor
in enabling next generation communication systems. Such
information enables better estimation of the quality of the
wireless links, which can improve the resource management
and provide new location-based services [5].

Global Navigation Satellite Systems (GNSS), such as
Global Positioning Systems (GPS), and the standalone cellular
systems are the present mainstream in positioning systems,
and they are widely used in aircraft, vehicles, and portable
devices in order to provide real-time positioning and naviga-
tion [6]. However, in indoor environments, these positioning
systems are severely degraded or may fail altogether since the
signals transmitted by the satellite or the cellular networks are
usually degraded and interrupted by clouds, ceilings, walls,
and other obstructions [7], [8]. On the other hand, indoor
applications require much more accurate positioning than
outdoor applications. Due to this, indoor positioning systems
using indoor wireless signals (e.g., wireless-fidelity (Wi-Fi)
[9], Bluetooth [10], radio frequency identification (RFID) [11],
and ZigBee [12]) have been proposed to fill the gap of GPS
and cellular signals to improve the performance of indoor
positioning. Furthermore, various indoor localization systems
that are based on the inertial measurement unit (IMU) sensor
data have been recently proposed in order to improve the
indoor positioning accuracy [13], [14].

The knowledge of user equipment (UE) position and orien-
tation is a crucial factor for indoor location-based applications
such as robotic navigation [15] and autonomous parcel sorting
[16]. Although Wi-Fi and Bluetooth are the most utilized
positioning systems, which have already been widely deployed
in current smart devices, they cannot satisfy the requirements
(UE position and orientation) of the above applications since
their localization performance suffers from the limited number
of available APs in their local area [17]. Due to this issue,
novel and accurate position and orientation estimation solu-
tions are highly demanded.

Light-fidelity (LiFi) is a novel bidirectional, high speed and
fully networked wireless communication technology, that uses
visible light as the propagation medium in the downlink for
the purposes of illumination and communication [18]. It uses
infrared (IR) in the uplink so that the illumination constraint
of a room remains unaffected, and also to avoid interference
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with the visible light in the downlink [18]. LiFi offers a
number of important benefits that have made it favorable for
future technologies. These include the very large, unregulated
bandwidth available in the visible light spectrum, high energy
efficiency [19], the straightforward deployment that uses off-
the-shelf light emitting diodes (LEDs) and photodiode (PD)
devices at the transmitter and receiver ends, respectively, and
enhanced security as light does not penetrate through walls
and opaque objects [20]. It is predictable that implementing
a novel localization technology based on LiFi systems has
a great potential, which has encouraged both academia and
industry to step into the field [21]. However, it is worth
mentioning that the device orientation is a crucial factor in
LiFi networks as well as mmWave systems [22], which are two
possible choices for future indoor communications that can
fulfil high-data-rate requirements of users. Hence, reporting
the device orientation along with the position can remarkably
help to improve user quality of service, resource allocation,
and interference management for these networks [22].

Over the past few years, many algorithms for LiFi-based
indoor positioning have been proposed and verified by ex-
periments. LiFi-based indoor positioning systems have shown
to be more accurate (0.1-0.35 m positioning error) when
compared to Wi-Fi (1-7 m), Bluetooth (2-5 m), and other
technologies [23]. RF-based positioning metrics and algo-
rithms have been developed for indoor positioning systems and
these are also applicable to LiFi-based positioning systems. In
fact, we distinguish between three main positioning metrics,
namely, the received signal strength (RSS), the time of arrival
(TOA) and the angle of arrival (AOA) [5]. The RSS measures
the power of the received signals, which follows the channel
model in general and hence the position estimation can be
obtained. The TOA measures the travel time of the signal from
the transmitter to the receiver, which is a function of the dis-
tance as well. Finally, the AOA measures the angle from which
the signal arrives at the receiver and such information can be
also exploited in estimating the location of the transmitter [5].

II. RELATED WORKS AND PROBLEM STATEMENT

A. Existing Solutions

Several LiFi-based indoor positioning solutions have been
proposed in the literature [24]–[29]. An AOA-based technique
is proposed in [24], which uses a receiver array with known
orientation angle differences between receivers. In [25]–[27]
both the LED transmitters and the UE receiver are assumed
to have perpendicular orientations to the room ceiling, and
the height of the UE is assumed to be known. However, the
assumption of having a perfect alignment between the UE
orientation and the LED transmitter orientation is not valid
in real-life scenarios. In fact, the majority of studies on LiFi
systems assume that the device is always perfectly aligned to
the APs. This assumption may have been driven by the lack
of having a proper model for orientation, and/or to make the
analysis tractable. Such an assumption is only accurate for a
limited number of devices (e.g., laptops with a LiFi dongle),
while the majority of users use devices such as smartphones,
and in real-life scenarios, users tend to hold their devices in

a way that feel most comfortable. Due to this, an inertial
measurement unit (IMU) was required in [28] to measure the
UE tilt angle for position estimation. However, the IMU may
not be available in some real-life scenarios and the accuracy of
the IMU in estimating the UE tilt angle is not also guaranteed.

Based on the above discussion, there are a number of
limitations in the aforementioned approaches. In fact, only
the estimate of the UE location was considered and hence
the estimate of the UE orientation remains unresolved. This
is mainly due to the fact that the position and orientation
estimation metrics of LiFi systems, such as the RSS, are non-
linear functions with respect to (w.r.t.) the UE position and
orientation [22], which leads to a non-convex optimization
problem with a lot of local optima. In addition, the im-
perfect estimation of these uncertain parameters will result
in a serious estimation performance loss. Despite this, the
orientation estimation in LiFi systems should not be ignored.
In fact, unlike conventional radio frequency wireless systems,
the LiFi channel is not isotropic, meaning that the device
orientation affects the channel gain significantly, which makes
the orientation estimation a crucial factor. In addition, such
orientation can affect the users’ bit error rate (BER) and
throughput remarkably and it should be estimated carefully
[22].

In [30], a simultaneous position and orientation (SPAO)
algorithm for indoor LiFi users with unknown LED emission
power is proposed. This approach is based on the RSS where
an iterative algorithm for jointly estimating the UE position
and orientation is developed. Although the proposed approach
considers estimating the UE orientation, it does require that
the UE should be connected to at least six APs, which is
equal to the number of unknown parameters (three parameters
for the UE position and three others for the UE orientation).
However, such an assumption on the system setting is not valid
in realistic LiFi systems due to the random orientation of LiFi
UEs. Against the above background, an accurate LiFi-based
indoor position and orientation estimation solution without
any requirement regarding the LiFi system settings or perfect
knowledge of the UE states is highly desirable.

The existing position and orientation estimation solutions
discussed above considered only the line of sight (LOS)
component in estimating the UE position and orientation and
treated the non-line-of-sight (NLOS) components as a source
of noise that deteriorates the estimation performance. This
is mainly due to the fact that the expression of the NLOS
channel gain w.r.t the UE location and orientation is complex,
and hence, it could not be handled straightforwardly in an
optimization fashion. However, it was shown recently in [31]
that LiFi systems can gain additional UE position and ori-
entation information from the NLOS links via leveraging the
NLOS propagation knowledge. Specifically, the closed-form
Cramer-Raw lower bounds (CRLBs) on the estimation errors
of the UE location and orientation, are derived. In addition, the
information contribution of NLOS links was quantified to gain
insights into the effect of NLOS propagation on the LiFi-based
indoor position and orientation estimation performance. It was
shown that the NLOS channel, in addition to the LOS channel,
can be exploited to improve the LiFi-based indoor position and
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orientation estimation performance. However, due to the fact
that the channel gain expression of the NLOS components is
very complex w.r.t. the UE position and orientation, includ-
ing the NLOS components in the estimation process is not
straightforward from an optimization point of view. Therefore,
this gives rise to the following question: ”How can the NLOS
components be exploited in estimating the UE location and
orientation in LiFi-based indoor environments?” The answer
is in fact using deep learning (DL) techniques.

B. The Need For Deep Learning

As a prevailing approach to artificial intelligence, machine
learning (ML) has drawn much attention in recent years due
to its great successes in computer vision and natural language
processing [32]. ML is capable of solving complex problems
that are lacking explicit models or straightforward program-
ming. Motivated by its successful applications to many prac-
tical tasks, both industry and the research communities have
advocated the applications of ML in wireless communication,
with emphasis on resource management, networking, mobility
management and localization [33], [34]. Recently, some works
have investigated the use of ML techniques in indoor position-
ing using LiFi technology, such as K-Nearest Neighbor (KNN)
[35], support vector machine (SVM) and extreme learning
machine (ELM) [36].

DL is a particular ML technique that implements the learn-
ing process elaborating the data through ANNs. The use of
ANNs is a key factor that makes DL outperform other machine
learning schemes, especially when a large amount of data is
available [37]. This has made DL the leading ML technique in
many scientific fields such as image classification, text recog-
nition, speech recognition, audio and language processing and
robotics [37]. The potential application of DL to physical
layer communications has also been increasingly recognized
because of the new features for future communications, such as
complex scenarios with unknown channel models, high speed
and accurate processing requirements, which present big chal-
lenges to 5G and beyond wireless networks [32]. Motivated by
this, DL has been applied to wireless communications, such as
physical layer communications [32], [38], resource allocation
[39], [40], and intelligent traffic control [41]. Motivated by
the above discussion, DL techniques are auspicious candidates
for LiFi-based indoor position and orientation estimation.
Therefore, the use of ANNs is a promising solution for this
problem, which is the focus of this paper.

III. CONTRIBUTIONS AND OUTCOMES

A. Contributions

In this paper, a UE with a random orientation is randomly
located within an indoor environment. The UE communicates
on the uplink channel (using IR signals) with multiple APs
mounted on the ceiling of the indoor environment. The ulti-
mate objective is the real-time and simultaneous 3D position
and 3D orientation estimation of the LiFi-enabled UE. Against
the existing solutions presented in section II, the main contri-
butions of this paper are summarized as follows.

� Unlike existing positioning methods, the proposed
scheme does not require specific settings of the LiFi
system, such as the number of active links with the
APs, or having prior knowledge about the UE’s position
and orientation, or the emitting power of the positioning
signals transmitted by the UE. In fact, we only assume
that the UE is expected to be connected to at least one
AP in order to be within the coverage of the LiFi system.

� The adopted position and orientation estimation approach
is the RSS-based fingerprinting, where to the best of our
knowledge, this paper is among the first to consider both
the LOS and NLOS components of the LiFi channel gain
in the RSS computation.

� Two deep ANNs models are proposed for mapping the
instantaneous RSS values with the 3D position and the
3D orientation of the UE, where the first is based on the
multiple layer perceptron (MLP) and the second is based
on the convolutional neural network (CNN). To the best
of our knowledge, this paper is the first that considers the
use of DL techniques in the joint position and orientation
estimation of LiFi-enabled UEs.

The proposed position and orientation estimation approach
consists of two different phases, an offline phase and an online
phase. In the offline phase, the received SNR at the APs, for a
large number of possible 3D positions and 3D orientations
are generated using some experimental and measurements-
based channel models [22], [42]. The collected SNR values
are then processed and recorded into a dataset. Afterwards,
based on the obtained dataset, one MLP and one CNN models
are designed and trained in order to map the instantaneous
received SNR values with their associated 3D positions and
3D orientations. In the online phase, the ANN models are
deployed. The APs receive signals from the UE with unknown
position, orientation, and emission power. Then, the APs
controller applies the trained ANN models to the received
SNR values and estimates the real-time 3D position and the
3D orientation of the UE.

B. Outcomes

The performance of the proposed models, in terms of
estimation error, precision, computational time and the BER, is
compared with the KNN approach, which is the best ML-based
fingerprinting approach in LiFi positioning systems reported
in the literature [35]. We demonstrate the superiority of the
proposed models through several examples. In addition, the
gain obtained by including the NLOS components in the
estimation methods is evaluated and the effect of the size of
the dataset on the estimation performance is also investigated.
In fact, two datasets of respective sizes 105 and 106 data
points are generated and used in this paper, where each data
point consists of one feature vector that includes a sample of
received SNR values at the APs and one label vector that
includes the associated 3D position and 3D orientation of
the UE. The main outcomes of the paper are summarized as
follows:
� The proposed two deep ANNs outperform the KNN

baseline [35], and the CNN model is the most accurate
estimation model.

3



TABLE I: Table of Notations

Environment Geometry
L×W ×H Dimension of the indoor environment
Nr Number of the APs
Nt Number of IR-LEDs of the UE
K Number of surface elements of the indoor

environment
ζk Reflectivity coefficients of the indoor environment

LiFi Channel Parameters
H Channel matrix
ρ Received SNR
(x, y, z) UE 3D position
(α, β, γ) UE orientation angles
Pelec Transmitted electrical power

� For the CNN, MLP and KNN models, the accuracy
increases when a large dataset is employed and when the
NLOS components are included in the estimation process.
Specifically, for an indoor environment of size 5× 5× 3
m3, the simulation results show that
• For a dataset of size 105, the proposed CNN model is

able to achieve an average positioning error of 16.49
cm when considering the LOS and NLOS components
of the channel gain and of 21.83 cm when considering
only the LOS component.

• For a dataset of size 106, the proposed CNN model is
able to achieve an average positioning error of 10.53
cm when considering the LOS and NLOS components
of the channel gain and of 14.55 cm when considering
only the LOS component.

� The maximum average computational time in the online
phase is approximately 0.19 ms per trial, i.e., real-time
estimation. Nevertheless, the best existing joint LiFi user
position and orientation estimation technique, which was
proposed in [30], has an average online computational
time of 0.5 s per trial, which demonstrates the potential
of the proposed ANN models in providing highly accurate
and real-time joint position and orientation estimation for
indoor LiFi users.

C. Outline and Notation

The rest of the paper is organized as follows. The sys-
tem model is presented in Section II. Section III presents
the proposed RSS-based fingerprinting approach. Sections IV
presents the simulation results. Finally, the paper is concluded
in Section V and future research directions are highlighted.

The notations adopted throughout the paper are summarized
in Table I. In addition, for every random variable X , fX
denotes the probability density function (PDF) of X . E [·]
denotes the expected value. The function U[a,b] (·) denotes
the unit step function within [a, b], i.e., for all x ∈ R,
U[a,b] (x) = 1 if x ∈ [a, b], and 0 otherwise. Finally, for
N ∈ N, 0N and 1N denote the all zeros and all ones N × 1
vector, respectively.

IV. SYSTEM MODEL

In this section, the wireless communication mechanism is
explained in details. In subsection IV-A, the system model is

Z

H

Y

X

0:5L

0:5W
−0:5W
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LED PD

PD IR-LED

O

uplink

downlink

Fig. 1: A typical indoor LiFi system.

presented, whereas in subsections IV-C and IV-C, the transmis-
sion model and the RSS analysis are explained, respectively.

A. System Setup

We consider the indoor LiFi system shown in Fig. 1, which
consists of a room with size L × W × H , where L, W
and H denote the length, the width and the height of the
room, respectively. The LiFi system is equipped with Nr

APs installed at the ceiling of the room. Each AP is down
facing and is equipped with one LED and one PD adjacent
to each other, where the LED is used for illumination and
data transmission simultaneously and the PD is used for data
reception. In addition, a LiFi-enabled UE is randomly located
within the room and it is equipped with Nt infrared LEDs
(IR-LEDs) and Nt PDs that are used for data transmission
and reception, respectively. The IR-LEDs and PDs of the UE
are grouped into Nt pairs, where each pair consists of one IR-
LED and one PD that are adjacent to each other. As shown
in Fig. 1, the communication between the APs and the UE is
bidirectional. Specifically, in the downlink, the APs employ
the visible light spectrum for transmitting the information and
the LiFi UE receives this information through its PDs, whereas
in the uplink, the IR-LEDs of the UE transmit the information
using the IR spectrum and the APs detect the transmitted
signals through their PDs. In this mechanism, there is no
interference between the downlink and uplink transmissions
and the two phases can occur simultaneously.

B. Transmission Model

In the system model, we focus on the uplink transmission,
where the intensity modulation direct detection (IM/DD) is
considered. The transmit elements are the Nt IR-LEDs of the
UE that are driven by a fixed bias current IDC ∈ R+, which
sets the average radiated optical power from the IR-LEDs. The
data signals are grouped into an Nt × 1 zero-mean vector of
current signals s, which is then superimposed on IDC, via, e.g.,
a bias-T circuit, to imperceptibly modulate the instantaneous
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optical power Pt emitted from the IR-LEDs. Then, using an
appropriate pre-distorter [43], the electro-optical conversion
can be modeled as Pt = η (s + IDC1Nt), where η (W/A) is the
current-to-power conversion efficiency of the IR-LEDs. Since
E (s) = 0, the data signals do not contribute to the average
optical power. The optical powers collected by the PDs of the
APs are given by Pr = HPt, in which H is the Nr×Nt channel
matrix between the Nt IR-LEDs and the Nr PDs of the APs,
where its adopted model is explained in details in appendix A.
Afterwards, the PDs of the APs, with responsivity Rp (A/W),
convert the incident optical power into a proportional current
RpPr. Then, the direct current (DC) bias is removed, and the
signals are amplified via a transimpedance amplifier of gain
T (V/A) to produce an Nr × 1 voltage signal vector y, which
is a scaled, but noisy, version of the transmitted signal s.

Based on the above, the resulting signal model is described
as:

y = λHx + n, (1)

where λ = TRPη and n = [n1, n2, ..., nNr
]T is the Nr × 1

noise vector at the PDs of the APs, such that for i ∈ J1, NrK,
ni is the noise experienced at the ith PD. The noise here
includes all possible noises, such as shot noise and thermal
noise and is assumed to be real valued additive white Gaussian
N
(
0Nr

, σ2
nINr

)
and independent of the transmitted signal

[44]. The variance of the noise is equal to σ2
n = N0B, where

N0 is the single sided power spectral density of noise and B
is the bandwidth.

The performance of the considered LiFi system depends
heavily on the channel matrix H. Devices such as laptops
are usually placed on a flat surface and the IR-LEDs can be
assumed to retain their orientation during each communication
session whether upward or not [22]. However, hand-held
devices such as smartphones are prone to random changes in
orientation due to hand motion. In this study, we focus on these
types of devices and incorporate the random orientation in our
analysis. The orientation of the LiFi UE is fully characterized
in three dimensions through the elemental rotation angles
yaw, α ∈ [0◦, 360◦), pitch, β ∈ [−180◦, 180◦), and roll,
γ ∈ [−90◦, 90◦) [22]. As shown in Fig. 2, α, β and γ denote
the rotations about Z-axis, X-axis and Y -axis, respectively.
According to the Euler’s rotation theorem, any rotation matrix
can be expressed by R = RαRβRγ , where

Rα =

cosα − sinα 0
sinα cosα 0

0 0 1

 ,Rβ =

1 0 0
0 cosβ − sinβ
0 sinβ cosβ

 ,
Rγ =

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ

 .
(2)

Hence, for all j ∈ J1, NtK, the normal vector of the jth IR-
LED after performing the rotation can be described by nu

j =

Rnu,0
j , where nu,0

j is the orientation vector of the jth IR-LED
when the UE is at the standard position, as shown in Fig. 2(a).

r

(a)

r

(b)

r

(c)

r

(d)

Fig. 2: Orientation of a mobile device: (a) normal position, (b) yaw rotation
with angle α, about the z-axis (c) pitch rotation with angle β, about the x-axis
and (d) roll rotation with angle γ, about the y-axis.

C. Objective and RSS Analysis

The objective of this paper is estimating the 3D position and
orientation of a UE communicating in the uplink phase with
the Nr APs. The UE is randomly located within the indoor
environment shown in Fig. 1 and its orientation is also varying
randomly. In the joint position and orientation estimation
process, the UE needs to transmit a reference signal to the
APs in a one resource block (time/frequency). Assuming that
the DC-biased pulse-amplitude modulation (PAM) with order
M is used, the UE broadcasts through its Nt IR-LEDs a scalar
signal s that is equal to one of the M -PAM intensity levels,
which are given by Im = (2m−(M+1))

M+1 IDC for m ∈ J1,MK.
Hence, the transmitted vector of signals is given by s = s1t,
and for i ∈ J1, NrK, the received signal at the ith AP is given
by yi =

(
λ
∑Nt

j=1 hi,j

)
s + ni. Consequently, the received

SNR at the ith AP is given by:

ρi =

(
λ
∑Nt

j=1 hi,j

)2
Pelec

σ2
n

, (3)

where Pelec =
I2DC

3
M−1
M+1 is the electrical power of the trans-

mitted signal s. Based on this, the Nr × 1 received SNR
vector at the APs, defined as ρ , [ρ1, ρ2, ..., ρNr

] is based on
the channel matrix H, which in turn depends mainly on six
random variables, which are (x, y, z, α, β, γ). Precisely, the
variables (x, y, z) model the randomness of the instantaneous
position of the UE, whereas the variables (α, β, γ) model the
randomness of its instantaneous orientation. Such correlation
can be exploited in estimating the instantaneous UE position
and orientation, which will be elaborated in the following
section.

V. RSS-BASED FINGERPRINTING FOR POSITION AND
ORIENTATION ESTIMATION

In this section, we present the proposed joint 3D position
and 3D orientation estimation approach, which is based on
the use of DL through some sophisticated deep ANNs. First,
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we explain the details of the approach. Second, we present
the steps followed for generating the dataset. Second, we
investigate the structure of the ANNs models employed in
the proposed approach. Then, we discuss how the training
and the testing of the deep ANNs is performed. Finally,
we demonstrate how the proposed models estimate the 3D
position and the 3D orientation of LiFi-enables UEs in real
time.

A. Proposed Approach

Let us consider the indoor LiFi system shown in Fig. 1,
where a UE is randomly located in the room and its orientation
is also random. Assuming that the UE is communicating with
the APs installed at the ceiling of the room, the objective
of this paper is estimating the instantaneous 3D position and
orientation of the UE based on the instantaneous received
SNRs at the APs. Unlike the several positioning methods
reported in the literature, there are no requirements or prior
knowledge neither on the UE position and orientation nor on
the emitting power of the positioning signals transmitted by the
UE. In other words, the variables (x, y, z, α, β, γ) along with
the UE emitting power Pelec are totally unknown without any
prior information on them. The adopted estimation technique
is fingerprinting and the estimation metric is the received
SNR, ρ, at the APs. The details of the proposed approach
are explained in the following.

The proposed joint position and orientation estimation ap-
proach is divided into two phases: 1) an offline survey (offline
phase) and 2) an online testing (online phase). In the offline
survey, the received SNR at the APs for possible 3D posi-
tions (x, y, z) and orientation angles (α, β, γ) are collected,
processed and recorded into a dataset. Then, based on the
obtained measurements-based dataset, optimal learning models
that provide the best mappings between the instantaneous
received SNR and the 3D position and the orientation are built.
In the online testing, the obtained models are tested against the
real 3D position and orientation angles of the UE to evaluate
the accuracy of the derived models. In the following, we will
present first the steps of the offline phase and then we will
discuss the deployment of the obtained learning models in the
online phase.

B. Dataset Generation

Each UE is assumed to be stationary within the indoor
environment. In this case, and as shown in [42], the user is uni-
formly located within the indoor environment, and therefore,
the PDFs of the UE 3D position are given by:

fx(x) =
1

L
U[−L

2 ,
L
2 ] (x) , (4a)

fy(y) =
1

W
U[−W

2 ,
W
2 ] (y) , (4b)

fz(z) =
1

Hdevice
U[0,Hdevice] (z) , (4c)

where 0 ≤ Hdevice ≤ H is the maximum height of any UE
within the indoor environment.

On the other hand, a set of experiments were conducted in

Fig. 3: User direction.

[22], aiming to derive some accurate measurements-based sta-
tistical models for the rotation angles (α, β, γ). For collecting
the measurements, 40 participants were asked to take part in
the experiment while they were working with their cellphones.
Then, the orientation data of yaw α, pitch β and roll γ were
recorded while users were doing normal activities like brows-
ing or watching a video stream. Measurements were recorded
for static and mobile users (sitting and walking activities,
respectively). More details about the data measurement can be
found in [22]. Based on these experiments, the rotation angles
α, β and γ follow each a truncated Laplace distribution with
mean and standard deviation (µα, σα) = (Ω− 90◦, 3.67◦),
(µβ , σβ) = (40.78◦, 2.39◦) and (µγ , σγ) = (−0.84◦, 2.21◦),
respectively, where Ω denotes the movement direction. Pre-
cisely, Ω denotes the facing or movement direction of a user
while sitting or walking, which is measured from the East
direction in the Earth coordinate system as shown in Fig. 3.
From a statistical point of view, it was also shown in [22] that
the movement direction angle Ω follows a uniform distribution
within [0◦, 360◦].

Based on the above, assuming the target dataset contains N
data points, the procedure of generating the nth measurement-
based data point, for n ∈ J1, NK, are detailed as follows.

1) A sample of 3D position (x, y, z) is generated using the
statistics in (4).

2) A sample of movement direction angle Ω is generated
uniformly from [0◦, 360◦].

3) The three orientation angles (α, β, γ) are generated using
the truncated Laplace distribution and their statistics
specifications.

4) The resulting channel matrix H is then calculated as
explained in appendix A.

5) A random electrical emission power Pelec is generated
uniformly from [0, Pmax

elec ], where Pmax
elec is the highest

possible electrical emission power from the UE.
6) The corresponding SNR vector ρ is calculated as shown

in (3).
7) Finally, the resulting SNR vector ρ is stored into the

dataset as a feature vector and the corresponding 3D-
position and orientation angles (x, y, z, α, β, γ) are stored
as a label vector as shown in Fig. 4.

Once the data set is ready, the goal now is how to obtain
“good” mappings between the feature vector that contains the
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Fig. 4: Dataset architecture.

g (P ; ·)ρ (x; y; z;α; β; γ)

Fig. 5: Estimation mapping between the received SNR and the 3D position
and the 3D orientation angles of the UE.

received SNR and the label vector that contains the 3D position
and the orientation angles of the UE using the obtained dataset.
For such a goal, several learning methods can be applied
such as KNN [35], SVM and ELM [36]. To the best of our
knowledge, this paper is among the first to employs deep
ANNs for the joint position and orientation estimation of
LiFi UEs. This will be presented in details in the following
subsection.

C. Learning Models: Deep ANNs

ANNs have been widely applied in various fields to over-
come the problem of complex and nonlinear mappings. Re-
cently, different kinds of ANNs have been applied in a wide
range of applications in wireless communications, especially
in the physical layer, such as modulation recognition, channel
modeling, signal processing and data decoding [45]. In our
context, and as it can be seen in Fig. 5, our objective is
to find a parametric mapping g(P; ·), where P represents a
set of parameters, that can link between the instantaneous
received SNR vector ρ on one hand and the 3D position and
the orientation angles of the UE (x, y, z, α, β, γ) on the other
hand. Using ANNs, g(P; ·) is indeed a neural network and
such mapping can be obtained by determining the optimal set
of parameters P∗, that produce the best mapping with respect
to a given estimation error metric, i.e.,

(x, y, z, α, β, γ) = g (P∗,ρ) . (5)

For this mission, two different models of ANNs are considered
in this paper, which are the multilayer perceptron (MLP) and
the convolutional neural network (CNN). In the following, we
present the architectures of MLP and CNN models. The opti-
mal set of parameters for each model is obtained by training
this model over the whole dataset by minimizing a certain
loss function, in a way that captures the patterns between the
instantaneous received SNR vector ρ and the 3D position and
the 3D orientation angles of the UE (x, y, z, α, β, γ) over the
whole dataset.

An ANN is a series of layers, where each layer is com-
posed of multiple artificial neurons and their connections.
Specifically, as shown in Fig. 6, an ANN is composed of
an input layer, D hidden layers and an output layer, where

Fig. 6: ANN architecture for joint 3D position and orientation estimation.

D denotes the depth of the neural network. First, at the
input layer, the SNR feature vector ρ with a bias b1 is fed
into the neural network. Second, for d = 1, 2, ..., D, the
dth hidden layer consists of Md artificial neurons and their
connection. Each artificial neuron has the ability to calculate
a mathematical operation of its inputs and then applies an
activation function to obtain a signal that will be forwarded to
the next layer. Finally, the output layer consists of 6 artificial
neurons, where each neuron is responsible for estimating
one parameter in (x, y, z, α, β, γ). As shown in Fig. 6, the
propagation rules within the hidden layers are expressed as
follows. For j ∈ J1, DK and i ∈ J1,MjK, the output of the ith
neuron in the jth hidden layer is expressed as

vi,j = ai,j [t (uj−1,wi,j , bi,j)] , (6)

where ai,j [·], uj−1 and wi,j denote the activation function,
the input and the weights vector of the ith neuron of the jth
hidden layer, respectively, t(·, ·, ·) is a linear transformation
that depends on the type of the ANN and bi,j is a scalar bias.
Assuming that the output layer is referred to as the (D+ 1)th
layer, note that for j ∈ J0, DK, the input vector uj of the
(j+1)th layer is exactly the output vector vj of jth layer, i.e.,

uj = vj =
[
v1,j , v2,j , ..., vMj ,j

]T
, (7)

with the convention u0 = v0 = ρ, which is the SNR feature
vector. On the other hand, the propagation rules in the output
layer are given by

x = a1,o [t (uD,w1,o, bi,O)] , α = a4,o [t (uD,w4,o, bi,O)] ,

y = a2,o [t (uD,w2,o, bi,O)] , β = a5,o [t (uD,w5,o, bi,O)] ,

z = a3,o [t (uD,w3,o, bi,O)] , γ = a6,o [t (uD,w6,o, bi,O)] ,
(8)

where for k ∈ J1, 6K, ak,O(·, ·, ·) and wk,o, denote the
activation function and the weights vector of the kth neuron
of the output layer and bi,O is a scalar bias.

The set of parameters P that defines the ANN, is given by
P = W ∪ B, where W = {WO,Wj |j ∈ J1, DK}, such that
WO = [wj,O,w2,O, ...,wMO,O], and for all j ∈ J1, DK, Wj =[
w1,j ,w2,j , ...,wMj ,j

]
, and B = {bO,bj |j ∈ J1, DK}, such

that bO = [bj,O,b2,O, ...,bMO,O]
T , and for all j ∈ J1, DK,

bj =
[
b1,j ,b2,j , ...,bMj ,j

]T
. As was mentioned above, the

linear transformation t(·, ·, ·) depends on the type of the ANN
used. In our approach, we distinguish between two main linear
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transformations, which are the weighted sum and the 1D
convolution. The ANN that employs the weighted sum as a
linear transformation is the multilayer perceptron (MLP). In
this case, for j ∈ J1, DK, i ∈ J1,MjK and k ∈ J1, 3K, the linear
transformation t(·, ·, ·) is defined as{

t (uj−1,wi,j , bi,j) = wTi,juj−1 + bi,j ,

t (uD,wk,o, bi,O) = wTk,ouD + bi,O.
(9)

On the other hand, the ANN that employs the 1D convolution
as a linear transformation is the convolutional neural network
(CNN). In this case, for j ∈ J1, DK, i ∈ J1,MjK and k ∈
J1, 3K, the linear transformation t(·, ·, ·) is defined as{

t (uj−1,wi,j , bj) = wi,j ~ uj−1 + bi,j ,

t (uD,wk,o, bO) = wk,o ~ uD + bi,O,
(10)

where ~ denotes the convolution operator.
The activation function, also known as the threshold func-

tion or the transfer function, is a scalar-to-scalar function that
determines the output of each neuron in a neural network.
The function is attached to each neuron in the network,
and determines whether it should be activated or not, based
on whether each neuron’s input is relevant for the model’s
estimation or not. Some of the most commonly used activation
functions for solving non-linear problems include linear func-
tion, rectified linear unit (Relu) function, sigmoid function,
Hyperbolic tangent, etc [46].

At this stage, the architecture of the ANN model, either
MLP or CNN, is set up. The next step is how the ANN model
should be trained in a way that provides the best estimation
accuracy for the 3D position and the orientation angles of the
UE. This is detailed in the following subsection.

D. Models Training

Once the ANN model is selected, i.e., either MLP or CNN,
the goal now is how to obtain the optimal sets of weights P∗
that can map between the instantaneous received SNR vector ρ
in one hand and the 3D position and the orientation angles of
the UE (x, y, z, α, β, γ). This can be obtained by training the
selected model as explained in the following. In the estimation
(or regression) problem in hands, obtaining the optimal sets of
weights is performed by minimizing a certain loss function.
In a typical regression problem, several loss functions can be
considered, such as the mean-square-error (MSE) or the mean-
absolute-error (MAE) [47]. In our analysis, we consider the
MSE loss, also known as the L2 loss. Hence, obtaining the
optimal sets of weights P can be obtained as

P∗ = argmin
P

L2(P) = argmin
P

1

Ntrain

Ntrain∑
l=1

||Pl−P̂l (P,ρl) ||22,

(11)
where Ntrain ∈ J1, NK is the number of data points used
for training the models, and for l ∈ J1, NtrainK, Pl =

[xl, yl, zl, αl, βl, γl]
T and P̂l =

[
x̂l, ŷl, ẑl, α̂l, β̂l, γ̂l

]T
are the

true and estimated label vectors associated to the lth feature
vector ρl of the dataset, respectively, such that P̂l is obtained
from the selected ANN with respect to the set of parameters

P .
Solving the optimization problem in (11) can be performed

using the gradient descent algorithm. In fact, gradient descent
can be used to minimize the loss function L2 by iteratively
moving in the direction of steepest descent as defined by the
negative of the gradient [48]. A variety of the gradient de-
scent method is the stochastic gradient descent (SGD), which
updates the weight parameters after evaluation of the loss
function L2 after each sample. That is, rather than summing
up the loss function results for all the samples then taking the
mean, SGD updates the weights after every training sample
is analysed [48]. Moreover, several adaptive varieties of the
SGD have been proposed in the literature of learning neural
networks aiming at either increasing the convergence speed
and/or the convergence accuracy, such as Adagrad, Adadelta,
RMSprop and Adam, with Adam being the de facto standard
in deep learning [48].

E. Online Phase: Models Deployment

Once the selected ANN model is trained and the optimal
parameters P∗ are obtained, the model will be deployed in the
online phase. A UE with a random 3D position (x, y, z) and
3D orientation angles (α, β, γ) communicates with the APs
through IR links. The APs measure the received SNR values
ρ and inject them into the trained ANN model, which in turn
will produce an estimate of the 3D position (x̂, ŷ, ẑ) and the
3D orientation angles (α̂, β̂, γ̂) of the UE, where

(x̂, ŷ, ẑ, α̂, β̂, γ̂) = g(P∗,ρ). (12)

Consequently, whenever the UE is connected to the APs, i.e.,
at least there is one active communication link between the
UE and the APs, the APs keep tracking if there is any change
in the received SNR values. If this is the case, the new SNR
values are injected into the trained ANN model and then a
new position and orientation estimate is performed.

the performance of the ANN models will be tested over
new received SNR vectors (unseen data). In this case, the
performance of each ANN model can be evaluated in terms
of the following performance metrics:

1) The average estimation error: it represents the average
gap between the true label vectors and the estimated label
vectors.

2) Precision: it represents the estimation error that is higher
than 90% of the possible estimation errors.

3) The computational time: it measures the average time
needed to estimate the label vector of a given feature
vector during one estimation session in the online phase.

In the next section, we evaluate the performance of the
proposed ANN models with respect to the above performance
metrics.

VI. SIMULATION RESULTS

In this section, our objective is evaluating the performance
of the proposed ANNs-based joint user position and ori-
entation estimation approach through extensive and various
simulations.
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TABLE II: Simulation Parameters

Parameter Symbol Value
Room dimension L×W ×H 5m×5m×3m

LED half-power semiangle Φ1/2 60◦

PD responsivity Rp 0.6 A/W
PD geometric area Ag 1 cm2

Optical concentrator refractive index nc 1
Maximum UE’s height Hdevice 1.5m
Maximum UE’s power Pmax

elec 0.01 W
Reflection coefficient of the walls ζ 0.7

Field of view of the IR-LEDs Φ 90◦

Field of view of the PDs Ψ 90◦

System Bandwidth B 10 MHz
Noise power spectral density N0 10−21 W/Hz

TABLE III: ANNs Specifications

Dataset size First dataset: N = 105

Second dataset: N = 106

Depth of the ANN D 4

Number or neuron per hidden layer Mj
MLP: 256
CNN: 64

Kernel size for CNN neuron 16

Total number of trainable parameters MLP: 207, 36
CNN: 205, 062

(Train, test) partition (0.9, 0.1)×N
Optimizer Adam

A. Simulations Parameters

In this paper, we consider a typical indoor environment with
dimensions L×W ×H = 5×5×3 m3 [49]. Unless otherwise
stated, the indoor environment is equipped with Nr = 16 APs
which are arranged on the vertexes of a square lattice over
the ceiling of the room, where each AP is oriented vertically
downward. In addition, a LiFi UE, that is equipped with
Nt = 1 IR-LED, is randomly located within the room and
its UE may have a random orientation. The UE is a typical
smartphone with dimensions 14× 7× 1 cm3. The IR-LED is
placed at screen of the smartphone, exactly at 6 cm above the
center. The parameters used throughout the paper are shown in
Table II. The central processing unit (CPU) of the machine on
which all the simulations were performed was an Intel Core
i5 from the second generation that has a dual-core, a basic
frequency of 2.40 GHz and a maximum turbo frequency of
3.40 GHz.

B. ANNs Specifications

The architecture of the two ANNs models MLP and CNN
are shown in Table III. Each ANN consists of an input layer,
an output layer and D = 4 hidden layers, where each hidden
layer is composed of Mj = 256 neurons for the MLP and
Mj = 64 filters for the CNN. In addition, the kernel size of
each convolution neuron is composed of 16 parameters. Two
distinct datasets are used in training the models, where the
first has a size of N = 105 data points and the second has a
size of N = 106 data points. Moreover, for each dataset size
N , 0.9×N data points are used for training the models in the
offline phase and 0.1×N are used for testing the models in the
online phase. The required codes for generating the datasets
are given in [50].

In our proposed ANNs, the structure of each neuron in each
hidden layer for the MLP and the CNN models are presented

Relu layer

Dropout layer

Dense layer

Normalization layer

(a)

Convolution layer

Relu layer

Dropout layer

Normalization layer

(b)

Dense layer

Linear layer

(c)

Fig. 7: Neuron architecture: (a) in each hidden layer in the MLP, (b) in each
hidden layer in the CNN and (c) in the output layer.

in Fig. 7. For the MLP, and as shown in Fig. 7(a), each neuron
consists of a dense layer, a Relu layer, a dropout layer and
a normalization layer. The dense layer is a fully connected
linear layer in which every input is connected to every output
by a weight. Then, the Relu layer applies the Relu activation
function to the resulting output from the dense layer. After
this, at each training stage, individual neurons are dropped
out of the ANN with a certain probability, so that the network
is reducing. This layer is fundamental in order to prevent
overfitting of the ANNs [51]. Finally, The normalization layer
scales the input so that the output has near to a zero mean
and unit standard deviation, to allow a faster and a more
resilient training. For the CNN, and as shown in Fig. 7(b), a
similar neuron architecture can be observed but with replacing
the dense layer with a convolution layer, which operates the
convolution between the input of the neuron and its kernel.
Concerning the neurons architecture at the output layer, and
as shown in Fig. 7(c), each one consists of a dense layer and
a linear activation layer that establishes a link with each label
at the output. The design of the ANNs is performed using
the programming environment Python 3 and the Keras library
developed by Google’s TensorFlow team in 2017 [52]. The
codes for designing, training and testing the proposed ANN
models are provided in [50].

C. Learning and Estimation Performance Evaluation

Fig. 8 presents the training and validation losses of both
the MLP and CNN models, measured in terms of the mean-
squared-error (MSE), versus the epoch index, for the two
considered datasets, and for the cases when only the LOS
component of the channel gain is considered and when both
the LOS and NLOS components are considered. In total, 30
epochs have been used for training and validating each model.
Specifically, the portion of data advocated for training the
ANN models is in fact divided into two subsets, one for
training the models to obtain the weights P and one for
validating the generalization error of the obtained weights on
the unseen data. Hence, each epoch is a pass through the
entire training set in one time. As it can be seen in Fig. 8,
the training and validation losses are decreasing as the epoch
index increases which demonstrates that the obtained ANN
models are not overfitting and can generalize well over unseen
data points in the online testing. Moreover, as it can be seen
in Fig. 8, the training loss is higher than the validation loss.
This is mainly due to the use of dropout. In fact, similar to any
regularization technique, dropout is applied during the training
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(a) CNN, N = 105
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(d) MLP, N = 106

Fig. 8: Training and validation losses of CNN and MLP models versus the
epoch index.

phase, but not during the validation phase [53]. In other words,
regularization mechanisms, such as dropout, are turned off at
validation time, and this leads to having the training loss being
higher than the validation loss [53].

Table IV presents the average estimation error and the
precision of the 3D position and the orientation angles of
the UE in the online phase using the proposed CNN and the
MLP models and the KNN technique (after the training and
the validation) for the two considered datasets, and for the
cases when only the LOS component of the channel gain is
considered and when both the LOS and NLOS components are
considered. The number of neighbours of the KNN technique
is optimized for each setting. Specifically, the validation error
is computed for each possible number of neighbors and the
optimal value that produces the lowest validation error is then
selected. For instance, for the case when only the LiFi LOS
channel gain is considered, the optimal value of neighbors is
4. Table IV shows that the CNN model outperforms both the
MLP model and the KNN technique. In fact, when considering
the total channel gain and a dataset of size N = 106, the
proposed CNN model is able to achieve an average positioning
error of 10.53 cm with 90% of the positioning errors below
17.15 cm (precision), without any prior knowledge on the
UE position and orientation and any assumptions on the LiFi
system. The same observations can be seen in the average
estimation error and the precision of the orientation angles.

Figs. 9, 10, 11 and 12 present the CDF of the instantaneous
positioning error and the instantaneous estimation error of
the yaw angle α, the pitch angle β and the roll angle γ
resulting from the proposed CNN and MLP models and from
the KNN technique, for the two considered datasets and for
the cases when only the LOS component of the channel gain
is considered and when both the LOS and NLOS components
are considered. These figures also confirm that the proposed
CNN and MLP models outperform the KNN technique, with
the CNN being the best model to adopt. Furthermore, jointly
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(a) N = 105
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(b) N = 106

Fig. 9: CDF of the positioning error for the proposed CNN and MLP models
with the KNN technique.

with Table IV, Figs. 9, 10, 11 and 12 show that increasing
the dataset size increases the learning efficiency of the ANN
models. This is mainly due to the fact that having more
data points will allow the ANNs to learn better the random
behaviour of the environment, which is translated in terms if
the effects of the random position and the random orientation
of the UE on the instantaneous received SNR. In addition,
it can be seen that the estimation performance of the ANN
models increases when the total channel gain is considered
instead of only the LOS components. This confirms that the
NLOS components provide useful information that improves
the estimation performance of the 3D position and the ori-
entation angles of the UE, rather than a source of noise as
was considered in the literature [30]. In fact, including the
NLOS components of a UE with random orientation leads to
a non-symmetric SNR change within the room, which is not
the case when only the LOS components and upward PD/LED
are considered, in which case many positions may have similar
SNRs.

Another observation that can be seen from Table IV and
Figs. 9, 10, 11, 12 is that the estimation performance of the
CNN, the MLP and the KNN models are more accurate for
some parameters than others. In fact, we can see that the
estimation performance of the pitch angle β and the roll angle
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TABLE IV: Performance comparison of the proposed MLP and CNN models versus the KNN technique.

CNN MLP KNN
N = 105 N = 106 N = 105 N = 106 N = 105 N = 106

Position Average Error [cm] LOS 21.83 16.49 29.73 21.93 34.71 22.16
LOS + NLOS 14.55 10.53 15.05 13.04 27.30 17.34

Precision [cm] LOS 38.7 29.8 49.9 37.8 61.7 40
LOS + NLOS 23.9 17.15 25.1 21.4 46.5 29.5

Yaw angle α Average Error [Deg] LOS 15.15 11.9 16.40 11.68 19.05 13.30
LOS + NLOS 12.28 9.07 12.56 10.09 21.37 14.49

Precision [Deg] LOS 25 16.9 25.5 16.67 36.1 17.2
LOS + NLOS 18.5 12.5 18.9 15.5 55 17.7

Pitch angle β Average Error [Deg] LOS 1.55 1.42 1.61 1.5 1.88 1.7
LOS + NLOS 1.35 0.96 1.40 0.98 1.88 1.8

& roll angle γ Precision [Deg] LOS 3.47 3.19 3.57 3.4 4.1 3.86
LOS + NLOS 2.96 2.135 3.09 2.17 4.07 3.925
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Fig. 10: CDF of the estimation error of the yaw angle α. for the proposed
CNN and MLP models and the KNN technique.

γ is way better than the one of the yaw angle α. This is
mainly due to the statistics of these angles. Specifically, as
discussed in subsection V-B, the standard deviations of α, β
and γ are very small. Therefore, when generating the dataset,
the random realizations of these angles will fluctuate slightly
over their individual means. However, the mean of the yaw
angle α, which is Ω−90◦, is also randomly changing, whereas
the means of the pitch angle β and the roll angle γ are fixed.
This explains why the estimation accuracy of the pitch and
the roll angles is better than the one of the yaw angle.
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(a) Pitch angle β,N = 105.
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(b) Pitch angle β,N = 106.

Fig. 11: CDF of the estimation error of the pitch angle β. for the proposed
CNN and MLP models and the KNN technique.

D. Reliability Performance Evaluation

One main objective behind estimating the UE position
and orientation, other than the purpose of navigation-based
or location-aware services, is estimating the indoor channel
gain between the APs and the UE. However, although some
navigation-based or location-aware services may tolerate a
range of estimation error, it is not the case when estimating
the UE channel gain. In fact, the position and orientation
estimation errors will affect to the channel estimation accuracy,
which in turn will affect the performance of LiFi systems in
terms of reliability and achievable rates. Due to this reason,
the reliability performance of LiFi systems under the position
and orientation estimation errors is investigates in this section.
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(a) Roll angle γ,N = 105.
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(b) Roll angle γ,N = 106.

Fig. 12: CDF of the estimation error of the roll angle γ. for the proposed
CNN and MLP models and the KNN technique.
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Fig. 13: Downlink BER evaluation versus the average received SNR γ̄RX,
for an indoor environment with dimensions L ×W ×H = 5 × 5 × 3 m3

with the number of APs Nr = 16 and a dataset with size N = 105.

Let hd denote the Nr × 1 total downlink channel gain vector
between the APs and the UE, P d

elec denotes the electrical
transmit power from the APs and σ2

d denotes the average noise
power at the UE. In this case, the instantaneous received SNR
at the UE is given by γRX =

Pd
elec||hd||21
σ2
d

. Assuming that the
on-off keying (OOK) modulation is employed and that the
APs broadcast the same signal to the UE, Fig. 13 presents

the average exact and estimated BERs versus the average
received SNR γ̄RX = E [γRX] for an indoor environment with
dimensions L×W ×H = 5×5×3 m3 and for the number of
APs Nr = 16. The average here is w.r.t to all the realizations
of the channel gain vector hd induced by all the exact and the
estimated positions and orientations of the UE.

From Fig. 13, the following observations can be highlighted.
First, the proposed CNN model provides the most accurate
estimation of the BER compared to the proposed MLP model
and the KNN technique. This is mainly due to the fact that,
based on the results of the previous subsections, the CNN was
shown to be the best model in estimating the position and
the orientation of the UE. Second, the proposed MLP model
along with the KNN technique provide an underestimation
of the BER. In fact, One might think that the estimated
average BER by the MLP model and the KNN technique
is better than the exact one but it is not what it looks like.
In fact, this underestimation is mainly due to the position
and orientation estimation errors. Specifically, the estimated
position and orientation, although they produce better BER
performance, but they don’t reflect the realistic BER resulting
from the exact position and orientation of the UE.

E. Computational Complexity Evaluation

Considering the CNN model, and as shown in Table V,
the total training time for a dataset of size N = 105 is
approximately equal to 30 minutes and the total training time
for a dataset of size N = 106 is approximately equal to
4.7 hours. In addition, the required time for generating the
dataset of size N = 105 is approximately 1.5 hours and the
required time for generating the dataset of size N = 106 is
approximately equal to 15 hours. Although the time required
for the dataset generation and the models training is large,
this high computational complexity is not an issue, since the
dataset generation and the models training is performed in the
offline phase and only once prior to the deployment of the
APs. Concerning the online complexity, and as it can be seen
in Table V, the computational time of the proposed CNN and
MLP models in the online phase is extremely low. In fact,
the maximum computational time in the online phase is 19
seconds for a dataset with size N = 105 and 140 seconds
for a dataset with size N = 106. Therefore, the average
estimation time in the online phase is 19

0.1×105 = 1.9 ms
per trial for a dataset of size N = 105 and 140

0.1×106 = 1.4
ms per trial for a dataset of size N = 106, i.e., real-time
estimation. Nevertheless, the best existing joint position and
orientation estimation technique, which was proposed in [30],
has an average online computational time of 0.5 s per trial,
which demonstrates the potential of the proposed ANN models
in providing highly accurate and real-time joint position and
orientation estimation.

F. Effects of the Indoor Environment Geometry

Fig. 14 presents the CDF of the positioning error for the
proposed CNN and MLP models and the KNN technique for
different room dimensions L × W × H , where the number
of APs Nr = 16 and the total channel gain is considered.
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TABLE V: Total computational time [in seconds]

CNN MLP KNN
N = 105 N = 106 N = 105 N = 106 N = 105 N = 106

LOS Offline phase (training phase) 1800 17000 250 2000 0.3 0.54
Online phase (testing phase) 19 140 9 30 1 26

LOS+NLOS Offline phase (training phase) 1800 17000 220 2300 0.34 0.7
Online phase (testing phase) 20 200 8 30 1 29
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Fig. 14: CDF of the positioning error for the proposed CNN and MLP models
with the KNN technique for different room dimensions L×W ×H , where
the number of APs Nr = 16 and the total channel gain is considered

This figure shows that increasing the room dimension while
keeping the number of APs fixed will decrease the estimation
performance. This observation is expected, since increasing the
room dimensions will enlarge the search space of the unknown
position parameters, and therefore, the probability of wrong
estimation will increase.

Fig. 15 presents the CDF of the positioning error for the
proposed CNN and MLP models and the KNN technique
for different number of APs Nr, where the room dimension
is L × W × H = 5 × 5 × 3 m3 and the total channel
gain is considered. This figure shows that decreasing the
number of APs while keeping the room dimension fixed will
decrease the estimation performance. This observation is also
expected since decreasing the number of APs will decrease the
number of received SNR values, and therefore, the size of the
feature SNR vector will decrease, which reduces the amount
of information that can be exploited for the estimation.

VII. CONCLUSION

In this paper, novel ANN models were proposed for the
joint 3D position and orientation estimation of a randomly
located LiFi UE with a random orientation and an unknown
emitting power. Using RSS-based fingerprinting, the proposed
approach consisted of generating a measurement-based dataset
that contains the instantaneous received SNR along with the
corresponding 3D position and orientation angles. Then, an
MLP and a CNN models were designed to map efficiently
the SNR feature vectors with the corresponding positions and
orientation angles. Although there were no prior knowledge
on the UE position and orientation and any assumptions on
the LiFi system, the proposed models were able to achieve
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Fig. 15: CDF of the positioning error for the proposed CNN and MLP models
with the KNN technique for different number of APs Nr, where the room
dimension is L ×W × H = 5 × 5 × 3 m3 and the total channel gain is
considered.

centimeter level positioning error and high accurate orien-
tation angles estimation. The performance of the proposed
models were compared with the KNN technique, in terms of
average estimation error, precision, BER and computational
time, where the superiority of the proposed ANN models was
shown. These results have enlightened the potential of the
proposed ANN models in providing highly accurate and real-
time joint position and orientation estimation. In addition, the
simulation results have demonstrated how including the NLOS
components of the channel gain can improve significantly the
position and orientation estimation performance.
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APPENDIX A
LIFI CHANNEL MODEL

In this section, the objective s to explain the LiFi channel
model adopted in this paper. For all i ∈ J1, NrK and and j ∈
J1, NtK, the channel gain of the link between the jth IR-LED
and the PD of the ith AP, which is the (ith, jth) element
of the Nr × Nt channel matrix H is expressed as hi,j =
hLOS
i,j + hNLOS

i,j , such that hLOS
i,j and hNLOS

i,j denote the LOS
and the NLOS channel gains, respectively. Each channel gain
depends on the positions of the corresponding AP as well
as the position and orientation of the corresponding IR-LED,
which is explained as follows. For all i ∈ J1, NrK and for all
j ∈ J1, NtK, Fig. 16 shows the LOS link geometry between
the jth IR-LED and the PD of the ith AP, where nu

j is the
normal vector of the jth IR-LED, na

i is the normal vector of
the PD of the ith AP, φi,j is the angle of radiance, Φ is the
IR-LED field-of-view (FOV), ψi,j is the incidence angle, Ψ is
the FOV of the PD at the AP and di,j is the distance between
the jth IR-LED and the PD at the ith AP. Based on [54], the
LOS channel gain hLOS

i,j is expressed as:

hLOS
i,j =

(m+ 1)A

2πd2i,j
cosm(φi,j)rect

(
φi,j
Φ

)
× cos(ψi,j)rect

(
ψi,j
Ψ

)
,

(13)

where m = −1/ log2(cos(Φ1/2)) is the Lambertian emission
order of the IR-LEDs, such that Φ1/2 is the associated half-
power semi-angle, and A is the area of the PD.

Assuming that the global coordinate system (O,X, Y, Z)
is Cartesian, and for all i ∈ J1, NrK, the coordinates of
the ith AP are given by (xai , y

a
i , z

a
i ), the coordinates of the

UE are given by (x, y, z), and for all j ∈ J1, NtK, the
coordinates of the jth (IR-LED,PD) pair of the UE are given
by
(
xuj , y

u
j , z

u
j

)
. Basically, the coordinates of the IR-LEDs

depend on the geometry of the UE and they are fully known
once the 3D position of the UE is known. In other words, for
all j ∈ J1, NtK,

(
xuj , y

u
j , z

u
j

)
= (x+ ∆xj , y + ∆yj , z + ∆zj),

where (∆xj ,∆yj ,∆zj) are constant and depend on the design
of the UE. Finally, for all i ∈ J1, NrK and j ∈ J1, NtK, we

denote by pa
i and pu

j the 3D vectors defined, respectively, as
pa
i , [xai , y

a
i , z

a
i ]
T and pu

j ,
[
xuj , y

u
j , z

u
j

]T
, i.e., they contain

the position of the ith AP and the jth IR-LED, respectively.
Based on this, for all i ∈ J1, NrK and j ∈ J1, NtK, the
cosine of the incidence angle at the ith AP and the cosine
of the radiance angle from the jth IR-LED can be expressed,
respectively, as cos(ψi,j) = − na

i
T di,j

||di,j || and cos(φi,j) =
nu
j
T di,j

||di,j ||
Concerning the NLOS components of the channel gain, they

can be calculated based on the method described in [55]. Using
the frequency domain instead of the time domain analysis,
one is able to consider an infinite number of reflections to
have an accurate value of the diffuse link. The environment is
segmented into a number of surface elements which reflect
the light beams. These surface elements are modeled as
Lambertian radiators described by (13) with m = 1 and FOV
of 90◦. Assuming that the entire room can be decomposed
into K surface elements, the NLOS channel gain hNLOS

i,j ,
including an infinite number of reflections between the jth
IR-LED and the ith AP, for all i ∈ J1, NrK and j ∈ J1, NtK,
can be expressed as hNLOS

i,j = rTGζ(I−EGζ)
−1t, where the

vectors t and r respectively represent the LOS link between
the jth IR-LEDs and all the surface elements of the room and
from all the surface elements of the room to the ith AP [55].
The matrix Gζ = diag(ζ1, ..., ζK) is the reflectivity matrix
of all K reflectors; E is the LOS transfer function of size
K × K for the links between all surface elements, and IK
is the unity matrix of order K. The elements of E, r and t
are found according to (13) and Fig. 16 between groups of
IR-LED, surface elements and PD.
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